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Abstract
In this paper, an optimal control problem was taken up for a stationary equation of
quasi optic. For the stationary equation of quasi optic, at first judgment relating to the
existence and uniqueness of a boundary value problem was given. By using this
judgment, the existence and uniqueness of the optimal control problem solutions
were proved. Then we state a necessary condition to an optimal solution. We proved
differentiability of a functional and obtained a formula for its gradient. By using this
formula, the necessary condition for solvability of the problem is stated as the
variational principle.
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1 Introduction
Optimal control theory for the quantum mechanic systems described with the Schrö-
dinger equation is one of the important areas of modern optimal control theory. Actually,
a stationary quasi-optics equation is a form of the Schrödinger equation with complex
potential. Such problems were investigated in [–]. Optimal control problem for nonsta-
tionary Schrödinger equation of quasi optics was investigated for the first time in [].

2 Formulation of the problem
We are interested in finding the problem of the minimum of the functional

Jα(v) =
∥∥ψ(·,L) – y

∥∥
L(,l)

+ α‖v –ω‖H ()

in the set

V ≡ {
v = (v, v,ϕ,ϕ), vm ∈ L(, l), v(z) ≥ ,

∀ z ∈ (,L),

‖vm‖L(,l) ≤ bm,ϕm ∈ L(, l),‖ϕm‖L(,l) ≤ dm,m = , 
}

under the condition

i
∂ψ

∂z
+ a

∂ψ

∂x
+ v(z)ψ + iv(z)ψ = f (x, z), (x, z) ∈ �, ()

ψ(x, ) = ϕ(x) = ϕ(x) + iϕ(x), x ∈ (, l), ()

ψ(, z) = ψ(l, z) = , z ∈ (,L), ()
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where i =
√
–, a > , l > , L > , α ≥ , b ≥ , b > , d > , d >  are numbers,

x ∈ [, l], z ∈ [,L], �z = (, l)× (, z), � = �L, y(x), f (x, z) are complex valued measurable
functions and satisfy the conditions

f ∈ L(�), ()

y ∈ L(, l) ()

respectively, ω = (ω,ω,�,�) andH = (L(, l)) × (L(,L)). L(, l) is a Hilbert space
that consists of all functions in (, l), which are measurable and square-integrable. L(�)
is the well-known Lebesgue space consisting of all functions in �, which are measurable
and square-integrable.
The problem of finding a function ψ = ψ(x, z) ≡ ψ(x, z; v) under the condition ()-()

for each ∀v ∈ V , which is a boundary value problem, is a function for Eq. ().
Generalized solution of this problem is a function ψ = ψ(x, z) ≡ ψ(x, z; v) belonging to

the C([,L],L(, l)), and it satisfies the integral identity

∫
�

ψ

(
i
∂η̄

∂z
+ a

∂η̄

∂x
+ v(z)η + iv(z)η

)
dxdz

=
∫

�

f η̄dxdz – i
∫ l


ψ(x,L)η̄(x,L)dx +

∫ l



(
ϕ(x) + iϕ(x)

)
η̄(x, )dx ()

for ∀η ∈ C([,L],L(, l)).

3 Existence and uniqueness of a solution of the optimal control problem
In this section, we prove the optimal control problem using the Galerkin method and the
existence and uniqueness of a solution of the problem ()-().

Theorem  Suppose that a function f satisfies the condition (). So, for each ∀v ∈ V , the
problem ()-() has a unique solution, and for this solution, the estimate

∥∥ψ(·, z)∥∥
L(,l)

≤ c
(‖ϕ‖L(,l) + ‖f ‖L(�)

)
()

is valid for ∀z ∈ [,L]. Here, the number c >  is independent of z.

Proof Proof can be done by processes similar to those given in []. �

Theorem  Let us accept that the conditions of Theorem  hold and y ∈ L(, l) is a given
function. Then there is such a set G dense in H ≡ [L(,L)] × [L(, l)] that the optimal
control problem ()-() has a unique solution ∀ω ∈G and α > .

Proof Firstly, let us show that

J(v) =
∥∥ψ(·,L) – y

∥∥
L(,l)

()

is continuous on the set V . Let us take an arbitrary ∈ V , and let v + 
v be an incre-
ment of the v for the 
v ∈ H . Then the solution ψ(x, z; v) of the problem ()-() will have
an increment 
ψ = 
ψ(x, z) = ψ(x, z; v + 
v) – ψ(x, z; v). Here, the function ψ
(x, z) =
ψ(x, z; v + 
v) is the solution of ()-(). On the basis of the assumptions and conditions
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()-(), it can be shown that the function 
ψ(x, z) is a solution of the following boundary
value problem:

i
∂
ψ

∂z
+ a

∂
ψ

∂x
+

(
v(z) +
v(z)

)

ψ + i

(
v(z) +
v(z)

)

ψ

= –
v(z)ψ – iv(z)ψ , (x, z) ∈ �, ()


ψ(x, ) = 
ϕ(x) + i
ϕ(x), x ∈ (, l), ()


ψ(, z) = 
ψ(l, z) = , z ∈ (,L). ()

Because the problem ()-() and the problem ()-() are the same type problems, we
can write the following estimate the same as ():

∥∥
ψ(·, z)∥∥ ≤ c‖
ψ‖L(,l) + ‖
vψ + i
vψ‖L(�), ∀z ∈ [,L]. ()

If we use estimate () then we can write the following estimate:

∥∥
ψ(·, z)∥∥
L(,l)

≤ c‖
v‖H , ∀z ∈ [,L]. ()

c >  is constant that does not depend on 
v.
Now, let us evaluate the increment of the functional J(v) on v ∈ V . Using formula ()

we can write the equality as


J(v) = J(v +
v) – J(v)

= 
∫ l


Re

(
ψ(x,L) – y(x)

)

ψ̄(x,L)dx +

∥∥
ψ(·,L)∥∥
L(,l)

. ()

Using the Cauchy-Bunyakowski inequality and estimates () and (), we write the in-
equality as

∣∣
J(v)
∣∣ ≤ c‖
v‖H , ∀v ∈ V , ()

where c >  is a constant that does not depend on 
v. This inequality shows that the
functional J(v) is continuous on the set V . On the other hand, J(z) ≥  for ∀z ∈ V ; there-
fore, J(v) is bounded on V . The set V is closed, bounded on a Hilbert spaceH . According
to Theorem (Goebel) in [], there is such a set G dense in H that optimalcontrol problem
()-() has a unique solution for α >  and ∀ω ∈G. Theorem  is proven. �

3.1 Fréchet diffrentiability of the functional
In this section,we prove the Fréchet differentiability of a given functional. For this purpose,
we consider the following adjoint boundary value problem:

i
∂ϕ

∂z
+ a

∂ϕ

∂x
+ v(z)ϕ – iv(z)ϕ = , (x, z) ∈ �, ()

ϕ(x,L) = –i
(
ψ(x,L) – y(x)

)
, x ∈ (, l), ()

ϕ(, z) = ϕ(l, z) = , z ∈ (,L). ()
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Here, the function ψ = ψ(x, z) ≡ ψ(x, z; v) is a solution of ()-() for v ∈ V . The solution
of the boundary value problem ()-() corresponding to v ∈ V is a function ϕ = ϕ(x, z)
that belongs to the space C([,L],L(,L)) and satisfies the integral identity

∫
�

ϕ

(
–i

∂η̄

∂z
+ a

∂η̄

∂x
+ v(z)η̄ – iv(z)η̄

)
dxdz

= –
∫ l



(
ψ(x,L) – y(x)

)
η̄(x,L)dx + i

∫ l


ϕ(x, )η̄(x, )dx

for ∀η ∈ 
W ,

 (�). ()

As seen, the problem ()-() is an initial boundary value problem. This can easily be
obtained by a transform θ = L – z. Actually, if we do a variable transform θ = L – z, we
obtain the boundary problem as

i
∂ϕ̃

∂θ
+ a

∂ϕ̃

∂x
+ ṽ(θ )ϕ̃ – iṽ(θ )ϕ̃ = , ∀(x, θ ) ∈ �, ()

ϕ̃(x, ) = –i
(
ψ(x,L) – y(x)

)
, x ∈ (, l), ()

ϕ̃(, θ ) = ϕ̃(l, θ ) = , z ∈ (,L), ()

where

ϕ̃(x, v) = ϕ(x,L – T) = ϕ(x, z), ṽ(θ ) = v(L – θ ) = v(z)

ṽ(θ ) = v(L – θ ) = v(z).

If we write the complex conjugate of this boundary value problem, we obtain the following
boundary value problem:

i
∂F
∂θ

+ a
∂F
∂x

+ ṽ(θ )F – iṽ(θ )F = , ∀(x, z) ∈ �, ()

F(x, ) = h(x), x ∈ (, l), ()

F(, v) = F(l, θ ) = , θ ∈ (,L), ()

where

F(x, θ ) = ϕ̃(x, θ ), h(x) = –i
(
ψ̄(x,L) – ȳ(x)

)
.

This problem is a type of ()-() boundary value problem. As the right-hand side is equal
to zero, and initial function h(x) belongs to the space L(, l) for ψ ∈ C([,L],L(, l)),
y ∈ L(, l). By using Theorem , it follows that the solution of the bounded value problem
()-() existing in the space C([,L],L(, l)) is unique, and the following estimate is
obtained:

∥∥F(·, θ )∥∥
L(,l)

≤ c‖h‖L(,l), ∀θ ∈ [,L]. ()

If we use the problem ()-() as a type of the conjugate problem ()-(), we obtain
the initial bounded value problem ()-() has a unique solution belonging to the space

http://www.boundaryvalueproblems.com/content/2012/1/151
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C([,L],L(, l)), and the following estimate is obtained:

∥∥ϕ(·, z)∥∥
L(,l)

≤ c
∥∥ψ(·,L) – y

∥∥
L(,l)

, ∀z ∈ [,L].

Here, the number c >  is independent of ψ and y. Now, using estimate () in this in-
equality, we easily write the following estimate:

∥∥ϕ(·, z)∥∥
L(,l)

≤ c
(‖ϕ‖L(,l) + ‖y‖L(,l) + ‖ϕ‖L(�)

)
, ∀z ∈ [,L]. ()

Here, the number c >  is constant.

Theorem  Let us accept that the conditions of Theorem  hold and ω ∈H is given. Then
the functional Jα(v) can be Frechet differentiable in the set V and the formula below for a
gradient of the functional is valid:

J ′α(v) =
(
J ′αv (v), J

′
αv (v), J

′
αϕ (v), J

′
αϕ (v)

)
, where

J ′αv (v) =
∫ l


Re(ψϕ̄)dx + α

(
v(z) –ω(z)

)
,

J ′αv (v) = –
∫ l


Im(ψϕ̄)dx + α

(
v(z) –ω(z)

)
, ()

J ′αϕ (v) = Im
(
ϕ̄(x, )

)
+ α

(
ϕ(x) – ω̃(x)

)
,

J ′αϕ (v) = Re
(
ϕ̄(x, )

)
+ α

(
ϕ(x) – ω̃(x)

)
.

Proof Let us evaluate the increment of the functional Jα(v) for the element ∀v ∈ V . We
can write the following equation for the increment of the functional:


Jα(v) = Jα(v +
v) – Jα(v)

= 
∫ l


Re

[(
ψ(x,L) – y(x)

)

ψ̄(x,L)

]
dx + α

∫ l



(
ϕ(x) – ω̃(x)

)

ϕ(x)dx

+ α
∫ l



(
ϕ(x) – ω̃(x)

)

ϕ(x)dx + α

∫ T



(
v(z) –ω(z)

)

v(z)dz

+ α
∫ T



(
v(z) –ω(z)

)

v(z)dz +

∥∥
ψ(·,L)∥∥
L(,l)

+ α‖
v‖H . ()

The last formula can be written as follows:


Jα(v) = Jα(v +
v) – Jα(v)

=
∫ L



(∫ l


Re(ψϕ̄)dx + α

(
v(z) –ω(z)

)

v(z)dz –

∫ l


Im(ψ , ϕ̄)dx
v(z)

)

+
∫ L



(
–

∫ l


Im(ψϕ̄)dx + α

(
v(z) –ω(z)

))

v(z)dz

+
∫ l



[
Im

(
ϕ̄(x, )

)
+ α

(
ϕ(x) – ω̃(x)

)]

ϕ(x)dx

+
∫ l



[
Re

(
ϕ̄(x, )

)
+ α

(
ϕ(x) – ω̃(x)

)]

ϕ(x)dx + R(
v),

http://www.boundaryvalueproblems.com/content/2012/1/151
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where R(
v) is defined as the formula

R(
v) =
∥∥
ψ(·,L)∥∥

L(,l)
+ α‖
v‖H

+
∫

�

Re(
ψϕ̄)
v(z)dxdz

–
∫

�

Im(
ψϕ̄)
v(z)dxdz. ()

Applying the Cauchy-Bunyakowski inequality, we obtain:

∣∣R(
v)
∣∣ ≤ ∥∥
ψ(·,L)∥∥

L(,l)
+ α‖
v‖H

+
(‖
v‖L(,T) + ‖
v‖L(,T)

)
max

∥∥
ψ(·,L)∥∥L(,l)
‖ϕ‖L(,L).

If we use estimates () and () in this inequality, we obtain

∣∣R(
v)
∣∣ ≤ c‖
v‖H . ()

Here, c >  is a constant that does not depend on 
v. Hence, we write

R(
v) = o
(‖
v‖H

)
. ()

By using equality (), the increment of the functional can be written as

∫ T



(∫ l


Re(ψϕ̄)dx + α

(
v(z) –ω(z)

)

v(z)dz –

∫ l


Im(ψ , ϕ̄)dx
v(z)

)

+
∫ T


(–

∫ l


Im(ψϕ̄)dx + α

(
v(z) –ω(z)

)

v(z)dz

+
∫ l



[
Im

(
ϕ̄(x, )

)
+ α

(
ϕ(x) – ω̃(x)

)]

ϕ(x)dx

+
∫ l



[
Re

(
ϕ̄(x, )

)
+ α

(
ϕ(x) – ω̃(x)

)]

ϕ(x)dx + o

(‖
v‖H
)
. ()

Considering this equality (), and by using the definition of Fréchet differentiable, we can
easily obtain the validity of the rule. Theorem  is proved. �

3.2 A necessary condition for an optimal solution
In this section, we prove the continuity of a gradient and state a necessary condition to an
optimal solution in the variational inequality form using the gradient.

Theorem Accept that the conditions of Theorem  hold and v* ∈ V is an optimal solution
of the problem ()-(). Then the following inequality is valid for ∀v ∈ V :

∫ L



[∫ l


Re

(
ψ *(x, z)ϕ̄*(x, z)dx + α

(
v*(z) –ω(z)

))](
v(z) – v*(z)

)
dz

+
∫ L



[
–

∫ l


Im

(
ψ *(x, z)ϕ̄*(x, z)dx + α

(
v*(z) –ω(z)

))](
v(z) – v*(z)

)
dz

http://www.boundaryvalueproblems.com/content/2012/1/151
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+
∫ l



[
Im

(
ϕ̄*(x, )

)
+ α

(
ϕ*
(x) – ω̃(x)

)](
ϕ(x) – ϕ*

(z)
)
dx

+
∫ l



[
Re

(
ϕ̄*(x, )

)
+ α

(
ϕ*
(x) – ω̃(x)

)](
ϕ(x) – ϕ*

(z)
)
dx ≥ . ()

Here, the functions ψ *(x, z)≡ ψ(x, z; v*), ϕ*(x, z) ≡ ϕ(x, z; v*) are solutions of the problems
()-() and a conjugate problem corresponding to v* ∈ V , respectively.

Proof Now, we prove that the gradient J ′α(v) is continuous at V . For this we show

∥∥J ′αv (v +
v) – Jαv (v)
∥∥
L(,L)

→ , ()
∥∥J ′αv (v +
v) – Jαv (v)

∥∥
L(,L)

→ , ()
∥∥J ′αϕ (v +
v) – Jαϕ (v)

∥∥
L(,l)

→ , ()
∥∥J ′αϕ (v +
v) – Jαϕ (v)

∥∥
L(,l)

→  ()

for ‖
v‖H → .
In order to show (), using the formula J ′αv (v) =

∫ l
 Re(ψϕ̄)dx+α(v(z)–ω(z)) in (),

we can write the following equation:

J ′αv (v +
v) – Jαv (v)

=
∫ l


Re(ψ
ϕ̄
)dx + α

(
v(z) +
v(z) –ω(z)

)

–
∫ l


Re(ψϕ̄)dx + α

(
v(z) –ω(z)

)

=
∫ l


Re(ψ
ϕ̄
 –ψϕ̄)dx + α

=
∫ l


Re

(
ψ(x, z; v +
v)ϕ̄(x, z; v +
v) –ψ(x, z; v)ϕ̄(x, z; v)

)
dx + α
v(z)

=
∫ l


Re

(
ψ
(x, z)
ϕ̄(x, z) –
ψ(x, z)ϕ̄(x, z)

)
dx + α
v(z). ()

Here, 
ψ = 
ψ(x, z) is the solution of the problem ()-() and 
ϕ = 
ϕ(x, z) is the solu-
tion of the following problem:

i
∂
ϕ

∂z
+ a

∂
ϕ

∂x
+

(
v(z) –
v(z)

)

ϕ – i

(
v(z) –
v(z)

)

ϕ

= –
v(z)ϕ + i
v(z)ϕ, (x, z) ∈ �, ()


ϕ(x,L) = –i
ψ(x,L), x ∈ (, l), ()


ϕ(, z) = 
ϕ(l, z) = , z ∈ (,L). ()

This bounded value problem is a type of a conjugate problem. For this solution, the
following estimate is valid:

∥∥ϕ(·, z)∥∥
L(,l)

≤ c
(‖
vϕ + i
vϕ‖L(�) +

∥∥
ψ(·,L)∥∥
L(,l)

)
, ∀z ∈ (,L). ()

http://www.boundaryvalueproblems.com/content/2012/1/151
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Here, the number c is constant.
Using () and (), we write

∥∥ϕ(·, z)∥∥
L(,l)

≤ c
(‖
v‖H

)
, ∀z ∈ (,L). ()

Here, the number c is constant. Using () and () and applying the Cauchy-
Bunyakovski inequality, we obtain

∣∣J ′αv (v +
v) – J ′αv (v)
∣∣ ≤ ∥∥ψ
(·, z)

∥∥
L(,l)

∥∥
ϕ(·, z)∥∥L(,l)

+
∥∥
ψ(·, z)∥∥L(,l)

∥∥ϕ(·, z)∥∥L(,l)
+ α

∣∣
v(z)
∣∣, ∀z ∈ (,L),

and then

∥∥J ′αv (v +
v) – J ′αv (v)
∥∥
L(,l)

≤ 
∫ L



∥∥ψ
(x, z)
∥∥
L(,l)

∥∥
ϕ(·, z)∥∥
L(,l)

dz

+ 
∫ L



∥∥
ψ(·, z)∥∥
L(,l)

∥∥ϕ(·, z)∥∥
L(,l)

dz + ‖
v‖L(,L). ()

If we use estimate (), we can write the following inequality:

∥∥ψ
(·, z)
∥∥
L(,l)

≤ c, ∀z ∈ [,L]. ()

Using this inequality and estimates (), (), and (), we obtain

∥∥J ′αv (v +
v) – J ′αv (v)
∥∥
L(,L)

≤ c‖
v‖H . ()

Here, the number of c is constant. Similarly, we can prove the following inequality:

∥∥J ′αv (v +
v) – J ′αv (v)
∥∥
L(,L)

≤ c‖
v‖H . ()

If we use inequalities () and (), we see that the correlations limit () and () is valid.
Now, we prove (). To prove this using the formula J ′αϕ (v) = Re(ϕ̄(x, )) + α(ϕ(x) –

ω̃(x)) in (), we can write the following inequality:

J ′αv (v +
v) – J ′αv (v) = Im
(

ϕ̄(x, )

)
+ α
ϕ. ()

Here,
ϕ(x, z) is a solution of the problem (). Estimate () is valid for ∀z ∈ [,L]. There-
fore, the following estimate can be written at z = :

∥∥ϕ(·, )∥∥
L(,l)

≤ c
(‖
v‖H

)
.

If this inequality is used in (), we easily can write

∥∥J ′αϕ (v +
v) – J ′αϕ (v)
∥∥
L(,l)

≤ c
(‖
v‖H

)
. ()

http://www.boundaryvalueproblems.com/content/2012/1/151
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Similarly, if we use (), we obtain

∥∥J ′αϕ (v +
v) – J ′αϕ (v)
∥∥
L(,l)

≤ c
(‖
v‖H

)
. ()

We can see that () and () are valid by inequalities () and (). That is, Jα ∈ C(V ).
On the other hand, V is a convex set according to the definition. So, the functional Jα(v)
holds by the condition ofTheorem (Goebel) in [] atV . Therefore, consideringTheorem,
we obtain

〈
J ′α

(
v*

)
, v – v*)

〉
H ≥ 

for ∀z ∈ V . Here, using (), it is seen that the statement of Theorem  is valid. �
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