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Abstract

In this article, the author investigates the existence and multiplicity of positive
solutions for boundary value problem of fractional differential equation with p-
Laplacian operator{

Dβ
0+

(
ϕp
(
Dα

0+u
))
(t) + f (t, u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) + σDγ

0+u(1) = 0, Dα
0+u(0) = 0,

where Dβ
0+,D

α
0+ and Dγ

0+ are the standard Riemann-Liouville derivatives with 1 <a ≤

2, 0 <b ≤ 1, 0 <g ≤ 1, 0 ≤ a - g - 1, the constant s is a positive number and p-
Laplacian operator is defined as �p(s) = |s|p-2s, p > 1. By means of the fixed point
theorem on cones, some existence and multiplicity results of positive solutions are
obtained.
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1 Introduction
Differential equations of fractional order have been recently proved to be valuable tools

in the modeling of many phenomena in various fields of science and engineering.

Indeed, we can find numerous applications in viscoelasticity, electrochemistry, control,

porous media, electromagnetism, etc. (see [1-5]). There has been a significant develop-

ment in the study of fractional differential equations in recent years, see the mono-

graphs of Kilbas et al. [6], Lakshmikantham et al. [7], Podlubny [4], Samko et al. [8],

and the survey by Agarwal et al. [9].

For some recent contributions on fractional differential equations, see for example,

[10-28] and the references therein. Especially, in [15], by means of Guo-Krasnosel’skiĭ’s

fixed point theorem, Zhao et al. investigated the existence of positive solutions for the

nonlinear fractional boundary value problem (BVP for short){
Dα

0+u(t) = λf (u(t)), t ∈ (0, 1),
u(0) + u′(0) = 0, u(1) + u′(1) = 0,

(1:1)

where 1 <a ≤ 2, f : [0, +∞) ® (0, +∞).
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In [16], relying on the Krasnosel’skiĭ’s fixed point theorem as well as on the Leggett-

Williams fixed point theorem, Kaufmann and Mboumi discussed the existence of posi-

tive solutions for the following fractional BVP{
Dα

0+u(t) + a(t)f (u(t)) = 0, 0 < t < 1, 1 < α ≤ 2,
u(0) = 0, u′(1) = 0.

In [17], by applying Altman’s fixed point theorem and Leray-Schauder’ fixed point

theorem, Wang obtained the existence and uniqueness of solutions for the following

BVP of nonlinear impulsive differential equations of fractional order q⎧⎨
⎩

cDqu(t) = f (t, u(t)), 1 < q ≤ 2, t ∈ J′,
�u(tk) = Qk(u(tk)), �u′(tk) = Ik(u(tk)), k = 1, 2, ...p,
au(0) − bu′(0) = x0, cu(1) + du′(1) = x1.

In [18], relying on the contraction mapping principle and the Krasnosel’skiĭ’s fixed

point theorem, Zhou and Chu discussed the existence of solutions for a nonlinear

multi-point BVP of integro-differential equations of fractional order q Î (1, 2]{
cDq

0+u(t) = f (t, u(t), (Ku)(t), (Hu)(t)), 1 < t < 1,
a1u(0) − b1u′(0) = d1u(ξ1), a2u(1) + b2u′(1) = u(ξ2).

On the other hand, integer-order p-Laplacian boundary value problems have been

widely studied owing to its importance in theory and application of mathematics and

physics, see for example, [29-33] and the references therein. Especially, in [29], by

using the fixed point index method, Yang and Yan investigated the existence of posi-

tive solution for the third-order Sturm-Liouville boundary value problems with p-

Laplacian operator{
(φp(u′′(t))′ + f (t, u(t)) = 0, t ∈ (0, 1),
au(0) − bu′(0) = 0 cu(1) + u′(1) = 0, u′′(0) = 0,

(1:2)

where �p(s) = |s|p-2s.

However, there are few articles dealing with the existence of solutions to boundary

value problems for fractional differential equation with p-Laplacian operator. In [24],

the authors investigated the nonlinear nonlocal problem{
Dβ

0+

(
ϕp
(
Dα

0+u
))
(t) + f (t, u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) = au(ξ), Dα
0+u(0) = 0,

(1:3)

where 0 <b ≤ 1, 1 <a ≤ 2, 0 ≤ a ≤ 1, 0 <ξ < 1. By using Krasnosel’skiĭ’s fixed point

theorem and Leggett-Williams theorem, some sufficient conditions for the existence of

positive solutions to the above BVP are obtained.

In [25], by using upper and lower solutions method, under suitable monotone condi-

tions, the authors investigated the existence of positive solutions to the following non-

local problem{
Dβ

0+

(
ϕp
(
Dα

0+u
))
(t) + f (t, u(t)), 0 < t < 1,

u(0) = 0, u(1) = au(ξ), Dα
0+u(0) = 0, Dα

0+u(1) = bDα
0+u(η),

(1:4)

where 1 <a, b ≤ 2, 0 ≤ a, b ≤ 1, 0 <ξ, h < 1.

No contribution exists, as far as we know, concerning the existence of solutions for

the fractional differential equation with p-Laplacian operator
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{
Dβ

0+

(
ϕp
(
Dα

0+u
))
(t) + f (t, u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) + σDγ

0+u(1) = 0, Dα
0+u(0) = 0,

(1:5)

where Dβ
0+,D

α
0+ and Dγ

0+ are the standard Riemann-Liouville derivative with 1 <a ≤ 2,

0 <b ≤ 1, 0 <g ≤ 1, 0 ≤ a - g - 1, the constant s is a positive number, the p-Laplacian

operator is defined as �p(s) = |s|p-2s, p > 1, and function f is assumed to satisfy certain

conditions, which will be specified later. To obtain the existence and multiplicity of

positive solutions to BVP (1.5), the fixed point theorem on cones will be applied.

It is worth emphasizing that our work presented in this article has the following fea-

tures which are different from those in [24,25]. Firstly, BVP (1.5) is an important two

point BVP. When g = 1, the boundary value conditions in (1.5) reduce to u(0) = 0, u

(1) + su’(1) = 0, which are the well-known Sturm-Liouville boundary value conditions

u(0) + bu’(0) = 0, u(1) + su’(1) = 0 (such as BVP (1.1)) with b = 0. It is a well-known

fact that the boundary value problems with Sturm-Liouville boundary value conditions

for integral order differential equations have important physical and applied back-

ground and have been studied in many literatures, while BVPs (1.3) and (1.4) are the

nonlocal boundary value problems, which are not able to substitute BVP (1.5). Sec-

ondly, when a = 2, b = 1, g = 1, then BVP (1.5) reduces to BVP (1.2) with b = 0. So,

BVP (1.5) is an important generalization of BVP (1.2) from integral order to fractional

order. Thirdly, in BVPs (1.3) or (1.4), the boundary value conditions u(1) = au(ξ),

Dα
0+u(1) = bDα

0+u(η) show the relations between the derivatives of same order Dμ
0+u(1)

and Dμ
0+u(ζ )(μ = 0,α). By contrast with that, the condition u(1) + σDγ

0+u(1) = 0 in

BVP (1.5) shows that relation between the derivatives of different order u(1) and

Dγ
0+u(1) is regarded as the derivative value of zero order of u at t = 1), which brings

about more difficulties in deducing the property of green’s function than the former.

Finally, order a + b satisfies that 2 <a + b ≤ 4 in BVP (1.4), while order a + b satisfies

that 1 <a + b ≤ 3 in BVP (1.5). In the case for a, b taking integral numbers, the BVPs

(1.5) and (1.4) are the third-order BVP and the fourth-order BVP, respectively. So,

BVP (1.5) differs essentially from BVP (1.4). In addition, the conditions imposed in

present paper are easily verified.

The organization of this article is as follows. In Section 2, we present some necessary

definitions and preliminary results that will be used to prove our main results. In Sec-

tion 3, we put forward and prove our main results. Finally, we will give two examples

to demonstrate our main results.

2 Preliminaries
In this section, we introduce some preliminary facts which are used throughout this

article.

Let N be the set of positive integers, ℝ be the set of real numbers and ℝ+ be the set

of nonnegative real numbers. Let I = [0, 1]. Denote by C(I, ℝ) the Banach space of all

continuous functions from I into ℝ with the norm

‖u‖ = max
{∣∣u(t)∣∣ : t ∈ I

}
.

Define the cone P in C(I, ℝ) as P = {u Î C(I, ℝ): u(t) ≥ 0, t Î I}. Let q > 1 satisfy the

relation
1
q
+
1
p
= 1, where p is given by (1. 5).
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Definition 2.1. [6] The Riemann-Liouville fractional integral of order a > 0 of a

function y : (a, b] ® ℝ is given by

Iαa+y(t) =
1

�(α)

t∫
a

(t − s)α−1y(s)ds, t ∈ (a, b
]
.

Definition 2.2. [6] The Riemann-Liouville fractional derivative of order a > 0 of

function y : (a, b] ® ℝ is given by

Dα
a+y(t) =

1
�(n − α)

(
d
dt

)n t∫
a

y(s)

(t − s)α−n+1 ds, t ∈ (a, b
]
,

where n = [a] + 1 and [a] denotes the integer part of a.
Lemma 2.1. [34] Let a > 0. If u Î C(0, 1) ⋂ L(0, 1) possesses a fractional derivative

of order a that belongs to C(0, 1) ⋂ L(0, 1), then

Iα0+D
α
0+u(t) = u(t) + c1t

α−1 + c2t
α−2 + · · · + cnt

α−n,

for some ci Î ℝ, i = 1, 2,..., n, where n = [a] + 1.

A function u Î C(I, ℝ) is called a nonnegative solution of BVP (1.5), if u ≥ 0 on [0,

1] and satisfies (1.5). Moreover, if u(t) > 0, t Î (0, 1), then u is said to be a positive

solution of BVP (1.5).

For forthcoming analysis, we first consider the following fractional differential equa-

tion {
Dα

0+u(t) + φ(t) = 0, 0 < t < 1,
u(0) = 0, u(1) + σDγ

0+u(1) = 0,
(2:1)

where a, g, s are given by (1.5) and j Î C(I, ℝ).

By Lemma 2.1, we have

u(t) = c1t
α−1 + c2t

α−2 − Iα0+φ(t), t ∈ [0, 1].

From the boundary condition u(0) = 0, we have c2 = 0, and so

u(t) = c1t
α−1 − Iα0+φ(t), t ∈ [0, 1]. (2:2)

Thus,

Dγ

0+u(t) = c1
�(α)

�(α − γ )
tα−γ−1 − Iα−γ

0+ φ(t)

and

u(1) = c1 − Iα0+φ(1), Dγ

0+u(1) = c1
�(α)

�(α − γ )
− Iα−γ

0+ φ(1).

From the boundary condition u(1) + σDγ
0+u(1) = 0, it follows that(

1 + σ
�(α)

�(α − γ )

)
c1 −

(
Iα0+φ(1) + σ Iα−γ

0+ φ(1)
)
= 0.

Chai Boundary Value Problems 2012, 2012:18
http://www.boundaryvalueproblems.com/content/2012/1/18

Page 4 of 20



Let δ =
[
1 + σ

�(α)
�(α − γ )

]−1

. Then

c1 = δ
[
Iα0+φ(1) + σ Iα−γ

0+ φ(1)
]
. (2:3)

Substituting (2.3) into (2.2), we have

u(t) = δ
[
Iα0+φ(1) + σ Iα−γ

0+ φ(1)
]
tα−1 − Iα0+φ(t)

= δtα−1

⎡
⎣ 1

�(α)

1∫
0

(1 − s)α−1
φ(s)ds +

1
�(α − γ )

σ

1∫
0

(1 − s)α−γ−1
φ(s)ds

⎤
⎦

− 1
�(α)

t∫
0

(t − s)α−1
φ(s)ds

=
1

�(α)

⎧⎨
⎩δtα−1

1∫
0

[
(1 − s)α−1 +

σ�(α)
�(α − γ )

(1 − s)α−γ−1
]

φ(s)ds −
t∫

0

(t − s)α−1
φ(s)ds

⎫⎬
⎭

=
1

�(α)

⎧⎨
⎩

t∫
0

[
δtα−1

(
(1 − s)α−1 +

σ�(α)
�(α − γ )

(1 − s)α−γ−1
)

− (t − s)α−1
]
φ(s)ds

+δtα−1

1∫
t

[
(1 − s)α−1 +

σ�(α)
�(α − γ )

(1 − s)α−γ−1
]

φ(s)ds

⎫⎬
⎭

=

1∫
0

G(t, s)φ(s)ds,

(2:4)

where

G(t, s) =
1

�(α)
·
{
g1(t, s), 0 ≤ s ≤ t ≤ 1,
g2(t, s), 0 ≤ t ≤ s ≤ 1,

and

g1(t, s) = δtα−1
[
(1 − s)α−1 +

σ�(α)
�(α − γ )

(1 − s)α−γ−1
]

− (t − s)α−1, 0 ≤ s ≤ t,

g2(t, s) = δtα−1
[
(1 − s)α−1 +

σ�(α)
�(α − γ )

(1 − s)α−γ−1
]
, t ≤ s ≤ 1.

So, we obtain the following lemma.

Lemma 2.2. The solution of Equation (2.1) is given by

u(t) =

1∫
0

G(t, s)φ(s)ds, t ∈ [0, 1].

Also, we have the following lemma.

Lemma 2.3. The Green’s function G(t, s) has the following properties

(i) G(t, s) is continuous on [0, 1] × [0, 1],

(ii) G(t, s) > 0, s, t Î (0, 1).

Proof. (i) Owing to the fact 1 <a ≤ 2, 0 <g ≤ 1, 0 ≤ a - g - 1, from the expression of

G, it is easy to see that conclusion (i) of Lemma 2.3 is true.
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(ii) There are two cases to consider.

(1) If 0 <s ≤ t < 1, then

�(α)g1(t, s) = tα−1
{
δ

[
(1 − s)α−1 +

σ�(α)
�(α − γ )

(1 − s)α−γ−1
]

−
(
1 − s

t

)α−1
}

> tα−1
{
δ

[
(1 − s)α−1 +

σ�(α)
�(α − γ )

(1 − s)α−γ−1
]

− (1 − s)α−1
}

= tα−1(1 − s)α−1
{
δ

[
1 +

σ�(α)
�(α − γ )

(1 − s)−γ

]
− 1
}

≥ tα−1(1 − s)α−1
{
δ

[
1 +

σ�(α)
�(α − γ )

]
− 1
}
= 0.

(2) If 0 <t ≤ s < 1, then conclusion (ii) of Lemma 2.3 is obviously true from the

expression of G.

We need to introduce some notations for the forthcoming discussion.

Let
η0 =

(
γ δσ�(α)
�(α − γ )

) 1
α − 1. Denote η(s) =

γ δσ�(α)
�(α − γ )

s2−α, s Î [0, 1]. Set g(s) = G(s,

s), s Î [0, 1]. From 0 <g ≤ 1, s > 0, 1 <a ≤ 2 and δ =
[
1 +

σ�(α)
�(α − γ )

]−1

, we know that

h0 Î (0, 1).

The following lemma is fundamental in this article.

Lemma 2.4. The Green’s function G has the properties

(i) G(t, s) ≤ G(s, s),s, t Î [0, 1].

(ii) G(t, s) ≥ h(s)G(s, s), t Î [h0, 1], s Î [0, 1].

Proof. (i) There are two cases to consider.

Case 1. 0 ≤ s ≤ t ≤ 1. In this case, since the following relation

∂g1(t, s)
∂t

= (α − 1)
{
δtα−2

[
(1 − s)α−1 +

σ�(α)
�(α − γ )

(1 − s)α−γ−1
]

− (t − s)α−2
}

≤ (α − 1)
{
δtα−2

[
1 +

σ�(α)
�(α − γ )

]
− (t − s)α−2

}

= (α − 1)
{
tα−2 − (t − s)α−2

}
< 0.

holds for 0 <s <t ≤ 1, we have

G(t, s) ≤ G(s, s), 0 ≤ s ≤ t ≤ 1.

Case 2. 0 ≤ t ≤ s ≤ 1. In this case, from the expression of g2(t, s), it is easy to see that

G(t, s) ≤ G(s, s), 0 ≤ t ≤ s ≤ 1.

(ii) We will consider the following two cases.

Case 1. When 0 <s ≤ h0, h0 ≤ t ≤ 1, then from the above argument in (i) of proof,

we know that g1(t, s) is decreasing with respect to t on [h0, 1]. Thus

min
t∈[η0,1]

G(t, s) = G(1, s) = g1(1, s)/�(α), s ∈ (0, η0] , (2:5)
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and so

min
t∈[η0,1]

G(t, s)
G(s, s)

=
g1(1, s)
g(s)

, for s ∈ (0, η0] .

Case 2. h0 <s < 1, h0 ≤ t ≤ 1.

(a) If s ≤ t, then by similar arguments to (2.5), we also have

min
t∈[s,1]

G(t, s) = G(1, s) = g1(1, s)/�(α).

(b) If h0 ≤ t ≤ s, then the following relation

min
t∈[η0,s]

G(t, s) = g2(η0, s)/�(α)

holds in view of the expression of g2(t, s).

To summarize,

min
t∈[η0,1]

G(t, s)
G(s, s)

≥ min
{
g1(1, s)
g(s)

,
g2(η0, s)
g(s)

}
, for all s ∈ (η0, 1) (2:6)

Now, we shall show that

min
t∈[η0,1]

G(t, s)
G(s, s)

≥ γ δσ�(α)
�(α − γ )

s2−α , s ∈ (0, 1). (2:7)

In fact, for s Î (0, 1), we have

g1(1, s) = δ

[
(1 − s)α−1 +

σ�(α)
�(α − γ )

(1 − s)α−γ−1
]

− (1 − s)α−1

= δ

[
(1 − s)α−1 +

σ�(α)
�(α − γ )

(1 − s)α−1
]

+ δ
σ�(α)

�(α − γ )

[
(1 − s)α−γ−1 − (1 − s)α−1

]
− (1 − s)α−1

= δ

[
1 +

σ�(α)
�(α − γ )

]
(1 − s)α−1

+ δ
σ�(α)

�(α − γ )
(1 − s)α−γ−1[1 − (1 − s)γ )] − (1 − s)α−1

= δ
σ�(α)

�(α − γ )
(1 − s)α−γ−1[1 − (1 − s)γ ]

> δ
σ�(α)

�(α − γ )
(1 − s)α−γ−1γ s,

and so

g1(1, s)
g(s)

>

γ δ
σ�(α)

�(α − γ )
(1 − s)α−γ−1s

δsα−1

[
(1 − s)α−1 +

σ�(α)
�(α − γ )

(1 − s)α−γ−1
]

=
γ

σ�(α)
�(α − γ )

s2−α

(1 − s)γ +
σ�(α)

�(α − γ )

>

γ
σ�(α)

�(α − γ )
s2−α

1 +
σ�(α)

�(α − γ )

=
γ δσ�(α)
�(α − γ )

s2−α , s ∈ (0, 1).

(2:8)
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On the other hand, for s Î (h0, 1), we have

g2(η0, s)
g(s)

= ηα−1
0 s1−α . (2:9)

Since ηα−1
0 =

γ δσ�(α)
�(α − γ )

, the equality

ηα−1
0 s1−α =

γ δσ�(α)
�(α − γ )

s2−α

holds for s = 1. Thus,

ηα−1
0 s1−α >

γ δσ�(α)
�(α − γ )

s2−α , s ∈ (0, 1). (2:10)

Since 1 <a ≤ 2, it follows from (2.9) that

g2(η0, s)
g(s)

>
γ δσ�(α)
�(α − γ )

s2−α , s ∈ (η0, 1). (2:11)

Hence, from (2.8) and (2.11), we immediately have

min
{
g1(1, s)
g(s)

,
g2(η0, s)
g(s)

}
>

γ δσ�(α)
�(α − γ )

s2−α , s ∈ (η0, 1). (2:12)

Thus, from (2.6) and (2.12 ), it follows that

min
t∈[η0,1]

G(t, s)
G(s, s)

>
γ δσ�(α)
�(α − γ )

s2−α , s ∈ (η0, 1). (2:13)

Also, by (2.8), the following inequality

g1(1, s)
g(s)

>
γ δσ�(α)
�(α − γ )

s2−α , s ∈ (0, η0]

holds, and therefore

min
t∈[η0,1]

G(t, s)
G(s, s)

>
γ δσ�(α)
�(α − γ )

s2−α , s ∈ (0, η0] (2:14)

from the proof in Case 1.

Summing up the above relations (2.13)-(2.14), we have

min
t∈[η0,1]

G(t, s)
G(s, s)

>
γ δσ�(α)
�(α − γ )

s2−α , s ∈ (0, 1),

and so

min
t∈[η0,1]

G(t, s) ≥ η(s)G(s, s), s ∈ [0, 1].

The proof of Lemma 2.4 is complete.

To study BVP (1. 5), we first consider the associated linear BVP{
Dβ

0+

(
ϕp
(
Dα

0+u
))
(t) + h(t) = 0, 0 < t < 1,

u(0) = 0, u(1) + σDγ

0+u(1) = 0, Dα
0+u(0) = 0,

(2:15)

where h Î P.
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Let w = Dα
0+u, v = ϕp(w). By Lemma 2.1, the solution of initial value problem{

Dβ
0+u(t) + h(t) = 0, t ∈ (0, 1),

v(0) = 0

is given by

v(t) = C1t
β−1 − Iβ0+h(t), t ∈ (0, 1] .

From the relations v(0) = 0, 0 <b ≤ 1, it follows that C1 = 0, and so

v(t) = −Iβ0+h(t), t ∈ [0, 1]. (2:16)

Noting that Dα
0+u = w,w = ϕ−1

p (v), from (2.16), we know that the solution of (2.15)

satisfies{
Dα

0+u(t) = ϕ−1
p

(
−Iβ0h

)
(t)), t ∈ (0, 1),

u(0) = 0, u(1) + σDγ

0+u(1) = 0.
(2:17)

By Lemma 2.2, the solution of Equation (2.17) can be written as

u(t) = −
1∫

0

G(t, s)ϕ−1
p

(
−Iβ0h

)
(s)ds, t ∈ I. (2:18)

Since h(s) ≥ 0, s Î [0, 1], we have ϕ−1
p

(
−Iβ0+h(s)

)
= −

((
Iβ0+h

)
(s)
)q−1

, s Î [0, 1], and

so

u(t) =

1∫
0

G(t, s)
(
Iβ0+h(s)

)q−1
ds

=
1

(�(β))q−1

1∫
0

G(t, s)ds

⎛
⎝ s∫

0

h(τ )(s − τ )β−1dτ

⎞
⎠

q−1 (2:19)

from (2.18). Thus, by Lemma 2.3, we have obtained the following lemma.

Lemma 2.5. Let h Î P. Then the solution of Equation (2.15) in P is given by

u(t) =
1

(�(β))q−1

1∫
0

G(t, s)ds

⎛
⎝ s∫

0

h(τ )(s − τ )β−1dτ

⎞
⎠

q−1

.

We also need the following lemmas to obtain our results.

Lemma 2.6. If a, b ≥ 0, g > 0, then

(a + b)γ ≤ max{2γ−1, 1}(aγ + bγ ).

Proof. Obviously, without loss of generality, we can assume that 0 <a <b, g ≠ 1.

Let j(t) = tg, t Î [0, +∞).

(i) If g > 1, then j(t) is convex on (0, +∞), and so

φ

(
1
2
a +

1
2
b
)

≤ 1
2

φ(a) +
1
2

φ(b),

.
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i.e.,
1
2γ

(a + b)γ ≤ 1
2
(aγ + bγ ). Thus

(a + b)γ ≤ 2γ−1(aγ + bγ ).

(ii) If 0 <g < 1, then j(t) is concave on [0, +∞), and so

φ(a) = φ

(
b

a + b
· 0 +

a
a + b

· (a + b)
)

≥ b

a + b
φ(0) +

a

a + b
· φ(a + b)

=
a

a + b
φ(a + b),

φ(b) = φ

(
b

a + b
· 0 +

a
a + b

· (a + b)
)

≥ a

a + b
φ(0) +

b

a + b
φ(a + b)

=
b

a + b
φ(a + b).

Thus, j(a) + j(b) ≥ j(a + b), namely,

(a + b)γ ≤ aγ + bγ .

By (i), (ii) above, we know that the conclusion of Lemma 2.6 is true.

Lemma 2.7. Let c > 0, g > 0. For any x, y Î [0, c], we have that

(i) If g > 1, then |xg - yg| ≤ gcg-1 |x - y|,

(ii) If 0 <g ≤ 1, then |xg - yg| ≤ |x - y|g.

Proof. Obviously, without loss of generality, we can assume that 0 <y <x since the

variables x and y are symmetrical in the above inequality.

(i) If g > 1, then we set j(t) = tg, t Î [0, c]. by virtue of mean value theorem, there

exists a ξ Î (0, c) such that

xγ − yγ = γ ξγ−1(x − y)

≤ γ cγ−1(x − y),

i.e., ∣∣xγ − yγ
∣∣ ≤ γ cγ−1

∣∣x − y
∣∣ .

(ii) If 0 <g < 1, then by Lemma 2.6, it is easy to see that

xγ − yγ = (x − y − y)γ − yγ

≤ (x − y)γ + yγ − yγ = (x − y)γ ,

and so∣∣xγ − yγ
∣∣ ≤ ∣∣x − y

∣∣γ .
Now we introduce some notations, which will be used in the sequel.
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Let D =
∫ 1
0 G(s, s)sβ(q−1)ds,Q =

∫ 1
0 η(s)G(s, s)sβ(q−1)ds,

l = �(β + 1)
(
D · max

{
2q−1, 1

}) 1
1 − q ,μ =

�(β + 1)

Q

1
q − 1

.

By simple calculation, we know that

D =
δ

�(α)
B
(
α,α + β(q − 1)

)
+

σδ

�(α − γ )
B(α − γ ,α + β(q − 1)), (2:20)

Q =
γ δ2σ

�(α − γ )

[
B
(
α, 2 + β(q − 1)

)
+

σ�(α)
�(α − γ )

B
(
α − γ , 2 + β(q − 1)

)]
. (2:21)

In this article, the following hypotheses will be used.

(H1) f Î C(I × ℝ+, ℝ+).

(H2) lim
x→+∞max

t∈I
f (t, x)
xp−1

< l, lim
x→0+

min
t∈I

f (t, x)
xp−1

> μ..

(H3) There exists a r0 > 0 such that f(t, x) is nonincreasing relative to x on [0, r0] for

any fixed t Î I.

By Lemma 2.5, it is easy to know that the following lemma is true.

Lemma 2.8. If (H1) holds, then BVP (1.5) has a nonnegative solution if and only if

the integral equation

u(t) =
1

(�(β))q−1

1∫
0

G(t, s)

⎛
⎝ s∫

0

f (τ , u(τ ))(s − τ )β−1dτ

⎞
⎠

q−1

ds, t ∈ I (2:22)

has a solution in P. Let c be a positive number, P be a cone and Pc = {y Î P : ∥y∥ ≤

c}. Let a be a nonnegative continuous concave function on P and

P(α, a, b) =
{
u ∈ P|a ≤ α(u), ‖u‖ ≤ b

}
.

We will use the following lemma to obtain the multiplicity results of positive

solutions.

Lemma 2.9. [35] Let A : Pc → Pc be completely continuous and a be a nonnegative

continuous concave function on P such that a(y) ≤ ∥y∥ for all y ∈ Pc. Suppose that

there exist a, b and d with 0 <a <b <d ≤ c such that

(C1) {y ∈ P(α, b, d)}|α(y) > b} 	= ∅ and a(Ay) >b, for all y Î P(a, b, d);
(C2) ∥Ay∥ <a, for ∥y∥ ≤ a;

(C3) a(Ay) >b, for y Î P(a, b, c) with ∥Ay∥ >d.

Then A has at least three fixed points y1, y2, y3 satisfying∥∥y1∥∥ < a, b < α(y2), and
∥∥y3∥∥ > a with α(y3) < b.

3 Main results
In this section, our objective is to establish existence and multiplicity of positive solu-

tion to the BVP (1.5). To this end, we first define the operator on P as
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Au =
1

(�(β))q−1

1∫
0

G(t, s)

⎛
⎝ s∫

0

f (τ , u(τ ))(s − τ )β−1dτ

⎞
⎠

q−1

ds, u ∈ P. (3:1)

The properties of the operator A are given in the following lemma.

Lemma 3.1. Let (H1) hold. Then A : P ® P is completely continuous.

Proof. First, under assumption (H1), it is obvious that AP ⊂ P from Lemma 2.3.

Next, we shall show that operator A is completely continuous on P. Let

E =
∫ 1
0 G(s, s)ds. The following proof will be divided into two steps.

Step 1. We shall show that the operator A is compact on P.

Let B be an arbitrary bounded set in P. Then exists an M > 0 such that ∥u∥ ≤ M for

all u Î B. According to the continuity of f, we have L � max f (t, x)
(t,x)∈I×[0,M]

< +∞. Thus, by

Lemmas 2.3 and 2.4, it follows that

0 ≤ (Au)(t) ≤ Lq−1

(�(β))q−1

1∫
0

G(s, s)

⎛
⎝ s∫

0

(s − τ )β−1dτ

⎞
⎠

q−1

ds

<
Lq−1

(�(β + 1))q−1

1∫
0

G(s, s)ds

=
Lq−1

(�(β + 1))q−1 E, t ∈ I.

Thus,

‖Au‖ ≤ Lq−1

(�(β + 1))q−1 E.

That is, the set AB is uniformly bounded.

On the other hand, the uniform continuity of G(t, s) on I × I implies that for arbi-

trary ε > 0, there exists a δ > 0 such that whenever t1, t2 Î I with |t1 - t2| <δ, the fol-

lowing inequality

∣∣G(t1, s) − G(t2, s)
∣∣ < ε

(�(β + 1))q−1

Lq−1
(β(q − 1) + 1)

holds for all s Î I. Therefore,

∣∣Au(t1) − Au(t2)
∣∣ ≤ 1

(�(β))q−1

1∫
0

∣∣G(t1, s) − G(t2, s)
∣∣
⎛
⎝ s∫

0

f (τ , u(τ ))(s − τ )β−1dτ

⎞
⎠

q−1

ds

≤ Lq−1

(�(β + 1))q−1

1∫
0

s(q−1)βds
(�(β + 1))q−1

Lq−1
(β(q − 1) + 1)ε = ε.

Thus, AB is equicontinuous. Consequently, the operator is compact on P by Arzelà-

Ascoli theorem.

Step 2. The operator A is continuous.

Let {un} be an arbitrary sequence in P with un ® u0 Î P. Then exists an L > 0 such

that
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0 ≤ f (τ , un(τ )) ≤ L, τ ∈ [0, 1], n ≥ 0.

Thus,

s∫
0

f (τ , un(τ ))(s − τ )β−1dτ ≤ L

s∫
0

(s − τ )β−1dτ ≤ L
β

� c, s ∈ [0, 1].

On the other hand, the uniform continuity of f combined with the fact that ∥un - u0∥
® 0 yields that there exists a N ≥ 1 such that the following estimate∣∣f (τ , un(τ ) − f (t, u0(τ ))

∣∣ < ε

holds for n ≥ N.

(1) If 1 <q ≤ 2, then from Lemma 2.7 (ii), we have∣∣∣∣∣∣
⎛
⎝ s∫

0

f (τ , un(τ ))(s − τ )β−1dτ

⎞
⎠

q−1

−
⎛
⎝ s∫

0

f (τ , u0(τ ))(s − τ )β−1dτ

⎞
⎠

q−1∣∣∣∣∣∣
≤
⎛
⎝ s∫

0

∣∣f (τ , un(τ )) − f (τ , u0(τ ))
∣∣ (s − τ )β−1dτ

⎞
⎠

q−1

< εq−1 1
βq−1

sβ(q−1), s ∈ [0, 1].

Hence, by Lemmas 2.3 and 2.4, from (3.1), we obtain

∣∣Aun(t) − Au0(t)
∣∣ < εq−1

(�(β + 1))q−1

1∫
0

G(s, s)ds

=
E

(�(β + 1))q−1 εq−1.

Thus,

‖Aun − Au0‖ ≤ E

(�(β + 1))q−1 εq−1. (3:2)

(2) If q > 2, then from Lemma 2.7 (i), we have∣∣∣∣∣∣
⎛
⎝ s∫

0

f (τ , un(τ ))(s − τ )β−1dτ

⎞
⎠

q−1

−
⎛
⎝ s∫

0

f (τ , u0(τ ))(s − τ )β−1dτ

⎞
⎠

q−1∣∣∣∣∣∣
≤ (q − 1)cq−2

s∫
0

∣∣f (τ , un(τ )) − f (τ , u0(τ ))
∣∣ (s − τ )β−1dτ

<
q − 1

β
cq−2sβε, s ∈ [0, 1].
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Thus, we have

∣∣Aun(t) − Au0(t)
∣∣ < (q − 1)cq−2ε

β(�(β))q−1

1∫
0

G(s, s)ds

=
(q − 1)cq−2E

β(�(β))q−1 ε,

and so

‖Aun − Au0‖ ≤ (q − 1)cq−2E

β(�(β))q−1 ε. (3:3)

From (3.2)-(3.3), it follows that ∥Aun - Au0∥ ® 0(n ® ∞).

Summing up the above analysis, we obtain that the operator A is completely continu-

ous on P.

We are now in a position to state and prove the first theorem in this article.

Theorem 3.1. Let (H1), (H2), and (H3) hold. Then BVP (1.5) has at least one positive

solution.

Proof. By Lemma 2.8, it is easy to know that BVP (1.5) has a nonnegative solution if

and only if the operator A has a fixed point in P. Also, we know that A : P ® P is

completely continuous by Lemma 3.1.

The following proof is divided into two steps.

Step 1. From (H2), we can choose a ε0 Î (0, l) such that

lim
x→+∞max

t∈I
f (t, x)
xp−1

< l − ε0.

Therefore, there exists a R0 > 0 such that the inequality

f (t, x) < (l − ε0)xp−1, t ∈ I (3:4)

holds for x ≥ R0.

Let M = max
(t,x)∈I×[0,R0]

f (t, x). It follows from (3.4) that

f (t, x) ≤ (l − ε0)xp−1 +M, ∀x ∈ R+, t ∈ I. (3:5)

From the fact that (l - ε0)
q-1 <lq-1, we can choose a k > 0 such that (l - ε0)

q-1 <lq-1 - k.

Set

D1 =
max{2q−2, 1}D
(�(β + 1))q−1 ,E = D1k,G = D1M

q−1. (3:6)

where D is as (2.20). Take R >
G
E
. Set ΩR = {u Î P : ∥u∥ <R}. We shall show that the

relation

Au 	= μu, ∀u ∈ ∂�R μ ≥ 1 (3:7)

holds.

In fact, if not, then there exists a u0 Î ∂ΩR and a μ0 ≥ 1 with

μ0u0 = Au0.
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By (3.5), we have

f (t, u0(t)) ≤ (l − ε0)u
p−1
0 (t) +M

≤ (l − ε0)‖u0‖p−1 +M

= (l − ε0)Rp−1 +M, t ∈ I.

Therefore, in view of Lemmas 2.3, 2.4, from (3.1), it follows that

Au(t) ≤ ((l − ε0)Rp−1 +M)q−1

(�(β + 1))q−1

1∫
0

G(s, s)sβ(q−1)ds

=
D

(�(β + 1))q−1

(
(l − ε0)Rp−1 +M

)q−1
, t ∈ I.

(3:8)

Also, keeping in mind that (p - 1)(q - 1) = 1, by Lemma 2.6, we have

(
(l − ε0)Rp−1 +M

)q−1 ≤ max
{
2q−2, 1

} (
(l − ε0)

q−1R +Mq−1
)

< max
{
2q−2, 1

} (
(lq−1 − k)R +Mq−1) . (3:9)

Hence, from (3.6), (3.8), and (3.9), it follows that

u0 ≤ μu0 = Au0 ≤ (D1l
q−1 − E

)
R + G, t ∈ I. (3:10)

By definition of l, we have D1l
q-1 = 1. From (3. 10), it follows that R = ∥u0∥ ≤ (1 - E)R

+ G, and so R ≤ G
E
, which contradicts the choice of R. Hence, the condition (3.7)

holds. By virtue of the fixed point index theorem, we have

i(A,�R,P) = 1. (3:11)

Step 2. By (H2), we can choose a ε0 > 0 such that

lim
x→0+

min
t∈I

f (t, x)
xp−1

> μ + ε0.

Hence, there exists a r1 Î (0, r0) such that

f (t, x) > (μ + ε0)xp−1, t ∈ I, x ∈ [0, r1], (3:12)

where r0 is given by (H3).

Take 0 <r < min {R, r1}, and set Ωr = {u Î P : ∥u∥ <r}. Now, we show that

(i) inf
u∈∂�r

‖Au‖ > 0,

(ii) Au ≠ μu, ∀u Î ∂Ωr, μ Î [0, 1].

We first prove that (i) holds. In fact, for any u Î ∂Ωr, we have 0 ≤ u(t) ≤ r. By (H3),

the function f(t, x) is nonincreasing relative to x on [0, r] for any t Î I, and so

f (t, u(t)) ≥ f (t, r) ≥ (μ + ε0)rp−1, t ∈ [0, 1] (3:13)

from (3.12).
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Thus, in view of Lemma 2.4 combined with (3.1) and (3.13), we have

Au(t) ≥ 1

(�(β))q−1

1∫
0

G(t, s)

⎛
⎝ s∫

0

(μ, +ε0)rp−1(s − τ )β−1dτ

⎞
⎠

q−1

ds

=
(μ + ε0)

q−1r

(�(β + 1))q−1

1∫
0

G(t, s)sβ(q−1)ds

≥ (μ + ε0)
q−1r

(�(β + 1))q−1

1∫
0

η(s)G(s, s)sβ(q−1)ds

=
(μ + ε0)

q−1Q

(�(β + 1))q−1 r, for all t ∈ [η0, 1],

where Q is as (2.21). Consequently,

‖Au‖ ≥ (μ + ε0)
q−1Q

(�(β + 1))q−1 r
.= c0 > 0. (3:14)

Thus inf
u∈∂�r

‖Au‖ ≥ c0 > 0.

(ii) Suppose on the contrary that there exists a u0 Î ∂Ωr and μ0 Î [0, 1] such that

μ0u0 = Au0. (3:15)

Then, by similar arguments to (3.14), we have

‖Au0‖ ≥ Br, (3:16)

where B =
(μ + ε0)

q−1Q

(�(β + 1))q−1 .

By (3.15)-(3.16), we obtain

r = ‖u0‖ ≥ μ0 ‖u0‖ = ‖Au0‖ ≥ Br.

The hypothesis
μ =

�(β + 1)

Q

1
q − 1

implies that B > 1, and so r >r from above inequality,

which is a contradiction. That means that (ii) holds.

Hence, applying fixed point index theorem, we have

i(A,�R,P) = 0. (3:17)

By (3.11) and (3.17), we have

i(A,�R\�r,P) = 1,

and so, there exists u∗ ∈ �R\�̄r with Au* = u*, ∥u*∥ >r. Hence, u* is a nonnegative

solution of BVP (1.5) satisfying ∥u*∥ >r. Now, we show that u*(t) > 0, t Î (0, 1).

In fact, since ∥u*∥ >r, u* Î P, G(t, s) > 0, t, s Î (0, 1), from (3.1), we have

s∫
0

f (τ , u∗(τ ))(s − τ )β−1dτ 	≡ 0, s ∈ (0, 1),
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and so

u∗(t) = Au∗(t) > 0, t ∈ (0, 1) (3:18)

from the fact that G(t, s) > 0 and
∫ s
0 f (τ , u(τ ))(s − τ )β−1dτ ≥ 0, s Î [0, 1]. That is, u*

is a positive solution of BVP (1.5).

The proof is complete.

Now, we state another theorem in this article. First, let me introduce some notations

which will be used in the sequel.

Let
M1 =

�(β + 1)

D

1
q − 1

,M2 =
�(β + 1)

B

1
q − 1
2

, where D is as (2.20).

Let

B2
γ δ2σ (1 − η0)

α+β(q−1)+1

�(α − γ )

[
B(α,β(q − 1) + 2) + (1 − η0)

−γ σ�(α)
�(α − γ )

B(α − γ ,β(q − 1) + 2)
]
. (3:19)

Set Pr = {u Î P : ∥u∥ <r}, for r > 0. Let ω(u) = min
t∈[η0,1]

u(t), for u Î P. Obviously, ω is

a nonnegative continuous concave functional on P.

Theorem 3.2. Let (H1) hold. Assume that there exist constants a, b, c, l1, l2 with 0

<a <b <c and l1 Î (0, M1), l2 Î (M2, ∞) such that

(D1) f(t, x) ≤ l1c
p-1, x Î [0,c], t Î I; f(t, x)≤ l1a

p-1, x Î [0, a], t ÎI,
(D2) f(t, x) ≥ l1b

p-1, x Î [b,c], t Î [h0, 1].

Then BVP (1.5) has at least one nonnegative solution u1 and two positive solutions

u2, u3 with

‖u1‖ < a, b < min
t∈[η0,1]

u2(t), a < ‖u3‖ , min
t∈[η0,1]

u3(t) < b.

Proof. By Lemmas 2.3 and 2.4, for u ∈ P̄c, from (3.1) and condition (D1), it follows

that

Au(t) ≤ (l1)
q−1c

(�(β + 1))q−1

1∫
0

G(s, s)sβ(q−1)ds

=
(l1)

q−1c

(�(β + 1))q−1D, t ∈ I,

and so

‖Au‖ ≤ (l1)
q−1D

(�(β + 1))q−1 c < c

from the hypothesis l1 <M1.

Thus, we obtain A : P̄c → Pc. Similarly, we can also obtain A : P̄a → Pa by condition

(D1). Take u0 =
b + c
2

. Then ω(u0) >b, and so {u ∈ P(ω, b, c)|ω(u) > b} 	= ∅.
For any u Î P(ω, b, c), we have that u(t) ≥ b, t Î [h0, 1] and ∥u∥ ≤ c. Consequently,

by Lemma 2.3, 2.4 and the formula (3.1), for any t Î [h0, 1], it follows from condition

(D2) that
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Au(t) =
1

(�(β))q−1

1∫
0

G(t, s)(

s∫
0

f (τ , u(τ ))(s − τ )β−1dτ )q−1ds

≥ 1

(�(β))q−1

1∫
0

η(s)G(s, s)

⎛
⎝ s∫

0

f (τ , u(τ ))(s − τ )β−1dτ

⎞
⎠

q−1

ds

≥ 1

(�(β))q−1

1∫
η0

η(s)G(s, s)

⎛
⎝ s∫

0

f (τ , u(τ ))(s − τ )β−1dτ

⎞
⎠

q−1

ds

≥ 1

(�(β))q−1

1∫
η0

η(s)G(s, s)

⎛
⎝ s∫

η0

f (τ , u(τ ))(s − τ )β−1dτ

⎞
⎠

q−1

ds

≥ l2
q−1b

(�(β + 1))q−1

1∫
η0

η(s)G(s, s)(s − η0)β(q−1)ds.

(3:20)

Also, by changing the variable θ =
s − η0

1 − η0
, we have

1∫
η0

η(s)G(s, s)(s − η0)
β(q−1)ds

=
γ δ2σ

�(α − γ )

1∫
η0

s
[
(1 − s)α−1 +

σ�(α)
�(α − γ )

(1 − s)α−γ−1
]
(s − η0)

β(q−1)ds

>
γ δ2σ (1 − η0)

α+β(q−1)+1

�(α − γ )

1∫
0

θ1+β(q−1)(1 − θ)α−1
[
1 +

σ�(α)
�(α − γ )

(1 − η0)
−γ (1 − θ)−γ

]
dθ

= B2,

(3:21)

where B2 is given by (3.19).

Substituting (3.21) into (3.20), we obtain

Au(t) ≥ l2
q−1B2

(�(β + 1))q−1 b, t ∈ [η0, 1],

and so ω(Au) >b from the hypothesis l2 >M2.

Summing up the above analysis, we know that all the conditions of Lemma 2.9 with

c = d are satisfied, and so BVP (1.5) has at least three nonnegative solutions u1, u2, u3
with

‖u1‖ < a, b < min
t∈[η0,1]

u2(t), a < ‖u3‖ , min
t∈[η0,1]

u3(t) < b.

By similar argument to (3.18), we can deduce that u2 and u3 are two positive

solutions.

The proof is complete.

Example 3.1. Consider the following BVP{
Dβ

0+

(
ϕp
(
Dα

0+u
))
(t) + (t2 + cos2u) = 0, 0 < t < 1,

u(0) = 0, u(1) + σDγ

0+u(1) = 0, Dα
0+u(0) = 0,

(3:22)
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where 1 <a < 2, 0 <b < 1, 0 <g < 1, 0 ≤ a - g - 1, s > 0 and the p-Laplacian operator

is defined as �p(s) = |s|p-2s, p > 1.

It is easy to verify that all assumptions of Theorem 3.1 are satisfied. Hence, by the

conclusion of Theorem 3.1, BVP (3.22) has at least one positive solution on [0, 1].

Example 3.2. Consider the following BVP⎧⎪⎪⎪⎨
⎪⎪⎪⎩
D

1
2
0+

(
ϕ3
2

(
D

3
2
0+u

))
(t) + f (t, u) = 0, 0 < t < 1,

u(0) = 0, u(1) +
2√
π
D

1
2
0+u(1) = 0, D

3
2
0+u(0) = 0,

(3:23)

where α =
2
3
,β = γ =

1
2
, σ =

2√
π
, p =

3
2
relative to Theorem 3.2. With the aid of

computation we have that

M1 =
√

π 4
√

π

√
20

32 + 5π
= 1.527...,M2 =

64
15

√
π 4

√
π

(
7

35 + 4
√
15

)1
2 = 3.74..., η0 =

1
16
. Take l1 =

1.5, l2 = 4. Then l1 Î (0, M1), l2 Î (M2, ∞). Again choosing a =
3
√
2.25
4

, b = 1, c = 196,

and setting

f (t, x) =

⎧⎨
⎩
(sin

π

90
(32t + 13))(x

1
2 + 7), x ∈ [1, +∞) ,

8(sin
π

90
(32t + 13))x2, x ∈ [0, 1) ,

for t Î [0, 1], then we see that f satisfies the following relations:

f (t, x) ≤ 21 = 1.5 × 196
1
2 = l1cp−1, t ∈ [0, 1], x ∈ [0, 196] = [0, c],

f (t, x) ≥ 4 = l2b
p−1, t ∈

[
1
16

, 1
]
= [η0, 1], x ∈ [1, 196] = [b, c],

f (t, x) ≤ 3 3
√
1.5
4

= 1.5 ×
3
√
1.5
2

= l1a
p−1, t ∈ [0, 1], t ∈

[
0,

3
√
2.25
4

]
= [0, a].

So, all the assumptions of Theorem 3.2 are satisfied. By Theorem 3.2, we arrive at

BVP (3.23) has at least one nonnegative solution u1 and two positive solutions u2, u3
with

‖u1‖ <

3
√
2.25
4

, 1 < min
t∈[η0,1]

u2(t),
3
√
2.25
4

< ‖u3‖ , min
t∈[η0,1]

u3(t) < 1.
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