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Abstract
We consider a nonlinear parametric equation driven by the sum of a p-Laplacian
(p > 2) and a Laplacian (a (p, 2)-equation) with a Carathéodory reaction, which is
strictly (p – 2)-sublinear near +∞. Using variational methods coupled with truncation
and comparison techniques, we prove a bifurcation-type theorem for the nonlinear
eigenvalue problem. So, we show that there is a critical parameter value λ* > 0 such
that for λ > λ* the problem has at least two positive solutions, if λ = λ*, then the
problem has at least one positive solution and for λ ∈ (0,λ*), it has no positive
solutions.
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1 Introduction
Let � ⊆ R

N be a bounded domain with a C-boundary ∂�. In this paper, we study the
following nonlinear Dirichlet eigenvalue problem:

⎧⎨
⎩–�pu(z) –�u(z) = λf (z,u(z)) in �,

u|∂� = , u > , λ > ,  < p < +∞.
(P)λ

Here, by �p we denote the p-Laplace differential operator defined by

�pu(z) = div
(∥∥∇u(z)

∥∥p–∇u(z)
) ∀u ∈W ,p

 (�)

(with  < p < +∞). In (P)λ, λ >  is a parameter and f (z, ζ ) is a Carathéodory function (i.e.,
for all ζ ∈ R, the function z �–→ f (z, ζ ) is measurable and for almost all z ∈ �, the func-
tion ζ �–→ f (z, ζ ) is continuous), which exhibits strictly (p – )-sublinear growth in the
ζ -variable near +∞. The aim of this paper is to determine the precise dependence of the
set of positive solutions on the parameter λ > . So, we prove a bifurcation-type theorem,
which establishes the existence of a critical parameter value λ* >  such that for all λ > λ*,
problem (P)λ has at least two nontrivial positive smooth solutions, for λ = λ*, problem (P)λ
has at least one nontrivial positive smooth solution and for λ ∈ (,λ*), problem (P)λ has
no positive solution. Similar nonlinear eigenvalue problems with (p – )-sublinear reac-
tion were studied by Maya and Shivaji [] and Rabinowitz [] for problems driven by the
Laplacian and by Guo [], Hu and Papageorgiou [] and Perera [] for problems driven
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by the p-Laplacian. However, none of the aforementioned works produces the precise de-
pendence of the set of positive solutions on the parameter λ >  (i.e., they do not prove
a bifurcation-type theorem). We mention that in problem (P)λ the differential operator
is not homogeneous in contrast to the case of the Laplacian and p-Laplacian. This fact is
the source of difficulties in the study of problem (P)λ which lead to new tools and meth-
ods.
We point out that (p, )-equations (i.e., equations inwhich the differential operator is the

sum of a p-Laplacian and a Laplacian) are important in quantum physics in the search for
solitions.We refer to the work of Benci, D’Avenia-Fortunato and Pisani []. More recently,
there have been some existence and multiplicity results for such problems; see Cingolani
and Degiovanni [], Sun []. Finally, we should mention the recent papers of Marano and
Papageorgiou [, ]. In [] the authors deal with parametric p-Laplacian equations in
which the reaction exhibits competing nonlinearities (concave-convex nonlinearity). In
[], they study a nonparametric (p,q)-equationwith a reaction that has different behavior
both at ±∞ and at  from those considered in the present paper, and so the geometry of
the problem is different.
Out approach is variational based on the critical point theory, combined with suitable

truncation and comparison techniques. In the next section, for the convenience of the
reader, we briefly recall the main mathematical tools that we use in this paper.

2 Mathematical background
Let X be a Banach space and let X* be its topological dual. By 〈·, ·〉 we denote the dual-
ity brackets for the pair (X*,X). Let ϕ ∈ C(X). A point x ∈ X is a critical point of ϕ if
ϕ′(x) = . A number c ∈R is a critical value of ϕ if there exists a critical point x ∈ X such
that ϕ(x) = c.
We say that ϕ ∈ C(X) satisfies the Palais-Smale condition if the following is true:

‘Every sequence {xn}n≥ ⊆ X, such that {ϕ(xn)}n≥ ⊆R is bounded and

ϕ′(xn) –→  in X*,

admits a strongly convergent subsequence.’

This compactness-type condition is crucial in proving a deformation theorem which in
turn leads to the minimax theory of certain critical values of ϕ ∈ C(X) (see, e.g., Gasinski
and Papageorgiou []). A well-written discussion of this compactness condition and its
role in critical point theory can be found inMawhin andWillem []. One of the minimax
theorems needed in the sequel is the well-known ‘mountain pass theorem’.

Theorem. If ϕ ∈ C(X) satisfies the Palais-Smale condition, x,x ∈ X, ‖x –x‖ > r > ,

max
{
ϕ(x),ϕ(x)

}
< inf

{
ϕ(x) : ‖x – x‖ = r

}
= ηr

and

c = inf
γ∈


max
≤t≤

ϕ
(
γ (t)

)
,

http://www.boundaryvalueproblems.com/content/2012/1/152
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where


 =
{
γ ∈ C

(
[, ];X

)
: γ () = x,γ () = x

}
,

then c ≥ ηr and c is a critical value of ϕ.

In the analysis of problem (P)λ, in addition to the Sobolev space W ,p
 (�), we will also

use the Banach space

C
(�) =

{
u ∈ C(�) : u|∂� = 

}
.

This is an ordered Banach space with a positive cone:

C+ =
{
u ∈ C

(�) : u(z) ≥  for all z ∈ �
}
.

This cone has a nonempty interior given by

intC+ =
{
u ∈ C+ : u(z) >  for all z ∈ �,

∂u
∂n

(z) <  for all z ∈ ∂�

}
,

where by n(·) we denote the outward unit normal on ∂�.
Let f : � ×R –→R be a Carathéodory function with subcritical growth in ζ ∈R, i.e.,

∣∣f(z, ζ )∣∣ ≤ a(z) + c|ζ |r– for almost all z ∈ �, all ζ ∈R,

with a ∈ L∞(�)+, c >  and  < r < p*, where

p* =

⎧⎨
⎩

Np
N–p if p <N ,

+∞ if p ≥ N

(the critical Sobolev exponent).
We set

F(z, ζ ) =
∫ ζ


f(z, s)ds

and consider the C-functional ψ : W
,p
 (�) –→R defined by

ψ(u) =

p
‖∇u‖pp +



‖∇u‖ –

∫
�

F
(
z,u(z)

)
dz ∀u ∈ W ,p

 (�). (.)

The next proposition is a special case of a more general result proved by Gasinski and
Papageorgiou []. We mention that the first result of this type was proved by Brezis and
Nirenberg [].

Proposition . If ψ is defined by (.) and u ∈ W ,p
 (�) is a local C

(�)-minimizer of
ψ, i.e., there exists � >  such that

ψ(u) ≤ ψ(u + h) ∀h ∈ C
(�),‖h‖C

(�) ≤ �,
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then u ∈ C,β
 (�) for some β ∈ (, ) and u is also a local W ,p

 (�)-minimizer of ψ, i.e.,
there exists � >  such that

ψ(u) ≤ ψ(u + h) ∀h ∈W ,p
 (�),‖h‖ ≤ �.

Let g,h ∈ L∞(�). We say that g ≺ h if for all compact subsets K ⊆ �, we can find ε =
ε(K) >  such that

g(z) + ε ≤ h(z) for almost all z ∈ K .

Clearly, if g,h ∈ C(�) and g(z) < h(z) for all z ∈ �, then g ≺ h. A slight modification of the
proof of Proposition . of Arcoya and Ruiz [] in order to accommodate the presence of
the extra linear term –�u leads to the following strong comparison principle.

Proposition . If ξ ≥ , g,h ∈ L∞(�), g ≺ h and u ∈ C
(�), v ∈ intC+ are solutions of

the problems

⎧⎨
⎩–�pu(z) –�u(z) + ξ |u(z)|p–u(z) = g(z) in �,

–�pv(z) –�v(z) + ξ |v(z)|p–v(z) = h(z) in �,

then v – u ∈ intC+.

Let r ∈ (, +∞) and let Ar : W ,r
 (�) –→ W–,r′ (�) = W ,r

 (�)* (where 
r +


r′ = ) be a

nonlinear map defined by

〈
Ar(u), y

〉
=

∫
�

‖∇u‖r–(∇u,∇y)RN dz ∀u, y ∈W ,r
 (�). (.)

The next proposition can be found in Dinca, Jebelean and Mawhin [] and Gasiński
and Papageorgiou [].

Proposition . If Ar : W ,r
 (�) –→ W–,r′ (�) (where  < r < +∞) is defined by (.), then

Ar is continuous, strictly monotone (hence maximal monotone too), bounded and of type
(S)+, i.e., if un –→ u weakly in W ,r

 (�) and

lim sup
n→+∞

〈
Ar(un),un – u

〉 ≤ ,

then un –→ u in W ,p
 (�).

If r = , then we write A = A ∈L(H
(�);H–(�)).

In what follows, by λ̂(p) we denote the first eigenvalue of the negative Dirichlet
p-Laplacian (–�p,W

,p
 (�)). We know that λ̂(p) >  and it admits the following varia-

tional characterization:

λ̂(p) = inf

{‖∇u‖pp
‖u‖pp : u ∈ W ,p

 (�),u �= 
}
. (.)

http://www.boundaryvalueproblems.com/content/2012/1/152
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Finally, throughout this work, by ‖ · ‖ we denote the norm of the Sobolev space W ,p
 (�).

By virtue of the Poincaré inequality, we have

‖u‖ = ‖∇u‖p ∀u ∈W ,p
 (�).

The notation ‖ · ‖ will also be used to denote the norm of RN . No confusion is possible
since it will always be clear from the context which norm is used. For ζ ∈ R, we set ζ± =
max{±ζ , }. Then for u ∈W ,p

 (�), we define u±(·) = u(·)±. We know that

u± ∈W ,p
 (�), |u| = u+ + u–, u = u+ – u– ∀u ∈W ,p

 (�).

If h : �×R –→R is superpositionallymeasurable (for example, a Carathéodory function),
then we set

Nh(u)(·) = h
(·,u(·)) ∀u ∈W ,p

 (�).

By | · |N we denote the Lebesgue measure on R
N .

3 Positive solutions
The hypotheses on the reaction f are the following.
H: f : � ×R –→R is a Carathéodory function such that f (z, ) =  for almost all z ∈ �,

f (z, ζ ) ≥  for almost all z ∈ � and all ζ ≥  and
(i) for every � > , there exists a� ∈ L∞(�)+ such that

f (z, ζ ) ≤ a�(z) for almost all z ∈ �, all ζ ∈ [,�];

(ii) limζ→+∞ f (z,ζ )
ζp–

=  uniformly for almost all z ∈ �;
(iii) limζ→+

f (z,ζ )
ζp–

=  uniformly for almost all z ∈ �;
(iv) for every � > , there exists ξ� >  such that for almost all z ∈ �, the map

ζ �–→ f (z, ζ ) + ξpζ
p– is nondecreasing on [,�];

(v) if

F(z, ζ ) =
∫ ζ


f (z, s)ds,

then there exists c ∈R such that

F(z, c) >  for almost all z ∈ �.

Remark . Since we are looking for positive solutions and hypotheses H concern only
the positive semiaxis R+ = [,+∞), we may and will assume that f (z, ζ ) =  for almost all
z ∈ � and all ζ ≤ . Hypothesis H(ii) implies that for almost all z ∈ �, the map f (z, ·) is
strictly (p – )-sublinear near +∞. Hypothesis H(iv) is much weaker than assuming the
monotonicity of f (z, ·) for almost all z ∈ �.

http://www.boundaryvalueproblems.com/content/2012/1/152
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Example . The following functions satisfy hypotheses H (for the sake of simplicity, we
drop the z-dependence):

f(ζ ) =

⎧⎨
⎩ζ τ– if ζ ∈ [, ],

ζ q– if  < ζ ,

f(ζ ) =

⎧⎨
⎩ζ τ– – ζ η– if ζ ∈ [, ],

ζ q– ln ζ if  < ζ ,

with  < q < p < τ < η. Clearly f is not monotone.

Let

Y =
{
λ >  : problem (P)λ has a nontrivial positive solution

}
and let S(λ) be the set of solutions of (P)λ. We set

λ* = infY

(if Y = ∅, then λ* = +∞).

Proposition . If hypotheses H hold, then

S(λ)⊆ intC+ and λ* > .

Proof Clearly, the result is true if Y = ∅. So, suppose that Y �= ∅ and let λ ∈ Y . So, we can
find u ∈ S(λ)∩W ,p

 (�) such that

⎧⎨
⎩–�pu(z) –�u(z) = λf (z,u(z)) in �,

u|∂� = .

From Ladyzhenskaya and Uraltseva [, p.], we have that u ∈ L∞(�). Then we can
apply Theorem  of Lieberman [] and have that u ∈ intC+ \ {}. Let � = ‖u‖∞ and let
ξ� >  be as postulated by hypothesis H(iv). Then

–�pu(z) –�u(z) + ξ�u(z)p– ≥  for almost all z ∈ �,

so

�pu(z) +�u(z) ≤ ξ�u(z)p– for almost all z ∈ �.

From the strong maximum principle of Pucci and Serrin [, p.], we have that

u(z) >  ∀z ∈ �.

So, we can apply the boundary point theorem of Pucci and Serrin [, p.] and have that
u ∈ intC+. Therefore, S(λ)⊆ intC+.

http://www.boundaryvalueproblems.com/content/2012/1/152
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By virtue of hypotheses H(ii) and (iii), we see that we can find c >  such that

f (z, ζ ) ≤ cζ p– for almost all z ∈ �, all ζ ≥ . (.)

Let λ ∈ (, λ̂(p)
c

) and ϑ ∈ (,λ]. Suppose that ϑ ∈ Y . Then from the first part of the proof,
we know that we can find uϑ ∈ S(ϑ)⊆ intC+. We have

Ap(uϑ ) +A(uϑ ) = ϑNf (uϑ ),

so

‖∇uϑ‖pp ≤
∫

�

ϑ f (z,uϑ )uϑ dz ≤ ϑc‖uϑ‖pp ≤ λc‖uϑ‖pp < λ̂(p)‖uϑ‖pp

(see (.) and recall that ϑ ≤ λ < λ̂(p)
c

), which contradicts (.). Therefore, λ* ≥ λ > .
�

For λ > , let ϕλ : W
,p
 (�) –→R be the energy functional for problem (P)λ defined by

ϕλ(u) =

p
‖∇u‖pp +



‖∇u‖ – λ

∫
�

F(z,u)dz ∀u ∈W ,p
 (�).

Evidently, ϕλ ∈ C(W ,p
 (�)).

Proposition . If hypotheses H hold, then Y �= ∅.

Proof By virtue of hypotheses H(i) and (ii), for a given ε > , we can find cε >  such that

F(z, ζ ) ≤ ε

p
ζ p + cε for almost all z ∈ �, all ζ ≥ . (.)

Then for u ∈W ,p
 (�) and λ > , we have

ϕλ(u) =

p
‖∇u‖pp +



‖∇u‖ – λ

∫
�

F(z,u)dz

≥ 
p
‖∇u‖pp –

λε

p
∥∥u+∥∥p

p – λcε|�|N

=

p

(
 –

λε

λ̂(p)

)
‖u‖p – λcε|�|N (.)

(see (.) and (.)).
Let ε ∈ (, λ̂(p)

λ
). Then from (.) it follows that ϕλ is coercive. Also, exploiting the com-

pactness of the embeddingW ,p
 (�) ⊆ Lp(�) (by the Sobolev embedding theorem), we see

that ϕλ is sequentially weakly lower semicontinuous. So, by the Weierstrass theorem, we
can find u ∈W ,p

 (�) such that

ϕλ(u) = inf
u∈W ,p

 (�)
ϕλ(u). (.)

http://www.boundaryvalueproblems.com/content/2012/1/152
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Consider the integral functional K : Lp(�) –→R defined by

K(u) =
∫

�

F
(
z,u(z)

)
dz ∀u ∈ Lp(�).

HypothesisH(v) implies thatK(c) >  and since F(z, ζ ) =  for almost all z ∈ �, all ζ ≤ ,we
may assume that c > . SinceW ,p

 (�) is dense in Lp(�) and c > , we can find v̂ ∈W ,p
 (�),

v̂ ≥ , such that K(v̂) > . Then for λ >  large, we have

λK(v̂) >

p
‖∇ v̂‖pp +



‖∇ v̂‖,

so

ϕλ(v̂) <  for λ >  large

and thus

ϕλ(u) <  = ϕλ()

(see (.)), hence u �= . From (.), we have

ϕ′
λ(u) = ,

so

Ap(u) +A(u) = λNf (u). (.)

On (.), we act with –u– ∈W ,p
 (�). Then

∥∥∇u–
∥∥p
p +

∥∥∇u–
∥∥
 = ,

hence u ≥ , u �= .
From (.), we have

⎧⎨
⎩–�pu(z) –�u(z) = λf (z,u(z)) in �,

u|∂� = , u ≥ , u �= ,

so u ∈ S(λ)⊆ intC+ (see Proposition .).
So, for λ ≥ λ* big, we have λ ∈ Y and so Y �= ∅. �

Proposition . If hypotheses H hold and λ ∈ Y , then [λ, +∞)⊆ Y .

Proof Since by hypothesis λ ∈ Y , we can find a solution uλ ∈ intC+ of (P)λ (see Propo-
sition .). Let μ > λ and consider the following truncation of the reaction in problem
(P)μ:

hμ(z, ζ ) =

⎧⎨
⎩μf (z,uλ(z)) if ζ ≤ uλ(z),

μf (z, ζ ) if uλ(z) < ζ .
(.)

http://www.boundaryvalueproblems.com/content/2012/1/152
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This is a Carathéodory function. Let

Hμ(z, ζ ) =
∫ ζ


hμ(z, s)ds

and consider the C-functional ψμ : W
,p
 (�) –→R, defined by

ψμ(u) =

p
‖∇u‖pp +



‖∇u‖ –

∫
�

Hμ

(
z,u(z)

)
dz ∀u ∈W ,p

 (�).

As in the proof of Proposition ., using hypothesesH(i) and (ii), we see thatψμ is coercive.
Also, it is sequentially weakly lower semicontinuous. So, we can find uμ ∈ W ,p

 (�) such
that

ψμ(uμ) = inf
u∈W ,p

 (�)
ψμ(u),

so

ψ ′
μ(uμ) = 

and thus

Ap(uμ) +A(uμ) =Nhμ (uμ). (.)

On (.) we act with (uλ – uμ)+ ∈W ,p
 (�). Then

〈
Ap(uμ), (uλ – uμ)+

〉
+

〈
A(uμ), (uλ – uμ)+

〉
=

∫
�

hμ(z,uμ)(uλ – uμ)+ dz

=
∫

�

μf (z,uλ)(uλ – uμ)+ dz

≥
∫

�

λf (z,uλ)(uλ – uμ)+ dz

=
〈
Ap(uλ), (uλ – uμ)+

〉
+

〈
A(uλ), (uλ – uμ)+

〉
(see (.) and use the facts that μ > λ and f ≥ ), so

∫
{uλ>uμ}

(‖∇uλ‖p–∇uλ – ‖∇uμ‖p–∇uμ,∇uλ –∇uμ

)
RN dz +

∥∥∇(uλ – uμ)+
∥∥
 ≤ ,

thus

∣∣{uλ > uμ}∣∣N = 

and hence uλ ≤ uμ.
Therefore, (.) becomes

Ap(uμ) +A(uμ) = μNf (uμ),

http://www.boundaryvalueproblems.com/content/2012/1/152
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so

uμ ∈ S(μ)⊆ intC+,

hence μ ∈ Y . This proves that [λ, +∞)⊆ Y . �

Proposition . If hypotheses H hold, then for every λ > λ* problem (P)λ has at least two
positive solutions

u, û ∈ intC+, u �= û.

Proof Note that Proposition . implies that (λ*, +∞) ⊆ Y . Let λ* < ϑ < λ < μ. Then we
can find uϑ ∈ S(ϑ)⊆ intC+ and uμ ∈ S(μ)⊆ intC+. We have

–�puϑ –�uϑ = ϑ f (z,uϑ ) ≤ λf (z,uϑ ) in �, (.)

–�puμ –�uμ = μf (z,uμ) ≥ λf (z,uμ) in � (.)

(recall that f ≥  and ϑ < λ < μ). As in the proof of Proposition ., we can show that
uϑ ≤ uμ. We introduce the following truncation of the reaction in problem (P)λ:

gλ(z, ζ ) =

⎧⎪⎪⎨
⎪⎪⎩

λf (z,uϑ (z)) if ζ < uϑ (z),

λf (z, ζ ) if uϑ (z) ≤ ζ ≤ uμ(z),

λf (z,uμ(z)) if uμ(z) < ζ .

(.)

This is a Carathéodory function. We set

Gλ(z, ζ ) =
∫ ζ


gλ(z, s)ds

and consider the C-functional ψ̂λ : W
,p
 (�) –→R defined by

ψ̂λ(u) =

p
‖∇u‖pp +



‖∇u‖ –

∫
�

Gλ(z,u)dz ∀u ∈W ,p
 (�).

It is clear from (.) that ψ̂λ is coercive. Also, it is sequentially weakly lower semicontin-
uous. So, we can find u ∈W ,p

 (�) such that

ψ̂λ(u) = inf
u∈W ,p

 (�)
ψ̂λ(u),

so

ψ̂ ′
λ(u) = 

and thus

Ap(u) +A(u) =Ngλ (u). (.)

http://www.boundaryvalueproblems.com/content/2012/1/152
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Acting on (.) with (uϑ – u)+ ∈ W ,p
 (�) and next with (u – uμ)+ ∈ W ,p

 (�) (similarly
as in the proof of Proposition .), we get

uϑ ≤ u ≤ uμ.

Hence, we have

u ∈ [uϑ ,uμ],

where [uϑ ,uμ] = {u ∈W ,p
 (�) : u(z) ≤ u(z) ≤ uμ(z) for almost all z ∈ �}.

Then (.) becomes

Ap(u) +A(u) = λNf (u)

(see (.)), so

u ∈ S(λ)⊆ intC+.

Let

a(y) = ‖y‖p–y + y ∀y ∈R
N .

Then a ∈ C(RN ;RN ) (recall that p > ) and

∇a(y) = ‖y‖p–
(
I + (p – )

y⊗ y
‖y‖

)
+ I ∀y ∈R

N ,

so

(∇a(y)ξ , ξ
)
RN ≥ ‖ξ‖ ∀y, ξ ∈ R

N .

Note that

diva(∇u) = �pu +�u ∀u ∈W ,p
 (�).

So, we can apply the tangency principle of Pucci and Serrin [, p.] and infer that

uϑ (z) < u(z) ∀z ∈ �. (.)

Let � = ‖u‖∞ and let ξ� >  be as postulated by hypothesis H(iv). Then

–�puϑ (z) –�uϑ (z) + ϑξ�uϑ (z)p–

= ϑ f
(
z,uϑ (z)

)
+ ϑξ�uϑ (z)p–

≤ ϑ f
(
z,u(z)

)
+ ϑξ�u(z)p–

≤ λf
(
z,u(z)

)
+ ϑξ�u(z)p–

= –�pu(z) –�u(z) + ϑξ�u(z)p– for almost all z ∈ �

http://www.boundaryvalueproblems.com/content/2012/1/152
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(see hypothesis H(iv) and use the facts that λ > ϑ and f ≥ ), so

u – uϑ ∈ intC+ (.)

(see (.) and Proposition .).
In a similar fashion, we show that

uμ – u ∈ intC+. (.)

From (.) and (.), it follows that

u ∈ intC
(�)[uϑ ,uμ]. (.)

From (.), we see that

ϕλ|[uϑ ,uμ] = ψ̂λ|[uϑ ,uμ] + ξ *
λ

for some ξ *
λ ∈R.

So, (.) implies that u is a local C
(�)-minimizer of ϕλ. Invoking Proposition ., we

have that

u is a localW
,p
 (�)-minimizer of ϕλ. (.)

Hypotheses H(i), (ii) and (iii) imply that for given ε >  and r > p, we can find c = c(ε, r) >
 such that

F(z, ζ ) ≤ ε

p
ζ p + cζ r for almost all z ∈ �, all ζ ≥ . (.)

Then for all u ∈W ,p
 (�), we have

ϕλ(u) =

p
‖∇u‖pp +



‖∇u‖ – λ

∫
�

F(z,u)dz

≥ 
p
‖∇u‖pp +



‖∇u‖ –

λε

p
∥∥u+∥∥p

p – λc
∥∥u+∥∥r

r

≥ 
p

(
 –

λε

λ̂(p)

)
‖∇u‖pp +



‖∇u‖ – λc‖u‖r

≥ 
p

(
 –

λε

λ̂(p)

)
‖∇u‖p – λc‖u‖r (.)

for some c >  (see (.) and (.)).
Choose ε ∈ (, λ̂(p)

λ
). Then, from (.) and since r > p, we infer that u is a local min-

imizer of ϕλ. Without any loss of generality, we may assume that ϕλ() =  ≤ ϕλ(u) (the
analysis is similar if the opposite inequality holds). By virtue of (.), as in Gasinski and
Papageorgiou [] (see the proof of Theorem .), we can find  < � < ‖u‖ such that

ϕλ() =  ≤ ϕλ(u) < inf
{
ϕλ(u) : ‖u – u‖ = �

}
= ηλ

� . (.)

http://www.boundaryvalueproblems.com/content/2012/1/152
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Recall that ϕλ is coercive, hence it satisfies the Palais-Smale condition. This fact and
(.) permit the use of the mountain pass theorem (see Theorem .). So, we can find
û ∈ W ,p

 (�) such that

ηλ
ϑ ≤ ϕλ(û) (.)

and

ϕ′
λ(û) = . (.)

From (.) and (.), we have that û �= , û = u. From (.), it follows that û ∈ S(λ) ⊆
intC+. �

Next, we examine what happens at the critical parameter λ*.

Proposition . If hypotheses H hold, then λ* ∈ Y .

Proof Let {λn}n≥ ⊆ Y be a sequence such that

λ* < λn ∀n≥ 

and

λn ↘ λ* as n→ +∞.

For every n≥ , we can find un ∈ intC+, such that

Ap(un) +A(un) = λnNf (un). (.)

We claim that the sequence {un}n≥ ⊆ W ,p
 (�) is bounded. Arguing indirectly, suppose

that the sequence {un}n≥ ⊆ W ,p
 (�) is unbounded. By passing to a suitable subsequence

if necessary, we may assume that ‖un‖ –→ +∞. Let

yn =
un

‖un‖ ∀n≥ .

Then ‖yn‖ =  and yn ∈ intC+ for all n≥ . From (.), we have

Ap(yn) +


‖un‖p–A(yn) =
λnNf (un)
‖un‖p– ∀n≥ . (.)

Recall that

f (z, ζ ) ≤ cζ p– for almost all z ∈ �, all ζ ≥ 

(see (.)), so the sequence { Nf (un)
‖un‖p– }n≥ ⊆ Lp′ (�) is bounded. This fact and hypothesis H(ii)

imply that at least for a subsequence, we have

Nf (un)
‖un‖p– –→  weakly in Lp

′
(�) (.)

http://www.boundaryvalueproblems.com/content/2012/1/152


Gasiński and Papageorgiou Boundary Value Problems 2012, 2012:152 Page 14 of 17
http://www.boundaryvalueproblems.com/content/2012/1/152

(see Gasinski and Papageorgiou []). Also, passing to a subsequence if necessary, wemay
assume that

yn –→ y weakly inW ,p
 (�), (.)

yn –→ y in Lp(�). (.)

On (.) we act with yn – y ∈ W ,p
 (�), pass to the limit as n → +∞ and use (.) and

(.). Then

lim
n→+∞

(〈
Ap(yn), yn – y

〉
+


‖un‖p–

〈
A(yn), yn – y

〉)
= ,

so

lim
n→+∞

〈
Ap(yn), yn – y

〉 ≤ .

Using Proposition ., we have that

yn –→ y inW ,p
 (�)

and so

‖y‖ = . (.)

Passing to the limit as n→ +∞ in (.) and using (.), (.) and the fact that p > ,
we obtain

Ap(y) = ,

so y = , which contradicts (.).
This proves that the sequence {un}n≥ ⊆ W ,p

 (�) is bounded. So, passing to a subse-
quence if necessary, we may assume that

un –→ u* weakly inW ,p
 (�), (.)

un –→ u* in Lp(�). (.)

On (.) we act with un – u* ∈ W ,p
 (�), pass to the limit as n → +∞ and use (.) and

(.). Then

lim
n→+∞

(〈
Ap(un),un – u*

〉
+

〈
A(un),un – u*

〉)
= ,

so

lim sup
n→+∞

〈
Ap(un),un – u*

〉 ≤ 

http://www.boundaryvalueproblems.com/content/2012/1/152
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(since A is monotone) and thus

un –→ u* inW ,p
 (�) (.)

(see Proposition .).
Therefore, if in (.) we pass to the limit as n→ +∞ and use (.), then

Ap(u*) +A(u*) = λ*Nf (u*)

and so u* ∈ C+ is a solution of problem (P)λ* .
We need to show that u* �= . From (.), we have

⎧⎨
⎩–�pun(z) –�un(z) = λnf (z,un(z)) in �

un|∂� = 
∀n≥ .

From Ladyzhenskaya andUraltseva [, p.], we know that we can findM >  such that

‖un‖∞ ≤ M ∀n≥ .

Then applying Theorem  of Lieberman [], we can find β ∈ (, ) andM >  such that

un ∈ C,β
 (�) and ‖un‖C,β

 (�) ≤ M ∀n≥ .

Recall that C,β
 (�) is embedded compactly in C

(�). So, by virtue of (.), we have

un –→ u* in C
(�).

Suppose that u* = . Then

un –→  in C
(�). (.)

Hypothesis H(iii) implies that for a given ε > , we can find δ ∈ (, ε] such that

f (z, ζ ) ≤ εζ p– for almost all z ∈ �, all ζ ∈ [, δ]. (.)

From (.), it follows that we can find n ≥  such that

un(z) ∈ [, δ] ∀z ∈ �, all n≥ n. (.)

Therefore, for almost all z ∈ � and all n≥ n, we have

–�pun(z) –�un(z) = λnf
(
z,un(z)

) ≤ λnεun(z)p–

(see (.) and (.)), so

‖∇un‖pp ≤ λnε‖un‖pp ≤ λn

λ̂(p)
ε‖∇un‖pp ∀n≥ n

http://www.boundaryvalueproblems.com/content/2012/1/152
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(see (.)), thus

λ̂(p)
ε

≤ λn ∀n≥ n

and so

λ̂(p)
ε

≤ λ*.

Let ε ↘  to get a contradiction. This proves that u* �=  and so u* ∈ S(λ*) ⊆ intC+, hence
λ* ∈ Y . �

The bifurcation-type theorem summarizes the situation for problem (P)λ.

Theorem . If hypotheses H hold, then there exists λ* >  such that
(a) for every λ > λ* problem (P)λ has at least two positive solutions:

u, û ∈ intC+;

(b) for λ = λ* problem (P)λ has at least one positive solution u* ∈ intC+;
(c) for λ ∈ (,λ*) problem (P)λ has no positive solution.

Remark. As the referee pointed out, it is an interesting problem to produce an example
in which, at the bifurcation point λ* > , the equation has exactly one solution. We believe
that the recent paper of Gasiński and Papageorgiou [] on the existence and uniqueness
of positive solutions will be helpful. Concerning the existence of nodal solutions for λ ∈
(,λ*), we mention the recent paper of Gasiński and Papageorgiou [], which studies the
(p, )-equations and produces nodal solutions for them.
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