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Abstract

This article studies the partial vanishing viscosity limit of the 2D Boussinesq system in
a bounded domain with a slip boundary condition. The result is proved globally in
time by a logarithmic Sobolev inequality.
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1 Introduction
Let Ω ⊂ ℝ2 be a bounded, simply connected domain with smooth boundary ∂Ω, and n

is the unit outward normal vector to ∂Ω. We consider the Boussinesq system in Ω ×

(0, ∞):

∂tu + u · ∇u + ∇π − �u = θe2, (1:1)

div u = 0, (1:2)

∂tθ + u · ∇θ = ε�θ , (1:3)

u · n = 0, curlu = 0, θ = 0, on ∂� × (0,∞), (1:4)

(u, θ)(x, 0) = (u0, θ0)(x), x ∈ �, (1:5)

where u, π, and θ denote unknown velocity vector field, pressure scalar and tempera-

ture of the fluid. � > 0 is the heat conductivity coefficient and e2:= (0, 1)t. ω:= curlu:=

∂1u2 - ∂2u1 is the vorticity.

The aim of this article is to study the partial vanishing viscosity limit � ® 0. When

Ω:= ℝ2, the problem has been solved by Chae [1]. When θ = 0, the Boussinesq system

reduces to the well-known Navier-Stokes equations. The investigation of the inviscid

limit of solutions of the Navier-Stokes equations is a classical issue. We refer to the

articles [2-7] when Ω is a bounded domain. However, the methods in [1-6] could not

be used here directly. We will use a well-known logarithmic Sobolev inequality in [8,9]

to complete our proof. We will prove:
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Theorem 1.1. Let u0 Î H3, divu0 = 0 in Ω, u0·n = 0, curlu0 = 0 on ∂Ω and

θ0 ∈ H1
0 ∩ H2. Then there exists a positive constant C independent of � such that

‖uε‖L∞(0,T;H3)∩L2(0,T;H4) ≤ C, ‖θε‖L∞(0,T;H2) ≤ C,
‖∂tuε‖L2(0,T;L2) ≤ C, ‖∂tθε‖L2(0,T;L2) ≤ C (1:6)

for any T > 0, which implies

(uε, qε) → (u, θ) strongly in L2(0,T;H1) when ε → 0. (1:7)

Here (u, θ) is the unique solution of the problem (1.1)-(1.5) with � = 0.

2 Proof of Theorem 1.1
Since (1.7) follows easily from (1.6) by the Aubin-Lions compactness principle, we only

need to prove the a priori estimates (1.6). From now on we will drop the subscript e

and throughout this section C will be a constant independent of � > 0.

First, we recall the following two lemmas in [8-10].

Lemma 2.1. ([8,9]) There holds

‖∇u‖L∞(�) ≤ C(1 +
∥∥curlu∥∥L∞(�) log(e + ‖u‖H3(�)))

for any u Î H3(Ω) with divu = 0 in Ω and u · n = 0 on ∂Ω.

Lemma 2.2. ([10]) For any u Î Ws,p with divu = 0 in Ω and u · n = 0 on ∂Ω, there

holds

‖u‖Ws,p ≤ C
(‖u‖Lp + ∥∥curl u∥∥Ws−1,p

)

for any s > 1 and p Î (1, ∞).

By the maximum principle, it follows from (1.2), (1.3), and (1.4) that

‖θ‖L∞(0,T;L∞) ≤ ‖θ0‖L∞ ≤ C. (2:1)

Testing (1.3) by θ, using (1.2), (1.3), and (1.4), we see that

1
2
d
dt

∫
θ2dx + ε

∫
|∇θ |2dx = 0,

which gives
√

ε‖θ‖L2(0,T;H1) ≤ C. (2:2)

Testing (1.1) by u, using (1.2), (1.4), and (2.1), we find that

1
2
d
dt

∫
u2dx + C

∫
|∇u|2dx =

∫
θe2u ≤ ‖θ‖L2‖u‖L2 ≤ C‖u‖L2 ,

which gives

‖u‖L∞(0,T;L2) + ‖u‖L2(0,T;H1) ≤ C. (2:3)

Here we used the well-known inequality:

‖u‖H1 ≤ C
∥∥curl u∥∥L2 .

Applying curl to (1.1), using (1.2), we get

∂tω + u · ∇ω − �ω = curl(θe2). (2:4)
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Testing (2.4) by |ω|p-2ω (p > 2), using (1.2), (1.4), and (2.1), we obtain

1
p
d
dt

∫
|ω|pdx + 1

2

∫
|ω|p−2|∇ω|2dx + 4

p − 2
p2

∫ ∣∣∣∇|ω|p/2
∣∣∣2dx

=
∫

curl(θe2)|ω|p−2ωdx

≤ C‖θ‖L∞

∫ ∣∣∇ (|ω|p−2ω
)∣∣ dx

≤ 1
2

(
1
2

∫
|ω|p−2|∇ω|2dx + 4

p − 2
p2

∫ ∣∣∣∇|ω|p/2
∣∣∣2dx

)

+ C
∫

|ω|pdx + C,

which gives

‖u‖L∞(0,T;W1,p) ≤ C‖ω‖L∞(0,T;Lp) ≤ C. (2:5)

(2.4) can be rewritten as
⎧⎨
⎩

∂tω − �ω = div f := curl(θe2) − div(uω),
ω = 0 on ∂� × (0,∞)
ω(x, 0) = ω0(x) in �

with f1: = θ - u1ω, f2:= -u2ω.

Using (2.1), (2.5) and the L∞-estimate of the heat equation, we reach the key estimate

‖ω‖L∞(0,T;L∞) ≤ C
(
‖ω0‖L∞ +

∥∥f∥∥L∞(0,T;Lp) ≤ C
)
. (2:6)

Let τ be any unit tangential vector of ∂Ω, using (1.4), we infer that

u · ∇θ = ((u · τ )τ + (u · n)n) · ∇θ = (u · τ )τ · ∇θ = (u · τ )
∂θ

∂τ
= 0 (2:7)

on ∂Ω × (0, ∞).

It follows from (1.3), (1.4), and (2.7) that

�θ = 0 on ∂� × (0,∞). (2:8)

Applying Δ to (1.3), testing by Δθ, using (1.2), (1.4), and (2.8), we derive

1
2
d
dt

∫
|�θ |2dx + ε

∫
|∇�θ |2dx

= −
∫

(�(u · ∇θ) − u∇�θ)�θdx

= −
∫

(�u · ∇θ + 2
∑
i

∂iu · ∇∂iθ)�θdx

≤ C (‖�u‖L4‖∇θ‖L4 + ‖∇u‖L∞‖�θ‖L2) ‖�θ‖L2 .

(2:9)

Now using the Gagliardo-Nirenberg inequalities

‖∇θ‖2L4 ≤ C‖θ‖L∞‖�θ‖L2 ,
‖�u‖2L4 ≤ C‖∇u‖L∞‖u‖H3 ,

(2:10)
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we have

1
2
d
dt

∫
|�θ |2dx + ε

∫
|∇�θ |2dx

≤ C‖∇u‖L∞ ‖�θ‖2L2 + C ‖�θ‖2L2 + C‖∇u‖L∞ ‖u‖2H3

≤ C (1 + ‖∇u‖L∞)
(‖u‖2H3 + ‖�θ‖2L2

)
≤ C

(
1 + ‖ω‖L∞ log (e + ‖u‖H3)

) (
1 + ‖�ω‖2L2 + ‖�θ‖2L2

)
≤ C

(
1 + log (e + ‖�ω‖L2 + ‖�θ‖L2)

) (
1 + ‖�ω‖2L2 + ‖�θ‖2L2

)
.

(2:11)

Similarly to (2.7) and (2.8), if follows from (2.4) and (1.4) that

u · ∇ω = 0 on ∂� × (0,∞), (2:12)

�ω + curl(θe2) = 0 on ∂� × (0,∞). (2:13)

Applying Δ to (2.4), testing by Δω, using (1.2), (1.4), (2.13), (2.10), and Lemma 2.2,

we reach

1
2
d
dt

∫
|�ω|2dx+

∫
|∇�ω|2dx

= −
∫

(�(u · ∇ω) − u∇�ω)�ωdx −
∫

∇curl(θe2)·∇�ωdx

≤ C (‖�u‖L4‖∇ω‖L4 + ‖∇u‖L∞‖�ω‖L2) ‖�ω‖L2 + C‖�θ‖L2‖∇�ω‖L2
≤ C

(‖�u‖2L4 + ‖∇u‖L∞‖�ω‖L2
) ‖�ω‖L2 + C‖�θ‖L2‖∇�ω‖L2

≤ C‖∇u‖L∞‖u‖H3‖�ω‖L2 + C‖�θ‖L2‖∇�ω‖L2
≤ C‖∇u‖L∞ (1 + ‖�ω‖L2) ‖�ω‖L2 + C ‖�θ‖2L2 +

1
2

‖∇�ω‖2L2

which yields

d
dt

∫
|�ω|2dx+

∫
|∇�ω|2dx

≤ C‖∇u‖L∞ (1 + ‖�ω‖L2) ‖�ω‖L2 + C ‖�θ‖2L2
≤ C

(
1 + log (e + ‖�ω‖L2 + ‖�θ‖L2)

) (
1 + ‖�ω‖2L2 + ‖�θ‖2L2

)
.

(2:14)

Combining (2.11) and (2.14), using the Gronwall inequality, we conclude that

‖θ‖L∞(0,T;H2) +
√

ε‖θ‖L∞(0,T;H3) ≤ C, (2:15)

‖u‖L∞(0,T;H3) + ‖u‖L2(0,T;H4) ≤ C. (2:16)

It follows from (1.1), (1.3), (2.15), and (2.16) that

‖∂tu‖L2(0,T:L2) ≤ C, ‖∂tθ‖L2(0,T:L2) ≤ C.

This completes the proof.
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