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Abstract
In this article, we study the quasilinear parabolic problem

u; — div(|Vul"Vu) + ululf~2|Vul? = ulu|* 2 |Vulf + g(u), x € Q,t > 0, 0.1)
u(x,0) =uo(x), x5 u(xt)=0 x€0Q t>0, '
where Q) is a bounded domain in RY, m > 0 and g(u) satisfies |g(u)| < K;|u|'™ with 0
< v <m. By the Moser’s technique, we prove that if o, B > 1,0<p <g, 1 <qg<m +
2, p+ o <q + B, there exists a weak solution

u(t) € L([0, 00), L) N L ((0, o0) W™ 2) for all up € L'(Q). Furthermore, if 2g < m
+ 2, we derive the L™ estimate for Vu(t). The asymptotic behavior of global weak
solution u(t) for small initial data ug € [%(Q)) also be established if p+ o> max{im +
2,9+ Bl
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1 Introduction
In this article, we are concerned with the initial boundary value problem of the quasi-
linear parabolic equation with nonlinear gradient term

{ut — div(|Vu"Vu) + ululf2|Vul? = ulu|* 2 |Vul® + g(u), x € Q,t > 0, (1.1)

u(x,0) =up(x), x€, u(xt)=0, x€9Q, t>0,

where Q is a bounded domain in R" with smooth boundary 0Q and m > 0, o, 8 > 1,
O<p<q,1<qg<m+2
Recently, Andreu et al. in [1] considered the following quasilinear parabolic problem

{ut — Au+ululP2|vVul? = ulu|* 2 |Vul’, x € Q,t > 0,

u(x,0) =up(x), x€, ulxt)=0 x€dQ t>0, (12)

where a, B>1,0<p <q<2,p+o<q+Banduye L'(Q). By the so-called stability
theorem with the initial data, they proved that there exists a generalized solution u(f)
e C([0, T], L") for (1.2), in which u(¢) satisfies A,(u) € L*([0, T], W) and
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/ Ju(u(t) — p())dx + / / (Vi VA — ¢) + ulul? 2 [Vul Ay(u — ¢))dlxds
Q 0 Q (1.3)

t

- / / (W2 VUl A — §) — vt — $)s)dxds + / Jul(tto — $(0))dx

0

for Vt € [0, T] and V¢ € L?(]0, T}, Wé'z) N L®(Qr), where Q7 = Q x (0, T], and for

any k > 0,
-k u<-k
Ar(w)=3u —-k<u<k, (1.4)
E u>k

Ji(u) is the primitive of Az(u) such that /;(0) = 0. The problem similar to (1.2) has
also been extensively considered, see [2-6] and the references therein. It is an interest-
ing problem to prove the existence of global solution u(£) of (1.2) or (1.1) and to derive
the L™ estimate for u(¢) and Vu(z).

Porzio in [7] also investigated the solution of Leray-Lions type problem

u; = div(a(x, t, u, Vu)), (x,t) € Q x (0, +00),
u(x, 0) = up(x), X €, (1.5)
u(x, t) =0, (x,t) € 92 x (0, +00),

where a(x, t, s, ¢ ) is a Carathéodory function satisfying the following structure con-

dition
a(x, t,s,€)E > 0lE|™,  for V(x,t,5&) € 2 x R x R x RN (1.6)

with 0 > 0 and up € LY(Q), ¢ > 1. By the integral inequalities method, Porzio derived
the L™ decay estimate of the form

“”(t) ”po(g) < Clluo IIZ‘q(Q) ™, t>0 (1.7)

with C = C(N, ¢, m, 0), o0 = mg(N(m - 2) + mq)™", h = NN(m - 2) + mq)™.

In this article, we will consider the global existence of solution u(z) of (1.1) with g €
L*(Q) and give the L™ estimates for u(t) under the similar condition in [1]. More spe-
cially, we will study the behavior of solution u(¢) as ¢ — 0". Obviously, if m = 0 and g
= (0, problem (1.1) is reduced to (1.2). We remark that the methods used in our article
are different from that of [1]. In L™ estimates, we use an improved Morser’s technique
as in [8-10]. Since the equation in (1.1) contains the nonlinear gradient term u|u|*
2|Vu|? and u|u|P?|Vu|?, it is difficult to derive L™ estimates for u() and Vu(£).

This article is organized as follows. In Section 2, we state the main results and pre-
sent some Lemmas which will be used later. In Section 3, we use these Lemmas to
derive L™ estimates of u(z). Also the proof of the main results will be given in Section
3. The L™ estimates of Vu(t) are considered in Section 4. The asymptotic behavior of
solution for the small initial data uy(x) is investigated in Section 5.
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2 Preliminaries and main results

Let Q be a bounded domain in R™ with smooth boundary 9Q and ||||,, ||, denote the
Sobolev space L'(Q) and W""(Q) norms, respectively, 1 < r < . We often drop the let-
ter Q) in these notations.

Let us state our precise assumptions on the parameters p, g, @, B and the function g

(u).

(H,) the parameters o, B> 1,0<p<g<m + 2 <N, p + ot <q + B and g(a - 1) = p(B
- 1),
(Hy) the function g(u) € C'and 3K; > 0 and 0 < v < max{g + 8 - 2, m], such that

lg(w)| < Kilul™, VueR',

(H;) the initial data uy € LY(Q),
(Hy) 2 <2 +m, 06 B <2+ m(l+ 1/N)/2,
(Hs) the mean curvature of H(x) of dQ at x is non-positive with respect to the out-

ward normal.

Remark 2.1 The assumptions (H;) and (H3) are similar to as in [1].
Definition 2.2 A measurable function u(f) = u(x, £) on Q x [0, =) is said to be a glo-

bal weak solution of the problem (1.1) if u(¢) is in the class

C([0,00), L") N LE5((0, 00), Wo™*?)

loc

and ulul’=2|Vul?, ulul*2|Vul’ € Li, ([0, 00) x Q), and for any
¢ =¢(x,t) € C'([0, 00), C}(R2)) the equality

T
// {—ue: + IVul"VuVe + ulul’?|Vul7¢} dxdt
0

Q
. (2.1)

=/(u0(x)¢(x, 0)—u(x,T)¢(x,T))dx+//(u|u|"‘_2|Vu|p+g(u))¢dxdt
Q 0 Q

is valid for any 7 > 0.

Remark 2.3 In [1], the concept of generalized solution for (1.2) was introduced. A
similar concept can be found in [7,11]. By the definition, we know that weak solution
is the generalized solution. Conversely, a generalized solution is not necessarily weak
solution.

Our main results read as follows.

Theorem 2.4 Assume (H;)-(H3). Then the problem (1.1) admits a global weak solu-
tion u(t) which satisfies

u(t) € L®([0, 00), L') N C([0, 00), LY) N LE ((0, 00), Wy ™), u, € L, ((0,00), L)  (2.2)

loc loc
and the estimates

Ju(®)| ., < Cot™, 0<t<T. (2.3)
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Furthermore, if (H,) is satisfied, the solution u(£) has the following estimates

T
[ uolas <, o
0
IVu)],, < Cot /w20 <t <T, (2.5)

with 7 > L = NomN + m + 2)" and Co = Co(T, |luoll)-
Theorem 2.5 Assume (H;)-(Hs). Then the solution u(¢) of (1.1) has the following L™
gradient estimate

[Vu(t)],, < Cot™, 0<t<T, (2.6)

with 6 = (2 + 24 + N)(mN + 2m + 4)" and Cy = Co(T, ||uoll1)-

Remark 2.6 The estimates (2.3) and (2.6) give the behavior of [|u(¢)||.. and ||Vu(t)] .
as

Theorem 2.7 Assume the parameters o, f>1,¥20,0< g <m + 2 <N and p <m +
2<p+oo<(m+2-p)(l+2NY).

Then, 3d, > 0, such that uy € L*(Q) with ||ug|l, <do, the initial boundary value pro-

blem
{ul — div(|Vu|"Vu) + yululf=2|Vul? = [u]*2u|Vul?, x € Q,t > 0, 2.7)
u(x,0) =up(x), x€Q, u(xt)=0 x€9R t>0,
admits a solution u(t) € L*([0, 00), L?) N Wé’m"z, which satisfies
lu@)], =cx+ry~¥™  t=>o0. (2.8)

where C = C(|luoll2)-
Theorem 2.8 Assume the parameters y> 0,0, f>1,1<p<qg<m + 2 <Nand7=N

(W - g +P) < 2(q” + NP) with u = (qo - pp)/(q - p) >q + B.
Then, 3d, > 0, such that uy € L* with ||u||, <d,, the initial boundary value problem

u; — div(|Vu|"Vu) + yulul® 2| Vul? = [u|*2u|Vul’, x € Q,t >0
( Y (2.9)
u(x,0) =up(x), x€; u(xt)=0 x€dR t>0, ’
admits a solution u(t) € L*(]0, 00), L?) N Wé""*z which satisfies
lu)], = C(1 +1) V@2, ¢ > 0. (2.10)

where C = C(||ug|l-).

To obtain the above results, we will need the following Lemmas.

Lemma 2.9 (Gagliardo-Nirenberg type inequality) Let § >0, N>p >1,¢ > 1 + § and
1<r<q<pNQ + )N - p). Then for |ulPue W?(Q), we have

1 1 _ 0/(B+1
lully < G a1 juffu] 2D

with 8 = (1 + B)r* - g )/(IN' - p* + (1 + B)r'Y), where the constant C, depends
only on p, N.
The Proof of Lemma 2.9 can be obtained from the well-known Gagliardo-Nirenberg-

Sobolev inequality and the interpolation inequality and is omitted here.
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Lemma 2.10 [10] Let y(¢) be a nonnegative differentiable function on (0, 7] satisfying
V() + AT ) < Bt Ry()+ €t 0<t<T
with 4, 8 >0, A0 > 1, B, C > 0, k < 1. Then, we have

y(t) < A7Y0 (2% + 2BT YYo= 4 2C(n + BT F) =119, 0<t<T.

3 L™ estimate for u(t)
In this section, we derive a priori estimates of the assumed solutions u(¢) and give a
proof of Theorem 2.4. The solutions are in fact given as limits of smooth solutions of
appropriate approximate equations and we may assume for our estimates that the solu-
tions under consideration are sufficiently smooth.

Let ug; € C3(RQ) and uo; —> u in LYQ) as i — . Fori = 1, 2, ..., we consider the

approximate problem of (1.1)

m
{ u — div | (IVul? + i) 2 Vu ) + ululf 2| Vul? = ulul*2|Vul® + g(u), x € Q,t> 0, (3.1)

u(x,0) =upi(x), xe€Q, ulxt)=0, x€dQ, t>0.

The problem (3.1) is a standard quasilinear parabolic equation and admits a unique
smooth solution u;(¢)(see Chapter 6 in [12]). We will derive estimates for u;(t). For the
simplicity of notation, we write u instead of u; and u* for |u|*"u where k > 0. Also, let
C, C; be generic constants independent of k, i, # changeable from line to line.

Lemma 3.1 Let (H;)-(H3) hold. Suppose that u(¢) is the solution of (3.1), then u(¢) €
L™([0, ), LY.

Proof Let n = 1, 2, ..., and

1, 1 <s
_ns(2—ms), 0<s<]
fa(s) = —ns(2 + ns), —71! <s<0
-1, s<—1l

It is obvious that f,(s) is odd and continuously differentiable in R'. Furthermore,
[fa(s)] < 1,f,(s) = 0 and f,(s) — sign(s) uniformly in R".
Multiplying the equation in (3.1) by f,(#) and integrating on Q, we get

/fn(u)utdx+/|Vu|'”+2f’n(u)dx+/ululﬂfzfn(u)IVqudx
Q Q Q (3.2)
< /ulul"‘_zfn(u)IVulpdx+/ululﬂ_zfn(u)IVuI“dx

Q Q
and the application of the Young inequality gives
1
/ulul"“zfn(u)IVul"dx <, /ululﬁ‘zfn(u)IVul"dx +C / Jul“ " dx, (3.3)
Q Q Q

where 4 = (qa - pP)(q - p)* = 1, e gloc - 1) = p(B - 1).
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In order to get the estimate for the third term of left-hand side in (3.2), we denote
u
Fa(u) = / (sIs1P2f(s))ds,  ue R,
0

It is easy to verify that F,(x) is odd in R'. Then, we obtain from the Sobolev inequal-
ity that

1/u|u|ﬁ’2fn(u)|Vu|qu= 1/|VFn(u)|qu
Q Q

(3.4)
> xO/\P,,(u)yqu= xO/ yPn(u)|“dx+x0/\Pn(u)yqu
Q Q, Q

with some Ay > 0 and

Qu={xeQlluxt)|=n""}, Q=Q\Q, n=12,....
We note that |F,(u)|7 < n P in QF and

f |Fa(u)|"dx < n= (P71 ||,

ot
On the other hand, we have |u(x, £)| > n" in Q,, and

R 1/q q q+p—1 7[7*'/3_1
|Fn(u)| > / (sIs1P2fu(s)) "ds > luf 9 —n 4 in Q.
q+p—1
n—1

This implies that there exists A; > 0, such that

)\,0/ |Fn(u)|qu >N / Iul‘“ﬁ_ldx - M |Q| Tl_(q+ﬂ_1) (3.5)

Q Q,

Then it follows from (3.4)-(3.5) that

1

4 /ululﬂfzfn(u)IVulqu >N / lulTF~1dx — Cn~(@+F~1) (3.6)

Q Q

with some C, > 0.
Similarly, we have from the assumption (H,) and the Young inequality that

[ sl dr < ki [ 1 ) ds

¢ ¢ (3.7)

A
§K1/|u|1+“dx§ 21/|u|q+ﬂ_1dx+C2(l+n_l_").
Q Q,

Furthermore, the assumption g <gq + f§ implies that

IS
-1 +B—1
lelul” dx < ) /Iul" dx + C,. (3.8)

Qﬂ. QYI
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Then (3.2)-(3.3) and (3.6)-(3.8) give that

1
/fn(u)urdx+ 5 /ululﬂ‘zfn(u)IVul"dx <G (1 TV n_(’“ﬂ_l))- (3.9)
Q Q
Letting n — oo in (3.9) yields
d L R R
d Hu(t) Hl + 5 |ul |Vulidx < Cs. (3.10)
Q

Note that

/Iulﬁ_1|Vu|‘7dx=< q )q/‘Vu“ﬂ‘ll
qg+p—1
Q Q

with some A, > 0. Then (3.10) becomes

q
dx > 20, > [Jull 7!

d he
4 @l 22 [u@] 77 < s (3.11)

This gives that u(z) € L([0, ), LYifuge L.
Remark 3.2 The differential inequality (3.10) implies that the solution u,(¢) of (3.1)
satisfies
T
// lui P~ Vu;|9dxdt < Cy fori=1,2,.... (3.12)
Q

0

withCo = Co(T, [luoll1)-
Lemma 3.3 Assume (H;)-(H,). Then, for any T > 0, the solution u(t) of (3.1) also
satisfies the following estimates:

Ju®)|, <Cot™  0<t<T, (3.13)

where A = N(mN + m + 2)", Co = Co(T, ||uoll).
Proof Multiplying the equation in (3.1) by #*, k > 2, we have

k+m m+2

1d m+2)””2
Vum+2

a0l -0 (G

m+2

+ / [ulP+=2 | Vu|7dx
Q

(3.14)
5/|u|‘”k’2|Vu|pdx+K1/Iul"*kdx.
Q Q

It follows from the Holder and Sobolev inequalities that

(m+2)65
v+k 6, 0> 63 01 e leem
Ky | [ul™dx < Cllull, lully? lully < Cllull, | Vum+2
o m+2
k—1/m+2 m+2 kam ||M*2
< Vim+2 + CE° lull¥,
2 k+2 a2

in which 0; = kh(m - v + (m + 2)NY), 05 = vi(m + 2)N, 03 = vil(k + m), 0 = VA, s =
Nk + m)(N - m - 2)™".
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Note that

1
/Iul"‘*k‘zlwl"dxs 4/|u|ﬁ+k_2|Vu|"dx+C/|u|“+k‘2dx

Q Q Q

/

Q

and
q+B+k—2 q

Vu 4 dx

1
2/|u|ﬂ+k—2|w|‘idx > C k1
Q

with some C; independent of k and y = (qat - pB)(q - p)* <q + B.
Without loss of generality, we assume k > 3 - p. Similarly, we derive

k-2 , ,
C/ w2 dx < Cllull!, lully llull < C& llully lully’
Q

qus/qr
=

< Clul” | Vur|

with & = supollu(?)[; and

1 =ro(k—=2)(q+B—p+gN"), a2 =hopugN"", s = hopde,
h=(q+B+qg/N)", K =qgNIN—q9)", qe=q+B+k—2.

Then, for any n > 0,

A, <Cp Hvu%/ﬂl

q , /
G (3.15)

with phof = 1, (1 - k)0’ = 1.
Note that p,0’ <k. Let n = g&k*q. Then it follows from (3.15) that

Ap < (;1 L4 Hvuqk/q

’q+Ck”(llullﬁ+ 1) (3.16)
q

with y = g09 ™" = qpho/(1 - pho). Then, (3.14) becomes

1d k—1 2 m+2 em |42 C q
||u||£ + (m + ) Vum+2 + lpma Hvutlk/q ’ < Ck""(llull’,j +1)
k dt 2 le+2 m+2 2 q
or
d i kem ||M+2 ) )
||u||k + C k™ | Vum+2 < Ck +<70(”u”k + 1) (3.17)
d m+2

with 0y = max{o, ¥} = max{vA, ¥}.

Now we employ an improved Moser’s technique as in [8,9]. Let {k,} be a sequence
defined by ky = 1, ky = R"*(R - m - 1) + m(R - 1)'(n = 2, 3, ...) with R > max{m + 1,
m + 4 - pu} such that k, = 3 - u(n = 2). Obviously, k,, > o as n — oo,

By Lemma 2.9, we have

m+2 % 0n(m’:2)
— m+ m+k,
()], = ™ Ju(] " | vum (3.18)
m+2

with 6, = RN(1 — ky_1k;1)(m + 2 + N(R — 1))~ 1
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Then, inserting (3.18) into (3.17) (k = k,,), we find that

m+2
kn T O, 1— —1/6,)(m+ky,
" +Cy CO 0, knm ”U(t) (1=1/6) (m+ky)

kn—l

(me+len)[6n

d
dt () fe (3.19)

< Cle," ([Ju(e)

|u(1)

Z:+1), 0<t<T,

or

_m+2
jt Ju()[ +CiCy ™ k™ u() " o< arl (Ju)] 1), 3:20)

u(t)

where B, = (m +ky)0, ' —ky, n=2,3,... Itis easy to see that

N(R-1) . m+2
0, — 6y = , Buk,t — , asn— oo.
m+2+NR-1) NR-1)
Denote
kn
() = |u@],, 0<t<T
Then (3.20) can be rewritten as follows
m+2
Vo) + C1C™ o Iy (ra(0)) % [u(@)|7" < CIY™ (yu(0) + 1). (3.21)

We claim that there exist a bounded sequence {¢,} and a convergent sequence {A,},
such that

lu@], <&t™, 0<t<T (3.22)

Indeed, by Lemma 3.1, the estimate (3.22) holds for n = 1 if we take A, = 0, &} =
supsso llu(®)||;. If (3.22) is true for #n - 1, then we have from (3.21) and (3.22) that

7m+2
Vo) + CIC™ o Ry (Eumy )" Pyl () < CRY O (ra(1) + 1), 0<e<T, (3:23)
where

,Bn, An = kn)\n/ )\-n = e ‘}\n—l(lgn a m)
ky, Bn

Ty =
Applying Lemma 2.10 to (3.23), we have
7m+2 71/771
ya(t) < (clc n kﬂg,i"fﬂ) (2kenhy + 2CTRL o0 ) g —hnkn (3.24)
This implies that for t € (0, T),
_ m+2 —1/Bn
lu()], < (Clc ) knms;"_lﬁn) (2leyion + 2CTRI0 ) Ubi=n < g1, (3.25)
where
m+2

~1/Bn
&n =&n1 <C1C_ O k;'”) (2knhy + 4CTRL0)Y/Pn, (3.26)

in which the fact k,, ~ f3,, as n — oo has been used.
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It is not difficult to show that {&,} is bounded. Furthermore, by Lemma 4 in [9], we

have
1+ Np—1(Bn — m) N
> ) =

PN

= , asn— oo.
Bn m+ 2 +mN

Letting # — o in (3.22) implies that (3.13) and we finish the Proof of Lemma 3.3.
Lemma 3.4. Let (H,)-(H,) hold. Then, the solution u(z) of (3.1) has the following

estimates
T
/sl” (e (s) ”ids <G (3.27)
0
and
[Vu®)],., < Cot /w2 0 <t <T, (3.28)

with 7 > L = N(mN + m + 2)", Co = Co(T, lluoll1)-

Proof We first choose r > A and 1(£) € C[0, ) N C*(0, =) such that n(¢) = ¢ when ¢
e [0, 1]; n(¥) = 2, when ¢ > 2 and n(¢), n’(t) = 0 in [0, ). Multiplying the equation in
(3.1) by n(t)u, we have

t t
;n(t) Ju()|3 + f n(s) | Vu(s) |2 ds + / / |ulP|VulTn(s)dxds
Q

0 0 (3.29)

t

t t
1
< 2/17/(5) ||u(s)||§ds+//|u|°‘|Vu|pn(s)dxds+K1//|u|2+"n(s)dxds.
0 Q 0 Q

0

Note that

t t t

//Iul“qulpn(s)dxdss ;//IulﬂIVulqn(s)dxds+C//Iul“n(s)d_xds.
Q 0 Q Q

0 0

Hence, we have
t t

;_n(t) ||u(t)||j+/n(s) [ Vu(s)| 2 ds + ; /[lulﬂIVulqn(s)dxds
Q

0 0
t t t

< ;/n’(s) ||u(s)||§ds+C/Q/|u|“77(s)dxds+K1O/Q/Iulz“’n(s)dxds.

0 0

(3.30)

By Lemma 3.1 and the estimate (3.13), we get

t t

/ 7'(s) Ju(s)|P ds < C / Su@], Ju@] ds< i, 0<t<T. (331

0 0
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Since p <q + 3, we have from Sobolev inequality that

t t

t Iz 1 B q
C!Q/Iu| n(s)dxds < 4/Q/Iu| |Vl n(s)dxds+C/n(s)ds. (3.32)

0 0

Similarly, we have from 2 + v <g + B that

t t t

2+v 1 B q
KI/Q/WI n(s)dxds < 4‘/Q/|u| [Vl n(s)dxds+C/n(s)ds. (3.33)

0 0 0

Therefore, it follows from (3.30)-(3.33) that
t
// [Vu™2p(s)dxds < Ct™, 0<t<T. (3.34)
0 Q

Next, let G(u) = [, g(s)ds,u € R, p(t) = [; n(s)ds, t € (0, 00). Furthermore, multiply-
ing the equation in (3.1) by p(£)u, yields

p(0) Ju (0] + miz fljlt/p(t)(lvul2 2 )" der (o) [ Glupdx
Q Q

/ m+2 d
< Zit)zf(lwlzw”) 2 dx+ dt/p(t)G(u)dx (3.35)
Q Q

o [ ot il vuta s [ ol lul 1VuPds.
Q Q

By the assumption p <¢q and the Cauchy inequality, we deduce

- 1 2 _
/ g |Vutdy < u(9)];+C / [P0 vudx (3.36)
Q Q

and

a— 1 2 a—
/Iul Uug| |VulPdx < A Juc(®)])5 +c/ [u2@=1|vy|?dx
¢ @ (3.37)

1
= ||ut(t)||§ +C/ Iulz(ﬁ_l)IVulzqu+Cf [u2(+=1 dx
Q Q
and

2+v
/ |G(u)| dx < le lul  dx < Ch**(1) (3.38)
Q Q

with 4(2) = [u(?)]|.
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Now, it follows from (H,) and (3.35)-(3.38) that
t t

) PO luolas e vl < ) [ 101V dscowi o
0 0

c/p(s)h2(ﬁ—1>(s)(1 + ||Vu(s)||$j§)ds+c/(p(s)hz(ﬂ—l)(s) +1(s)h>*V(s))ds

) (3.39)
< C(trf)\ + tr+272(ﬂ71)x + tr+272(;1.71))\ + tr+17(2+v))\)
t
/ P(IPED(s) [ Vu(s)| ™2 ds,
0
or
\ (1
1 2 plt m+2
) [pOluelas 2 vae
0 (3.40)

t

< Cot' ™ + Cy / (s)h2B=1)(s) Hw(s)”’"*2

m+2
0

where Cy = Co(T, |luoll;) and the fact 2 + & > 2(u - 1)\ has been used.
Since the function #2#V(¢) e L([0, T), the application of the Gronwall inequality to
(3.40) gives

t

/p(s) ||ut(s)||§ ds+ p() [Vul|"3 < Cot™, 0<t<T. (3.41)
0

Hence,
IVttllyy < Cot” /20 < ¢ < T (3.42)

and the Proof of Lemma 3.4 is completed.

Proof of Theorem 2.4 Noticing that the estimate constant C, in (3.12)-(3.13) and
(3.27)-(3.28) is independent of i, we have from the standard compact argument as in
[1,13,14] that there exists a subsequence (still denoted by u;) and a function
u e I5([0, T], Wi*(2)), (1 < s < m + 2) satisfying

u; — u weakly in L*([0, T], W ()),
u; —> u in L’(Qr) and a.e. in Qr,
il =1Vl — P vul? in LY(Qr),

il Vul? — [ul®~ ! Vul  in LY(Qr), (3.43)
ui — u in C([0,T]; L'(R)),
ou; ou
ar = ar weakly in L} (0, T; L?).
m m+ 2
. , ‘ .
SINCE 4 w) = —div((IVaf? + 1) 2 V) S PO imiaye T

see further that

Ai(u;) — x  weakly x in L2 (0, T; (Wy™?)%) (3.44)
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for some x € Li° (0, T], (Wé'”’*z)*). As the Proof of Theorem 1 in [9], we have y = A
() = -div(([Vul"Vu).

Then, the function u is a global weak solution of (1.1). Furthermore, it follows from
Lemma 3.4 that u(¢) satisfies the estimate (2.4)-(2.5). The Proof of Theorem 2.4 is now

completed.

4 L~ estimate for Vu(t)

In this section, we use an argument similar to that in [9,10,15] and give the Proof of
Theorem 2.5. Hence, we only consider the estimate of ||V, for the smooth solution
u(t) of (3.1). As above, let C, C; be the generic constants independent of k and i.
Denote

N
5 12 5 9%u
|D u| = E Wi, Uij = .
- 09X 0X;
1,j=1 ]

Multiplying (3.1) by -div(|Ve|*?Vu), k > m + 2 and integrating by parts, we have
1d k—2
R (ZGINE / Va2 des / Va9 (V) dx
Q Q

—(N— 1)fH(x)|Vu|k+mds

Q2

(4.1)
= /u|u|ﬁ_2|Vu|"div(|Vu|k_2Vu)dx—/u|Vu|p|u|“‘2div(|Vu|k_2Vu)dx
Q Q
+/g(u)div(|Vu|k*2Vu)dx =1+11+III.
Q
Since
k—2
div(|Vul*"2Vu) = |[Vul* "2 Au + ) [Vul*~*vuv(|Vul?), (4.2)
we have
‘div(qulk_2Vu)‘ < (k= 1)|Vul"2 | D?u| (4.3)
and
1 < (k- 1)[ |ulP~1 V|92 | D?u| dx
Q
k+m—2 k+2g—m—2
= (k- 1)/ Vul 2 |D%u||Vul 2 |ulP~! dx (4-4)
Q
1
= / |Vu|k+m—2|D2u|2dx+cok2/|Vu|k+24—m—2|u|2(ﬂ—1>dx.
Q Q

Similarly, we obtain the following estimates

1 _ 2 e _
1| < 4/|Vu|"‘+k 2D dx+c0k2/|w|k+2” 2 |2 dy (4.5)
Q Q
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and

I = /g(u)div(qulk_QVu)dx= —/g’(u)qulkdx
Q @ (4.6)
<K, / ly|" IVul*dx < ChY(¢) | Vu(t)|

Q

k
Kk’

where h(f) = |u(®)]l. < Ct™.
Moreover, we assume that 2qg < m + 2, 2p < m + 2, then (4.1) becomes

1d

1 2 k—2 2

k k+m—2 2 k+m—4 2

% d (||Vu||k)+2/|w| 2| D%y dx + A /qul”’” |V(IVul?)| dx
Q Q

—(N—=1) | H(x)|Vu/*"dS
!

(4.7)
< Col? / (17ul 22200 ¢ (Va2 2D ) e OB (1) | Va(o)
Q
= ol (0) (1 + | Vu(®)[}).
where 1 (t) = max {#2(* 1 (¢), 2By, h(t)}. Since

1
o, B <2+r2n<1+N>,v <m+2+z, we get h11(2) € LY([0.7)) for any 7' > 0.

If H(x) <0 on 0Q) and N > 1, then by an argument of elliptic eigenvalue problem in
[15], there exists A; > 0, such that

IVol3 — (N — l)/vzH(x)dS > M i, Yve W' (Q). (4.8)
Q2

Hence, by (4.7) and (4.8), we see that there exists C; and C, such that

y k+m|?
k k
C(Ive@l) <G vao] 2 | = e [vuol. (4.9)
1,2
Let k4 = m + 2, R >m + 1, k, = R"? (R-1-m) + m (R-1)}
On = RN(1 — kp_1k, ))(R(N — 1) +2)7L, n = 2, 3,.... Then, the application of Lemma
2.9 gives
26,
2 ko +m | 1
n+m
IVull, < Cln+ [ vull ||V 2 . (4.10)
1,2
Inserting this into (4.9)(k = k,,), we get
d ! ) (kp+m) (1—1/6,) (kn+m)/6
IVl ) + CC Yo [ vu(n) | D ([ wa(e) || (oo
dt ( kn kn—l ’ | kn (411)

< Gl ()(1 + | Vu()] ).

By (3.28), we take y; = max{l, Co}, z; = (1 + A)/(m + 2). As the Proof of Lemma 3.3,
we can show that there exist bounded sequences y, and z, such that
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IVu@], swmt™, 0<t<T, (4.12)

in which z, = 0 = (2 + 24 + N)(mN + 2m + 4)". Letting n — oo in (4.12), we have
the estimate (2.6). This completes the Proof of Theorem 2.5.

5 Asymptotic behavior of solution
In this section, we will prove that the problem (1.1) admits a global solution if the
initial data uy(x) is small under the assumptions of Theorems 2.7 and 2.8. Also, we
derive the asymptotic behavior of solution u(%).

Proof of Theorem 2.7 The existence of solution for (1.1) in small u, can be
obtained by a similar argument as the Proof of Theorem 2.4. So, it is sufficient to
derive the estimate (2.8).

Multiplying the equation in (2.7) by u# and integrating over (), we obtain

1 d + o
7 o WO+ G Va7 = [ e ivupas 6.0
Q

m+2
with C; = <m+2> .

4
Since p <m + 2 <p + @, it follows from Lemma 2.9 that

1-6
f || VulPdx < [Vu(@)]” lul® < Co IVull’,., lulls "~ V)2
Q

m+2 m+2
(5.2)
< Co [vu) 7w
with
o alme2) (1 ~ 1)(1 Lo )‘1,r= Nev e pra—m—2,
m+2—p r sJ\N r m+2 m+2—p
The assumption on @ shows that r < 2. Then, (5.1) can be rewritten as
T+ Va2~ Go [ 0 6.3
By the Sobolev embedding theorem,
[vu[2 = G w153 = G2 ] G4)
we obtain from (5.3) and (5.4) that 3d > 0, %o > 0, such that [lugll, <d and
¢'() + hop ™A (t) <0, t>0 (5.5)
with ¢(t) = ||u(t) |5 This implies that
lu@)], =c@+t)y7m, =0, (5.6)

where the constant C depends only ||zol|,. This completes the Proof of Theorem 2.7.
Proof of Theorem 2.8 Multiplying the equation in (2.9) by u# and integrating over (),
we obtain
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1d

5 ds ||u(t)||§+y/|u|ﬁ|w|‘idx5f|u|“|w|f’dx. (5.7)
Q Q

Since p <q, q + B <p + 0, it follows from the Holder inequality that
p
/IuI“IVul"dxg ”Vu“ﬂ/‘iH 110/
q
Q

2 (1=p/q) (5.8)

q

< Co a0 < ¢y [ wuta) jugy
q q

IA

) ”Wuﬂ/q”” ulja O=p/) ”Vuhﬂ/q’
q

with s = g, pt1 = p -, p3 = (1 - plg) and 7 = N(u- q)(q + B)(¢° + NB)™" < 2.
Then (5.7) becomes

d q s
w Ju(t) Hi . ”Vuuﬂ/q”q (Co — C1 |u(t) Hg ) <o. (5.9)

This implies that 3d, > 0, A; > 0, such that |[luo, <dy and

o' (1) + Mo T2y <0, >0 (5.10)
with ¢ (1) = |u(?)|| ; This implies that

lu)], = c +r)y~ Yt ¢ >o0. (5.11)

This is the estimate (2.10) and we finish the Proof of Theorem 2.8.
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