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Abstract
A system of two integral equations is presented to describe the system of 3D
axisymmetric inviscid stagnation flows related to Navier-Stokes equations and
existence of its solutions is studied. Utilizing it, we construct analytically the similarity
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1 Introduction
The following system of two differential equations arising in the boundary layer problems
in fluid mechanics

f ′′′(η) +
(
f (η) + λg(η)

)
f ′′(η) +

(
 – f ′(η)

)
=  on [,∞), (.)

g ′′′(η) +
(
f (η) + λg(η)

)
g ′′(η) + λ

(
 – g ′(η)

)
=  on [,∞) (.)

with boundary conditions

f () = , f ′() = , f ′(∞) = ,

g() = , g ′() = , g ′(∞) = 
(.)

has been used to describe the system of D axisymmetric inviscid stagnation flow [, ],
which consists of three partial differential equations [, ], where λ is a parameter related
to the external flow components.
A solution of (.)-(.) is called a similarity solution and can be used to express the

solutions of the D system. Regarding the study of (.)-(.), Howarth [] presented a
numerical study for the case  < λ <  which can be applied to the stagnation region of
an ellipsoid. Davey [] investigated numerically the stagnation region near a saddle point
(– < λ < ). The two-dimensional cases, λ = g =  or λ =  and g = f , and the special cases
of the Falkner-Skan equationwere solved byHiemenz [] and byHomann [], respectively.
Regarding the Falkner-Skan problems, further analytical study can be found in [–].
Also, one may refer to recent review of similarity solutions of the Navier-Stokes equations
[].
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However, up to now, there has been very little analytical study on the existence of solu-
tions of (.)-(.).
Themain aim of this paper is to study the existence of solutions of (.)-(.) analytically

for the case of |λ| < . The method is to present a system of two integral equations and
study the existence of its solutions and then use it to construct the solutions of (.)-(.).
Also, a nonexistence result is obtained.

2 A system of two integral equations related to (1.1)-(1.3)
In this section, we present a system of two integral equations to describe a system of (.)-
(.) under suitable conditions, which will be utilized in Section .
Let

Q =
{
x ∈ C[, ) : x(t) > , t ∈ [, )

}
,

Q =
{
y ∈ C[, ]∩C[, ) : y(t) ≥ , t ∈ [, )

}
,

Q =Q ×Q

and

� =
{
(f , g) ∈ C[,∞)×C[,∞) : f ′(η)≥ , g ′′(η) > ,η ∈ [,∞)

}
.

Lemma . If (f , g) ∈ � is a solution of (.)-(.), then g ′′(∞) = .

Proof Since g ′(+∞) = , we have

lim inf
η→∞ g ′′(η) = . (.)

Notice that (f , g) ∈ �, f (η) =
∫ η

 f ′(s)ds ≥ , g ′(η) =
∫ η

 g ′′(s)ds ≥ , g(η) =
∫ η

 g ′(s)ds > 
and  > g ′(η) >  for η ∈ (, +∞).
If λ ≥ ,we know g ′′′(η) = –(f (η)+λg(η))g ′′(η)–λ(–g ′(η)) ≤  and then g ′′ is decreasing

on [,+∞), which implies that limη→∞ g ′′(η) exists. Hence, g ′′(∞) =  by (.).
If λ < , we have g ′′′() = –λ >  by (.). By (.), there exists η >  such that g ′′(η) <

g ′′() and then there exists η* such that g ′′(η*) = max{g ′′(η) : η ∈ [,η]}. Obviously, η* ∈
(,η] by g ′′′() > . We prove that g ′′ is decreasing on (η*,∞).
In fact, if there exist η,η ∈ (η*, +∞) with η < η such that g ′′(η) < g ′′(η). Let η* ∈

[η*,η] such that g ′′(η*) =min{g ′′(η) : η ∈ [η*,η]} > , then g ′′′(η*) =  and g()(η*)≥ .
Differentiating (.) with η, we have

g()(η) =
(
λg ′(η) – f ′(η)

)
g ′′(η) –

(
f (η) + λg(η)

)
g ′′′(η),

then

g()(η*) =
(
λg ′(η*) – f ′(η*)

)
g ′′(η*) < ,

a contradiction. Hence, g ′′(η) is decreasing on (η*, +∞) and then g ′′(∞) = .
This completes the proof. �
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Theorem . If (f , g) ∈ � is a solution of (.)-(.), then

x(t) =
∫ 

t

(λs + λ + y(s))( – s)
x(s)

ds + ( – t)
∫ t



λs + y(s)
x(s)

ds, (.)

y(t) =
∫ 


G,(t, s)

λ(s – )y′(s) + ( – y(s))
x(s)

ds + t (.)

has a solution (x, y) ∈Q,where G,(t, s) denotes the Green function for u′′(t) = with u() =
 and u(b) =  defined by

G,b(t, s) =

⎧⎨
⎩
t(b – s)/b,  ≤ t ≤ s≤ b,

s(b – t)/b,  ≤ s≤ t ≤ b.
(.)

Proof Assume that (f , g) ∈ �. Let η := η(t) = (g ′)–(t) for t ∈ [, ) be the inverse function
to t = g ′(η) : [,∞) → [, ). It follows that g ′ is strictly increasing on [,+∞) and η(t) =
(g ′)–(t) : [, ) → [,∞) with (g ′)–() = , limt→– (g ′)–(t) = ∞. Let x(t) = g ′′(η) >  for
t ∈ [, ), by Lemma ., x() = limη→∞ g ′′(η) = . This implies that x(t) >  for t ∈ [, )
and x is continuous on [, ). By Lemma ., we see that x is continuous from the left at .
Hence, we have x(t) ∈ C[, ] and x() = , i.e., x(t) ∈Q.
Using the chain rule to x(t) = g ′′(η), we obtain g ′′′(η) dη

dt = x′(t) and by the inverse function
theorem, we have

dη

dt
=


g ′′(η)

=


x(t)
for t ∈ [, ).

This, together with g ′(η) = t, implies

g ′′′(η) = x′(t)x(t), η =
∫ t




x(s)

ds and g ′(η)
dη

dt
=

t
x(t)

for t ∈ [, ).

Integrating the last equality from  to t implies

g
(
η(t)

)
=

∫ t



s
x(s)

ds for t ∈ [, ).

Let

y(t) = f ′(η) = f ′
(∫ t




x(s)

ds
)

for t ∈ [, ).

Then y() = . By f ′(∞) = , we know that y is continuous from the left at  and then
y() = .
Notice that f ′(η) dη

dt =
y(t)
x(t) , t ∈ [, ), we have f (η) =

∫ t


y(s)
x(s) ds.

Differentiating y(t) with t, we have

y′(t) = f ′′(η)
dη

dt
=
f ′′(η)
x(t)

for t ∈ [, ).

From this, we have f ′′(η) = y′(t)x(t) for η ∈ [,∞) and y ∈ Q.

http://www.boundaryvalueproblems.com/content/2012/1/153
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Differentiating f ′′(η) with t and utilizing dη

dt =


x(t) , we have

f ′′′(η)
x(t)

= y′′(t)x(t) + y′(t)x′(t).

Hence,

f ′′′(η) = y′′(t)x(t) + y′(t)x(t)x′(t).

Substituting g , g ′, g ′′, g ′′′ and f into (.) implies

x′(t) = –
∫ t



y(s) + λs
x(s)

ds +
λ(t – )
x(t)

, t ∈ [, ). (.)

Integrating (.) from t to , we have

x() – x(t) = –
∫ 

t

∫ σ



y(s) + λs
x(s)

dsdσ +
∫ 

t

λ(s – )
x(s)

ds

=
∫ 

t

λ(s – )
x(s)

ds –
∫ t



(∫ 

t

y(s) + λs
x(s)

dσ

)
ds –

∫ 

t

(∫ 

s

y(s) + λs
x(s)

dσ

)
ds

=
∫ 

t

λ(s – )
x(s)

ds –
∫ t



y(s) + λs
x(s)

( – t)ds –
∫ 

t

(y(s) + λs)( – s)
x(s)

ds

=
∫ 

t

λ(s – ) – (λs + y(s))( – s)
x(s)

ds – ( – t)
∫ t



λs + y(s)
x(s)

ds

=
∫ 

t

(λs + λ + y(s))(s – )
x(s)

ds – ( – t)
∫ t



λs + y(s)
x(s)

ds.

By x() = , then

x(t) =
∫ 

t

(λs + λ + y(s))( – s)
x(s)

ds + ( – t)
∫ t



λs + y(s)
x(s)

ds.

Substituting f , f ′, f ′′, f ′′′ and g into (.) implies

y′′(t)x(t) + y′(t)x(t)x′(t) + y′(t)x(t)
∫ t



λs + y(s)
x(s)

ds +
(
 – y(t)

)
= .

By
∫ t


λs+y(s)
x(s) ds = λ(t–)

x(t) – x′(t), we have

y′′(t) +
λ(t – )y′(t) + ( – y(t))

x(t)
= .

Therefore,

y(t) =
∫ 


G,(t, s)

λ(s – )y′(s) + ( – y(s))
x(s)

ds + t, t ∈ [, ),

where G,(t, s) is defined by (.). Hence, (x, y) is a solution of (.)-(.) in Q. �
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3 Positive solutions of the system (2.2)-(2.3)
In this section, we will use the fixed point theorem to study the existence of positive solu-
tions of the system (.)-(.).
Let

δ = δ(λ) = –
λ

λ + 
, λ ∈

(
–


, 

]
.

It is easy to verify

 < δ <  if and only if –


< λ < .

We define some functions

h(λ) =
∫ 

δ

(λs + λ + s)( – s)ds + ( – δ)
∫ δ


(λs + s)ds =

(λ + )

(λ + )
+

λ(λ + )(λ + )
(λ + )

,

σ (λ) =

√
+λ
 +

√
–λ



,

l(λ) = –λ

∫ δ



(
 – s

)
ds =

λ(λ + λ + )
(λ + )

,

ω(λ) =
h(λ)
σ (λ)

– l(λ).

By computation, ω() = 
 , ω(–


 ) = –

 , there exists λ ∈ (– 
 , ) such that ω(λ) >  for

λ ∈ (λ, ] and ω(λ) = .
In order to study the existence of solutions of (.)-(.) in Q for λ ∈ (λ, ), we denote

the norm of the Banach space C[, ]×C[, ] by

∥∥(x, y)∥∥ = ‖x‖ + ‖y‖ + ∥∥y′∥∥,
where ‖x‖ =max{|x(t)| : t ∈ [, ]}.
Let (x, y) ∈ C[, ]×C[, ] and n >  be a natural number, we define

ϕx(t) =max
{
x(t), c(t)

}
, ϕnx(t) =max

{
x(t), c(t),


n

}
, θy(t) =max

{
y(t), t

}
,

where c(t) = cλ( – t), t ∈ [, ],

cλ =

⎧⎨
⎩


n , λ ≥ ,

min{√h(λ),
√

ω(λ), (+λ)(–δ)δ
σ (λ) }, λ < λ < .

(.)

Notation

α(y)(t) = λt + λ + y(t),

β(y)(t) = λt + y(t),

h(y)(t) = λ
(
t – 

)
y′(t) +

(
 –

(
θy(t)

))

http://www.boundaryvalueproblems.com/content/2012/1/153
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and

Bn(x, y)(t) =
∫ 


G,(t, s)

h(y)(s)
(ϕnx(s))

ds + t,

Sn(x, y)(t) =
∫ 

t

α(y)(s)( – s)
ϕnx(s)

ds,

Tn(x, y)(t) =
∫ t



β(y)(s)
ϕnx(s)

ds,

where G,(t, s) is defined by (.).

Let (x, y) ∈ C[, ]×C[, ], we define an operator F as follows:

Fn(x, y)(t) =
(
An(x, y)(t),Bn(x, y)(t)

)
,

where

An(x, y)(t) = Sn(x, y)(t) + ( – t)Tn(x, y) +

n
.

It is easy to verify that ϕn, θ are continuous operators from C[, ] into C[, ] and
ϕnx(t)≥ 

n , t ∈ [, ], we know the following proposition holds:

Lemma . Fn is a continuous and compact operator from C[, ] × C[, ] to C[, ] ×
C[, ].

Lemma . Let (λ, z,w) ∈ (–, )×C[, ]×C[, ] and  < μ ≤  such that

x(t) = μAn(x, y)(t), (.)

y(t) = μBn(x, y)(t). (.)

Then the following assertions hold:
(i) μt ≤ y(t)≤  for t ∈ [, ].
(ii)

∫ 
 |y′(s)|ds≤  and V 

(y) ≤ , where V 
(y) is a total variation of y on [, ].

(iii) If μ = , then y(t) is increasing on (, ) and then θy(t) = y(t) for t ∈ [, ].

Proof We shall use the basic fact: let u(t) ∈ C[a,b]×C(a,b) and u(ξ ) (ξ ∈ (a,b)) be local
minimum (maximum), then u′′(ξ ) ≥  (≤ ).
(i) If there exists t ∈ (, ) such that y(t) > , by y() =  < μ = y(), we know that there

exists t* ∈ (, ) such that y(t*) =max{y(t) : t ∈ [, ]} > . Differentiating (.) with t twice,
we have

y′′(t) = –μ
h(y)(t)
(ϕnx(t))

. (.)

By y′(t*) =  and (.), we have

y′′(t*) = –
μ( – y(t*))
(ϕnx(t*))

> ,

a contradiction. Hence, y(t) ≤  for t ∈ (, ).

http://www.boundaryvalueproblems.com/content/2012/1/153
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If there exists t ∈ [, ] such that μt > y(t), let τ (t) = μt – y(t), by τ () =  = τ () and
τ (t) > , we may assume t* ∈ (, ) such that τ (t*) = max{τ (t) : t ∈ [, ]}. This implies
τ ′(t*) = , i.e., y′(t*) = μ, and τ ′′(t*)≤ . By (.) and θy(t*) = t*, we know

h(y)(t*) = λ
(
t* – 

)
μ +

(
 – t*

)
= ( – λμ)

(
 – t*

)
> ,

then

τ ′′(t*) = –y′′(t*) =
μh(y)(t*)
(ϕnx(t*))

> ,

a contradiction. Hence, (i) holds.
(ii) Let t̃ ∈ [, ] such that y(t̃) = max{y(t) : t ∈ [, ]} and γ = sup{t̃}. If γ < , we prove

that y(t) is increasing on (,γ ) and decreasing on (γ , ).
Since y() =  and y() = μ > , then γ > . Let γ < . If there exist t, t ∈ (,γ ) with t <

t such that y(t) > y(t), let t* ∈ (t,γ ) such that y(t*) =min{y(t) : t ∈ [t,γ ]}, then y(t*) < 
by (i). From y′(t*) = , t* ≤ θy(t*) <  and (.), we know

y′′(t*) = –
μ( – (θy(t*)))

(ϕnx(t*))
< ,

a contradiction.
If there exist t, t ∈ (γ , ) with t < t such that y(t) < y(t), let t* ∈ (γ , t) such that y(t*) =

min{y(t) : t ∈ [γ , t]}, then y(t*) <  by (i). Analogously, we know easily

y′′(t*) = –
μ( – (θy(t*)))

(ϕnx(t*))
< ,

a contradiction. Hence,

∫ 



∣∣y′(s)
∣∣ds =

∫ γ


y′(s)ds –

∫ 

γ

y′(s)ds = y(γ ) –μ ≤ ,

and V 
(y) =

∫ 
 |y′(s)|ds≤ , i.e., (ii) holds.

(iii) Let μ = . By (i) and y() = , we know γ =  and then y(t) is increasing on (, ) and
then θy(t) = y(t) for t ∈ [, ]. Hence, (iii) holds. �

Lemma . [] Let E be a Banach space, D be a bounded open set of E and θ ∈ D, F :
D → E is compact. If x �= μFx for any  < μ <  and x ∈ ∂D, then F has a fixed point in D.

Lemma . Let λ ∈ (–, ), then F has a fixed point (xn, yn) in C[, ]×C[, ], i.e., there
exists (xn, yn) ∈ C[, ]×C[, ] such that

xn(t) = A(xn, yn)(t), (.)

yn(t) = B(xn, yn)(t) (.)

hold.

http://www.boundaryvalueproblems.com/content/2012/1/153
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Proof Let

� =
{
(x, y) : (x, y) ∈ C[, ]×C[, ],

∥∥(x, y)∥∥ < R
}
,

where R = n. We prove (x, y) �= μF(x, y) for  < μ <  and with ‖(x, y)‖ = R.
In fact, if there exist (x, y) and μ with ‖(x, y)‖ = R and  < μ <  such that (x, y) �= μF(x, y),

by Lemma .(i) and (iii), we have ‖y‖ ≤ .
Since |α(y)(s)| ≤ (|λ|+ |λ|+) = |λ|+ and |β(y)(s)| ≤ |λ|+ for s ∈ [, ], this, together

with  – t ≤  – s for s ≤ t and ϕnx(t)≥ 
n , implies

∣∣Sn(x, y)(t)∣∣ ≤ n
∫ 



∣∣α(y)(s)∣∣ds≤ (
|λ| + 

)
n,

( – t)
∣∣T(x, y)(t)∣∣ ≤ n

∫ 



∣∣β(s)∣∣ds ≤ (|λ| + 
)
n.

And then |x(t)| ≤ |Sn(x, y)(t)| + ( – t)|Tn(x, y)(t)| +  ≤ (|λ| + )n + , i.e., ‖x‖ ≤
(|λ| + )n + .
By (.), we have

y′(t) = –
∫ t


s
h(y)(s)
(ϕnx(s))

ds +
∫ 

t
( – s)

h(y)(s)
(ϕnx(s))

ds + . (.)

Noticing that |h(y)(s)| ≤ |λ||y′(s)| +  and ϕnx(s) ≥ 
n for s ∈ [, ], we obtain | h(y)(s)

(ϕnx(s))
| ≤

n(|λ||y′(s)| + ) for s ∈ [, ]. This, together with (.) and Lemma .(ii), implies

∣∣y′(t)
∣∣ ≤

∫ 



∣∣∣∣ h(y)(s)
(ϕnx(s))

∣∣∣∣ds +
∫ 



∣∣∣∣ h(y)(s)
(ϕnx(s))

∣∣∣∣ds + 

≤ 
(
|λ| + 

)
n + ,

i.e., ‖y′‖ ≤ (|λ| + )n + . Hence,

∥∥(x, y)∥∥ = ‖x‖ + ‖y‖ + ∥∥y′∥∥
≤ 

(
|λ| + 

)
n +  + 

(
|λ| + 

)
n +  < R,

a contradiction.
By Lemmas . and ., F has a fixed point (xn, yn) in C[, ]×C[, ]. �

Lemma . Let (xn, yn) be in Lemma ., then
(i) {xn(t)} is bounded on [, ].
(ii) {x′

n(t)} is bounded on [,b] for any b ∈ (  , ).

Proof By Lemma .(i), we know  ≤ yn(t) ≤ . By (.), we have

x′
n(t) =

–λ( – t)
ϕxn(t)

–
∫ t



yn(s) + λs
ϕxn(s)

ds, t ∈ [, ). (.)

http://www.boundaryvalueproblems.com/content/2012/1/153
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(i) For λ ≥ , we know x′
n(t) <  for t ∈ [, ], i.e., xn(t) is decreasing in [, ], by xn() = 

n ,
ϕxn(t) = xn(t) for t ∈ [, ]. By α(yn)(t) ≥ t for t ∈ [, ] and (.), we have

xn(t)≥ Sn(xn, yn)(t) ≥
∫ 

t

s
ϕnx(s)

ds ≥ t
xn(t)

∫ 

t
( – s)ds. (.)

And then xn(t) ≥ (–t)
√
t

 for t ∈ [, ]. Obviously, xn(t) ≥ –t
 for t ∈ [  , ]. This, together

with the decrease in xn, implies

xn(t)≥  – t


for t ∈ [, ]. (.)

Let c*(t) = μ( – t), μ defined by

μ =

⎧⎨
⎩


 if λ ≥ ,

cλ if λ < ,

where cλ defined in (.).
It is easy to verify ϕnxn(t) ≥ c*(t) for t ∈ [, ]. And then

∣∣Sn(xn, yn)(t)∣∣ ≤
∫ 



|α(yn)(s)|( – s)
c*(s)

ds≤
∫ 



|λ| + 
μ

ds < +∞,

( – t)
∣∣Tn(xn, yn)(t)

∣∣ ≤ ( – t)
∫ t



|β(yn)(s)|
c*(s)

ds≤
∫ 



 + |λ|
μ

ds < +∞.

The last two inequalities imply that {xn(t)} is bounded on [, ].
(ii) By (.),

∣∣x′
n(t)

∣∣ ≤ |λ|( + t)
μ

+
∫ t




c*(s)

ds, t ∈ [, ),

we know that {x′
n(t)} is bounded on [,b] for any b ∈ (  , ). �

Lemma . Let (xn, yn) be in Lemma ., then
(i) t ≤ yn(t)≤  and yn(t) is increasing in [, ].
(ii) {y′

n(t)} is bounded and equicontinuous in [,b] for any b ∈ (  , ).

Proof
(i) Lemma .(i) and (iii) imply the desired results.
(ii) For b ∈ (  , ), let tb ∈ [,b] such that y′

n(tb) =min{y′
n(t) : t ∈ [,b]}. Since y′

n(t) ≥  on
[, ], by Lemma .(ii), y′

n(tb)b ≤ ∫ b
 y′

n(s)ds≤ ∫ 
 y

′
n(s)ds≤ , we obtain y′

n(tb) ≤ 
b .

Differentiating (.) with t twice, we have y′′
n(t) = – h(yn)(t)

(ϕnxn(t))
. Integrating this equality

from  to t ≤ b, we have

y′
n(t) – y′

n(tb) = –
∫ t

tb

h(yn)(s)
(ϕnxn(s))

ds.
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Noticing that |h(yn)(t)| ≤ |λ|y′
n(t) +  and c*(t) ≥ c*(b) for t ∈ [,b] and Lemma .(ii), we

know

∣∣y′
n(t)

∣∣ ≤ |λ| + 
(c*(b))

+
∣∣y′

n(tb)
∣∣ ≤ |λ| + 

(c*(b))
+

b
,

i.e., {y′
n(t)} is bounded on [,b]. LetMb = sup{Mn} (whereMn =max{y′

n(t) : t ∈ [,b]}), we
know

∣∣y′′
n(t)

∣∣ = |h(yn)(t)|
(ϕxn(t))

≤ |λ|Mb + 
(c*(b))

< +∞ for ≤ t ≤ b.

This implies that {y′
n(t)} is equicontinuous on [,b]. �

Theorem . There exists (x, y) ∈ C[, ]× (C[, ]∩C[, )) such that

x(t) = S(x, y)(t) + ( – t)T(x, y), (.)

y(t) = B(x, y)(t) (.)

hold, where

S(x, y)(t) =
∫ 

t

α(y)(s)( – s)
ϕx(s)

ds,

T(x, y)(t) =
∫ t



β(y)(s)
ϕx(s)

ds,

B(x, y)(t) =
∫ 


G,(t, s)

h(y)(s)
(ϕx(s))

ds + t.

Proof Let (xn, yn) be in Lemma ., by Lemma .(ii) and (iii), we know that {xn(t)} is
bounded and equicontinuous on [,b] for any b ∈ (  , ). Letting b =  – 

k (k = ,, . . .),
utilizing the diagonal principle and the Arzela-Ascoli theorem, we know that there exists
a subsequence {xnk (t)} of {xn(t)} and x(t) ∈ C[, ) such that xnk (t) converges to x(t) for
t ∈ [, ). Without loss of generality, we assume that {xnk (t)} is itself of {xn(t)}.
By Lemma ., we know that {y′

n(t)} is bounded and equicontinuous on [,b] for any b ∈
(  , ) and then {yn(t)} is bounded and equicontinuous on [,b]. Let b =  – 

k (k = ,, . . .),
the diagonal principle and the Arzela-Ascoli theorem imply that there exist y and y in
C[, ) and two subsequences {ynk (t)} and {y′

ni (t)} with {yni (t)} ⊆ {ynk (t)} ⊆ {yn(t)} such
that ynk (t) converges to y(t) for t ∈ [, ) with y() =  and y′

ni (t) converges to y(t) for each
t ∈ [, ). For the sake of convenience, we assume that {yni (t)} and {ynk (t)} are itself of
{yn(t)}. By yn(t) =

∫ t
 y

′
n(s)ds, we obtain y(t) =

∫ t
 y(s)ds and then y(t) = y′(t) for t ∈ [, ).

Since
∣∣∣∣α(yn)(s)( – s)

ϕxn(s)

∣∣∣∣ ≤ |λ| + 
c*

,

( – t)
∣∣∣∣β(yn)(s)ϕxn(s)

∣∣∣∣ ≤  + |λ|
c*

(s ≤ t),

α(yn)(t) converges to α(y)(t) and β(yn)(t) converges to β(y)(t) for t ∈ [, ), by the Lebesgue
dominated theorem (the dominated function F(s) = |λ|+

c* , s ∈ [, ]), we have that (x, y)
satisfies (.) and x ∈Q.
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Fix t ∈ (, ) and choose b ∈ (, ) such that t ≤ b, then

yn(t) =
∫ b


G,b

h(yn)(s)
(ϕxn(s))

ds +
t
b
yn(b) for t ∈ [,b].

Noticing that |h(yn)(s)| ≤ |λ||y′
n(s)| +  ≤ |λ|Mb +  and h(yn)(s) converges to h(y)(s) for

s ∈ [,b], by the Lebesgue dominated theorem (the dominated function F(s) = Mb+
(c*(b)) on

∈ [,b]), we have

y(t) =
∫ b


G,b

h(y)(s)
(ϕx(s))

ds +
t
b
y(b) for t ∈ [,b].

Differentiating the last equality twice, we know

y′′(t) = –
h(y)(t)
(ϕx(t))

for t ∈ [, ).

By (i), we know t ≤ y(t) ≤  and limt→ y(t) =  = y() and then y ∈ C[, ]∩C[, ). This,
together with (.), implies that y(t) satisfies (.). Clearly, (x, y) ∈Q. �

Theorem . For λ ∈ (λ, ), the system (.)-(.) has at least a solution (x, y) in Q.

Proof Let (x, y) in Theorem .. It is clear that we only prove ϕx(t) = x(t). If λ ≥ , by (.),
we obtain x(t) ≥ –t

 for t ∈ [, ] and then ϕx(t) = x(t). Next, we prove x(t) ≥ cλ( – t) for
t ∈ [, ] for λ < λ < .
Let γ ∈ [, ] such thatM = ϕx(γ ) =max{ϕx(t) : t ∈ [, ]}, then

M ≥ x(δ) =
∫ 

δ

(λs + λ + y(s))( – s)
ϕx(s)

+ ( – δ)
∫ δ



λs + y(s)
ϕx(s)

ds

≥
∫ 

δ

(λs + λ + s)( – s)
max{M, cλ} ds + ( – δ)

∫ δ



λs + s
max{M, cλ} ds

=


max{M, cλ}
∫ 

δ

(λs + λ + s)( – s)ds + ( – δ)
∫ δ


(λs + s)ds

=
h(λ)

max{M, cλ} .

From this and cλ ≤ √
h(λ), we obtainM ≥ √

h(λ) and x(γ ) = ϕx(γ ) =M.
Let S(t) = S(x, y)(t) and S =max{S(t) : t ∈ [, ]}, we prove

S ≤
√
 + λ


. (.)

By α(y)() = λ <  and α(y)() = λ +  > , there exists t ∈ (, ) such that α(y)(t) = .
Since α(y)′′(t) = y′′(t) ≤  for t ∈ [, ], i.e., α(y)(t) is concave down on [, ], then α(y)(s)≤
 for s ∈ [, t] and α(y)(s)≥  for s ∈ [t, ]. Hence, S = S(t).
By (.), we have

ϕx(t)≥ x(t)≥ S(t) for t ∈ [t, ],
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we know

S(t)
(
–S′(t)

)
=
S(t)α(y)(t)

ϕx(t)
≤ λt + λ +  for t ∈ [t, ].

Integrating the last inequality from t to  and utilizing S() = , we have

S(t)


≤
∫ 

t
(λs + λ + )( – s)ds≤

∫ 


(λs + λ + )( – s)ds =

 + λ


.

Hence, (.) holds.
By x′() > , x(δ) >  and x() = , we have  < γ <  and x′(γ ) = , then

 = x′(γ ) = –
λ( – γ )
ϕx(γ )

–
∫ γ



λs + y(s)
ϕx(s)

ds,

i.e.,

∫ γ



λs + y(s)
ϕx(s)

ds = –
λ( – γ )
ϕx(γ )

.

Hence,

( – γ )T(x, y)(γ ) = –
λ( – γ )( – γ )

ϕx(γ )
≤ –

λ

M
.

This, together with (.), implies

M = x(γ ) = S(x, y)(γ ) + ( – γ )T(x, y)(γ ) ≤
√
 + λ


–

λ

M
,

i.e.,

M ≤
√

+λ
 +

√
–λ



= σ (λ).

Since α(y)(t)≥ λt + λ + t ≥  for t ∈ [δ, ], we have

x(t) ≥ ( – t)T(x, y)(t)≥ ( – t)T(x, y)(δ)

≥ ( – t)
∫ δ



λs + s
σ (λ)

ds≥ (λ + )δ

σ (λ)
( – t), t ∈ [δ, ].

And then x(t)≥ cλ(t) for t ∈ [δ, ].
Finally, we prove x(t)≥ cλ for t ∈ [, δ].
In fact, if there exists t ∈ [, δ] such that x(t) < cλ, by x(δ) > cλ, there exists t′ ∈ (, δ) such

that x(t) > cλ for t ∈ (t′, δ] and x(t′) = cλ.
From

x(δ) = S(x, y)(δ) + ( – δ)T(x, y)(δ),
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S(x, y)(δ)≥ ∫ 
δ

λs+λ+s
σ (λ) ds and T(x, y)(δ)≥ ∫ δ


λs+s
σ (λ) ds, we obtain

x(δ)≥ h(λ)
σ (λ)

.

By (.), we have

x′(t) = –
λ( – t)
x(t)

–
∫ t



λs + y(s)
ϕx(s)

ds≤ –
λ( – t)
x(t)

, t ∈ [
t′, δ

]
,

i.e., x(t)x′(t)≤ –λ( – t), t ∈ [t′, δ]. Integrating this inequality from t′ to δ, we have

x(δ) – cλ


≤
∫ δ

t′
–λ

(
 – s

)
ds <

∫ δ


–λ

(
 – s

)
ds

and then cλ > x(δ) + 
∫ δ

 λ( – s)ds≥ h(λ)
σ(λ) – l(λ) = ω(λ), a contradiction.

This completes the proof. �

4 Existence of solutions of (1.1)-(1.3)
In this section, we use positive solutions obtained in Theorem . to construct the solu-
tions of (.)-(.) in �.

Theorem . For λ ∈ (λ, ), the system (.)-(.) has at least a solution (f , g) ∈ �.

Proof Let λ ∈ (λ, ), by Theorem ., the system (.)-(.) has at least a solution (x, y)
in Q. By x(t) ≥ c*(t) and (.), we know

x(t) ≤
∫ 

t

( – s)(|λ| + )
c*(s)

ds + ( – t)
∫ t



|λ| + 
c*(s)

ds

≤ 
c*

(∫ 

t

(
|λ| + 

)
ds + ( – t)

∫ t



 + |λ|
 – s

ds
)

≤ 
c*

(
|λ| +  –

(
 + |λ|) ln( – t)

)
( – t).

Let u(t) = 
c*
(|λ| +  – ( + |λ|) ln( – t)), du = +|λ|

c*(–t)
dt and then

∫ 




z(s)

ds≥
∫ 




u(s)( – s)

ds =
c*

 + |λ|
∫ ∞



du
u

= ∞,

we have
∫ 



x(s) ds = ∞.

Let

η := η(t) =
∫ t




x(s)

ds,  ≤ t < . (.)

Then η(t) is strictly increasing on [, ) and

η() = , η( – ) =
∫ 




x(s)

ds = +∞.
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Let t = h(η) be the inverse function to η = η(t), we define the function

g(η) =
∫ η


h(s)ds, f (η) =

∫ η


y
(
h(s)

)
ds, ≤ η < +∞.

Then

g ′(η) = h(η), g() = , g ′() = , g ′(∞) = 

and

f ′(η) = y
(
h(η)

)
, f () = , f ′() = , f ′(∞) = .

From (.), we have

η = η
(
g ′(η)

)
=

∫ g′(η)




x(s)

ds,  ≤ η < +∞. (.)

Differentiating (.) with respect to η, we have

g ′′(η) = x
(
g ′(η)

)
= x(t),  ≤ η < +∞. (.)

Then g ′′(η) >  for  ≤ η < +∞.
Differentiating (.) with respect to η, we have

g ′′′(η) = x′(g ′(η)
)
, g ′′(η) = x′(t)x(t),  ≤ t < . (.)

Differentiating (.) with respect to t, we have

x′(t) = –
∫ t



λs + y(s)
x(s)

ds +
–λ( – t)

x(t)
, ≤ t < . (.)

By setting s = g ′(σ ) and utilizing t = g ′(η) and (.), we have

∫ t



λs + y(s)
x(s)

ds =
∫ g′(η)



λs + y(s)
x(s)

ds

=
∫ η



(
f ′(σ ) + λg ′(σ )

)
dσ = f (η) + λg(η). (.)

By (.), (.), (.) and (.), we have

g ′′′ = –(f + λg)g ′′ + λ
(
g ′ – 

)
.

By (.), we have dt
dη

= x(t). Differentiating f ′(η) with respect to η, we have

f ′′(η) = y′(t)
dt
dη

= y′(t)x(t), f ′′′(η) = y′′(t)x(t) + y′(t)x′(t)x(t).
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Differentiating (.) with t twice and combining (.) and (.), we obtain

f ′′′ + (f + λg)f ′′ +
(
 – f ′)

= y′′(t)x(t) + y′(t)x′(t)x(t) + y′(t)x(t)
∫ t



λs + y(s)
x(s)

ds +
(
 – y(t)

)

= x(t)
[
y′′(t) +

λ(t – )y′(t) + ( – y(t))
x(t)

]
= .

This completes the proof. �

Remark . For λ < –, by Theorem  [], (.)-(.) has no solution such that
limη→∞ g ′(η) =  with |g ′(η)| <  for η ≥ η, η ≥  is a constant.
Utilizing the system (.)-(.), we know easily that (.)-(.) has no solution in � for

λ ≤ –.
In fact, if (.)-(.) has a solution (f , g) ∈ � for some λ ≤ –, by Theorem ., then (.)-

(.) has a solution in (x, y) ∈Q. Noticing that

α(y)(t) = λt + λ + y(t) ≤ λt + λ +  <  for t ∈ (, ),

we know

g ′′() = x() =
∫ 



α(y)(s)( – s)
ϕx(s)

ds < ,

a contradiction.
This research uses integrals of equations to investigate the existence of solutions of the

D axisymmetric inviscid stagnation flows related toNavier-Stokes equations and supplies
a gap of analytical study in this field.
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