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Abstract
In this paper, the conservation laws for a generalized Ito-type coupled Korteweg-de
Vries (KdV) system are constructed by increasing the order of the partial differential
equations. The generalized Ito-type coupled KdV system is a third-order system of
two partial differential equations and does not have a Lagrangian. The transformation
u = Ux , v = Vx converts the generalized Ito-type coupled KdV system into a system of
fourth-order partial differential equations in U and V variables, which has a
Lagrangian. Noether’s approach is then used to construct the conservation laws.
Finally, the conservation laws are expressed in the original variables u and v. Some
local and infinitely many nonlocal conserved quantities are found for the generalized
Ito-typed coupled KdV system.

1 Introduction
In this paper, we consider the generalized Ito-type coupled Korteweg-de Vries (KdV) sys-
tem []

ut + αuux + βvvx + γuxxx = , (a)

vt + βuvx + βvux = . (b)

It is well known that coupled nonlinear systems in which a KdV structure is embedded
occur naturally in shallow water wave problems [, ]. When α = –, β = – and γ = –,
the system (a) and (b) is called Ito’s system and it describes the interaction process of
two internal long waves [, ]. It should be noted that in the absence of the effect of v,
the system (a) and (b) reduces to the ordinary KdV equation. In [] it has been shown
that this Ito’s system can be a member of a bi-Hamiltonian integrable hierarchy. The nu-
merical methods for this system are very limited []. However, Xu and Shu [] developed
local discontinuous Galerkin methods for Ito’s system and proved the L stability of these
methods and, as a result, showed some good numerical results. Recently, in [], the gen-
eralized Ito-type coupled KdV system (a) and (b) was constructed as a multi-symplectic
Hamiltonian partial differential equation by introducing some new variables, and multi-
symplectic numerical methods were applied to investigate this system.
In this paper, we derive conservation laws for the generalized Ito-type coupled KdV sys-

tem (a) and (b). It is well known that the conservation laws play a central role in the
solution and reduction of partial differential equations. Conservation laws are mathemat-
ical expressions of the physical laws, such as conservation of energy, mass, momentum
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and so on. In the literature, conservation laws have been extensively used in studying the
existence, uniqueness and stability of solutions of nonlinear partial differential equations
(see, for example, [–]). Conservation laws have also been applied in the development
and use of numerical methods (see for example, [, ]). Recently, conserved vectors as-
sociated with Lie point symmetries have been used to find exact solutions (by exploiting
a double reduction method) of some classical partial differential equations [–]. Thus,
it is important to derive all the conservation laws for a given differential equation.
For variational problems, the celebrated Noether theorem [] provides an elegant way

to construct conservation laws. In fact, it gives an explicit formula for determining a con-
servation law once a Noether symmetry associated with a Lagrangian is known for an
Euler-Lagrange equation. Thus, the knowledge of a Lagrangian is essential in this case.
However, there are differential equations, such as scalar evolution differential equations,
which do not have a Lagrangian. In such cases, several methods [–] have been de-
veloped by researchers about the construction of conserved quantities. Comparison of
several different methods for computing conservation laws can be found in [, ].

2 Conservation laws for the Ito-type coupled KdV system
In this section, we construct conservation laws for the Ito-type KdV system (a) and (b).
We note that this system does not have a Lagrangian. However, we can put the system
into a variational form by letting u = Ux, v = Vx. Then the Ito-type coupled KdV system
(a) and (b) transforms into a fourth-order system, viz.,

Utx + αUxUxx + βVxVxx + γUxxxx = , (a)

Vxt + βVxUxx + βUxVxx = . (b)

It can be readily verified that L given by

L =



{
γU

xx –
α


U

x – βUxV 
x –UtUx –VtVx

}
()

is a Lagrangian for the system (a) and (b). This is because L satisfies

δL
δU

=  and
δL
δV

= , ()

where δ/δU and δ/δV are the Euler-Lagrange operators defined by

δ

δU
=

∂

∂U
–Dt

∂

∂Ut
–Dx

∂

∂Ux
+D

t
∂

∂Utt
+D

x
∂

∂Uxx
+DxDt

∂

∂Utx
– · · · ()

and

δ

δV
=

∂

∂V
–Dt

∂

∂Vt
–Dx

∂

∂Vx
+D

t
∂

∂Vtt
+D

x
∂

∂Vxx
+DxDt

∂

∂Vtx
– · · · . ()

Consider the vector field

X = ξ (t,x,U ,V )
∂

∂t
+ ξ (t,x,U ,V )

∂

∂x
+ η(t,x,U ,V )

∂

∂U
+ η(t,x,U ,V )

∂

∂V
, ()
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which has the second extension

X[] = ξ (t,x,U ,V )
∂

∂t
+ ξ (t,x,U ,V )

∂

∂x
+ η(t,x,U ,V )

∂

∂U

+ η(t,x,U ,V )
∂

∂V
+ ζ 

t
∂

∂Ut
+ ζ 

t
∂

∂Vt
+ ζ 

x
∂

∂Ux
+ ζ 

x
∂

∂Vx
+ · · · , ()

where

ζ 
t =Dt

(
η) –UtDt

(
ξ ) –UxDt

(
ξ ), ζ 

x =Dx
(
η) –UtDx

(
ξ ) –UxDx

(
ξ ),

ζ 
t =Dt

(
η) –VtDt

(
ξ ) –VxDt

(
ξ ), ζ 

x =Dx
(
η) –VtDx

(
ξ ) –VxDx

(
ξ )

and

Dt =
∂

∂t
+Ut

∂

∂U
+Vt

∂

∂V
+Utt

∂

∂Ut
+Vtt

∂

∂Vt
+Utx

∂

∂Ux
+Vtx

∂

∂Vx
+ · · · ,

Dx =
∂

∂x
+Ux

∂

∂U
+Vx

∂

∂V
+Uxx

∂

∂Ux
+Vxx

∂

∂Vx
+Utx

∂

∂Ut
+Vtx

∂

∂Vt
+ · · · .

We recall that the vector field X, of the form (), is called a Noether point symmetry gen-
erator corresponding to the Lagrangian L if there exists gauge functions B(t,x,U ,V ) and
B(t,x,U ,V ) such that

X[](L) +
{
Dt

(
ξ ) +Dx

(
ξ )}L =Dt

(
B) +Dx

(
B). ()

The insertion of L from () into Eq. () yields

–


Ux

[
η
t +Utη


U +Vtη


V –Utξ


t –U

t ξ

U –UtVtξ


V –Uxξ


t

–UtUtξ

U –UxVtξ


V
]
–


Vx

[
η
t +Utη


U +Vtη


V –Vtξ


t –UtVtξ


U

–V 
t ξ 

V –Vxξ

t –UtVxξ


U –VtVxξ


V
]

–
(

α


U

x +
β


V 
x +



Ut

)[
η
x +Uxη


U +Vxη


V

–Utξ

x –UtUxξ


U –UtVxξ


V –Uxξ


x –U

x ξ

U –UxVxξ


V
]

–
(


Vt + βUxVx

)[
η
x +Uxη


U +Vxη


V –Vtξ


x –UxVtξ


U

–VtVxξ

V –Vxξ


x –UxVxξ


U –V 

x ξ 
V
]
+ γUxx

[
D

xη
 –UtD

xξ


–UxD
xξ

 – Utx
(
ξ 
x +Uxξ


U +Vxξ


V
)
– Uxx

(
ξ 
x +Uxξ


U +Vxξ


V
)]

+



[
γU

xx –
α


U

x – βUxV 
x –UtUx –VtVx

][
ξ 
t +Utξ


U

+Vtξ

V + ξ 

x +Uxξ

U +Vxξ


V
]

= B
t +UtB

U +VtB
V + B

x +UxB
U +VxB

V . ()

The analysis of Eq. () prompts the following two cases.
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2.1 Case 1 α �= β

In this case, the splitting of () with respect to different combinations of the derivatives of
U and V gives an overdetermined system of linear partial differential equations for ξ , ξ ,
η, η, B and B. Solving this system yields the following Noether symmetries and gauge
terms:

ξ  = c,

ξ  = c,

η = E(t),

η = F(t), ()

B = a(t,x),

B = –


UE′(t) –



VF ′(t) + b(t,x),

at + bx = .

The above results will now be used to find the components of the conserved vectors for
the second-order Lagrangian L. Here we can choose a = , b =  as they contribute to the
trivial part of the conserved vector. We recall that the conserved vectors for the second-
order Lagrangian L are given by [, ]

T  = –B + ξ L +W 
[

∂L
∂Ut

–Dt
∂L

∂Utt
–Dx

∂L
∂Utx

. . . ,
]

+W 
[

∂L
∂Vt

–Dt
∂L

∂Vxt
–Dx

∂L
∂Vtt

. . . ,
]

+Dt
(
W ) ∂L

∂Utt
+Dt

(
W ) ∂L

∂Vtt
, ()

T = –B + ξ L +W 
[

∂L
∂Ux

–Dt
∂L

∂Uxt
–Dx

∂L
∂Uxx

. . . ,
]

+W 
[

∂L
∂Vx

–Dt
∂L

∂Vxt
–Dx

∂L
∂Vxx

. . . ,
]

+Dx
(
W ) ∂L

∂Uxx
+Dx

(
W ) ∂L

∂Vxx
, ()

where W  = η –Utξ
 –Uxξ

 and W  = η – Vtξ
 – Vxξ

 are the Lie characteristic func-
tions. Thus, using () and () together with () and u = Ux, v = Vx yields the following
independent conserved vectors for our system (a) and (b):

T 
 =

γux


–
αu


–

βuv


,

T
 =

αu



∫
ut dx +

βv



∫
ut dx + γuxx

∫
ut dx + βuv

∫
vt dx – γutux ()

+



[∫
ut dx

]

+



[∫
vt dx

]

,
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T 
 =

u


+
v


,

T
 = –

γux


+
αu


+ βuv + γuuxx,

()

T 
(E,F) = –

u

E(t) –

v

F(t),

T
(E,F) = –βuvF(t) – E(t)

[
αu


+

βv


+ γuxx

]
–


E(t)

∫
ut dx ()

–


F(t)

∫
vt dx +



E′(t)

∫
udx +



F ′(t)

∫
vdx.

It should be noted that the conserved vectors () and () are nonlocal conserved vectors
and () is a local conserved vector for the system (a) and (b).We now extract two special
cases from the conserved vector () by letting E(t) =  and F(t) = , which gives a nonlocal
conserved vector

T 
 = –

u

,

T
 = –

αu


–

βv


– γuxx –




∫
ut dx,

()

and by choosing E(t) =  and F(t) = , which gives a nonlocal conserved vector

T 
 = –

v

,

T
 = –βuv –




∫
vt dx.

We note that since the functions E(t) and F(t) are arbitrary, one obtains infinitely many
nonlocal conservation laws for the system (a) and (b). It should also be noted that for
the special values of α, β and γ , namely, α = –, β = – and γ = –, we retrieve the three
constants of the motion F, F and F obtained in [].

2.2 Case 2 α = β

In this case, we obtain the following Noether symmetries and gauge terms:

ξ  = c,

ξ  = c + αtc,

η = xc + E(t),

η = F(t), ()

B = –
c

U + a(t,x),

B = –


UE′(t) –



VF ′(t) + b(t,x),

at + bx = .
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Again, we can set a = , b =  as they contribute to the trivial part of the conserved vector.
The independent conserved vectors for the system (a) and (b) in this case are as follows:

T 
 =

γux


–
αu


–

αuv


,

T
 =

αu



∫
ut dx +

αv



∫
ut dx + γuxx

∫
ut dx + αuv

∫
vt dx – γutux ()

+



[∫
ut dx

]

+



[∫
vt dx

]

,

T 
 =

u


+
v


,

T
 = –

γux


+
αu


+ αuv + γuuxx,

()

T 
 =

αtu


+

αtv


+



∫
udx,

T
 = –

αγ tux


+
αtu


+ ααtuv + αγ tuuxx,

()

T 
(E,F) = –

u

E(t) –

v

F(t),

T
(E,F) = –αuvF(t) – E(t)

[
αu


+

αv


+ γuxx

]
–


E(t)

∫
ut dx ()

–


F(t)

∫
vt dx +



E′(t)

∫
udx +



F ′(t)

∫
vdx.

Note that the conserved vectors (), () and () are nonlocal conserved vectors whereas
the conserved vector () is a local conserved vector for the system (a) and (b). The
conserved vector (), for E(t) =  and F(t) = , gives a nonlocal conserved vector

T 
 = –

u

,

T
 = –

αu


–

αv


– γuxx –




∫
ut dx,

()

and for E(t) =  and F(t) = , it gives a nonlocal conserved vector

T 
 = –

v

,

T
 = –αuv –




∫
vt dx.

We see that for the arbitrary values of E(t) and F(t), infinitely many nonlocal conservation
laws exist for the system (a) and (b).

3 Concluding remarks
In this paper, we studied the generalized Ito-type coupled Korteweg-de Vries system (a)
and (b). This system does not have a Lagrangian. In order to apply Noether’s theorem,
we transformed the system into the fourth-order system (a) and (b), which admitted a
standard Lagrangian (). Then Noether’s approach was used to derive the conservation
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laws in U and V variables. Finally, by reverting back to our original variables u and v, we
obtained the conservation laws for the third-order generalized Ito-type coupled KdV sys-
tem (a) and (b). The conservation laws for the generalized Ito-type coupled KdV system
consisted of some local and infinite number of nonlocal conserved vectors.
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