Partial vanishing viscosity limit for the 2D Boussinesq system with a slip boundary condition

Liangbing Jin ${ }^{1}$, Jishan Fan², Gen Nakamura ${ }^{3}$ and Yong Zhou ${ }^{\text {* }}$

* Correspondence: yzhoumath@zjnu.edu.cn
${ }^{1}$ Department of Mathematics, Zhejiang Normal University, Jinhua 321004, P. R. China
Full list of author information is available at the end of the article

Abstract

This article studies the partial vanishing viscosity limit of the 2D Boussinesq system in a bounded domain with a slip boundary condition. The result is proved globally in time by a logarithmic Sobolev inequality. 2010 MSC: 35Q30; 76D03; 76D05; 76D07.

Keywords: Boussinesq system, inviscid limit, slip boundary condition

1 Introduction

Let $\Omega \subset \mathbb{R}^{2}$ be a bounded, simply connected domain with smooth boundary $\partial \Omega$, and n is the unit outward normal vector to $\partial \Omega$. We consider the Boussinesq system in $\Omega \times$ ($0, \infty$):

$$
\begin{align*}
& \partial_{t} u+u \cdot \nabla u+\nabla \pi-\Delta u=\theta e_{2}, \tag{1.1}\\
& \operatorname{div} u=0, \tag{1.2}\\
& \partial_{t} \theta+u \cdot \nabla \theta=\varepsilon \Delta \theta, \tag{1.3}\\
& u \cdot n=0, \quad \operatorname{cur} u=0, \quad \theta=0, \quad \text { on } \partial \Omega \times(0, \infty), \tag{1.4}\\
& (u, \theta)(x, 0)=\left(u_{0}, \theta_{0}\right)(x), \quad x \in \Omega, \tag{1.5}
\end{align*}
$$

where u, π, and θ denote unknown velocity vector field, pressure scalar and temperature of the fluid. $\epsilon>0$ is the heat conductivity coefficient and $e_{2}:=(0,1)^{t} . \omega:=$ curl $u:=$ $\partial_{1} u_{2}-\partial_{2} u_{1}$ is the vorticity.

The aim of this article is to study the partial vanishing viscosity limit $\epsilon \rightarrow 0$. When $\Omega:=\mathbb{R}^{2}$, the problem has been solved by Chae [1]. When $\theta=0$, the Boussinesq system reduces to the well-known Navier-Stokes equations. The investigation of the inviscid limit of solutions of the Navier-Stokes equations is a classical issue. We refer to the articles [2-7] when Ω is a bounded domain. However, the methods in [1-6] could not be used here directly. We will use a well-known logarithmic Sobolev inequality in $[8,9]$ to complete our proof. We will prove:

Theorem 1.1. Let $u_{0} \in H^{3}, \operatorname{div} u_{0}=0$ in $\Omega, u_{0} \cdot n=0, \operatorname{curl} u_{0}=0$ on $\partial \Omega$ and $\theta_{0} \in H_{0}^{1} \cap H^{2}$. Then there exists a positive constant C independent of ϵ such that

$$
\begin{align*}
& \left\|u_{\varepsilon}\right\|_{L^{\infty}\left(0, T ; H^{3}\right) \cap L^{2}\left(0, T ; H^{4}\right)} \leq C,\left\|\theta_{\varepsilon}\right\|_{L^{\infty}\left(0, T ; H^{2}\right)} \leq C, \\
& \left\|\partial_{t} u_{\varepsilon}\right\|_{L^{2}\left(0, T ; L^{2}\right)} \leq C, \tag{1.6}
\end{align*}\left\|\partial_{t} \theta_{\varepsilon}\right\|_{L^{2}\left(0, T ; L^{2}\right)} \leq C,
$$

for any $T>0$, which implies

$$
\begin{equation*}
\left(u_{\varepsilon}, q_{\varepsilon}\right) \rightarrow(u, \theta) \text { strongly in } L^{2}\left(0, T ; H^{1}\right) \text { when } \varepsilon \rightarrow 0 \tag{1.7}
\end{equation*}
$$

Here (u, θ) is the unique solution of the problem (1.1)-(1.5) with $\epsilon=0$.

2 Proof of Theorem 1.1

Since (1.7) follows easily from (1.6) by the Aubin-Lions compactness principle, we only need to prove the a priori estimates (1.6). From now on we will drop the subscript e and throughout this section C will be a constant independent of $\epsilon>0$.

First, we recall the following two lemmas in [8-10].
Lemma 2.1. ([8,9]) There holds

$$
\|\nabla u\|_{L^{\infty}(\Omega)} \leq C\left(1+\|\operatorname{curl} u\|_{L^{\infty}(\Omega)} \log \left(e+\|u\|_{H^{3}(\Omega)}\right)\right)
$$

for any $u \in H^{3}(\Omega)$ with $\operatorname{div} u=0$ in Ω and $u \cdot n=0$ on $\partial \Omega$.
Lemma 2.2. ([10]) For any $u \in W^{s, p}$ with $\operatorname{div} u=0$ in Ω and $u \cdot n=0$ on $\partial \Omega$, there holds

$$
\|u\|_{W^{s, p}} \leq C\left(\|u\|_{L^{p}}+\|\operatorname{curl} u\|_{W^{s-1, p}}\right)
$$

for any $s>1$ and $p \in(1, \infty)$.
By the maximum principle, it follows from (1.2), (1.3), and (1.4) that

$$
\begin{equation*}
\|\theta\|_{L^{\infty}\left(0, T ; L^{\infty}\right)} \leq\left\|\theta_{0}\right\|_{L^{\infty}} \leq C . \tag{2.1}
\end{equation*}
$$

Testing (1.3) by θ, using (1.2), (1.3), and (1.4), we see that

$$
\frac{1}{2} \frac{d}{d t} \int \theta^{2} d x+\varepsilon \int|\nabla \theta|^{2} d x=0
$$

which gives

$$
\begin{equation*}
\sqrt{\varepsilon}\|\theta\|_{L^{2}\left(0, T ; H^{1}\right)} \leq C \tag{2.2}
\end{equation*}
$$

Testing (1.1) by u, using (1.2), (1.4), and (2.1), we find that

$$
\frac{1}{2} \frac{d}{d t} \int u^{2} d x+C \int|\nabla u|^{2} d x=\int \theta e_{2} u \leq\|\theta\|_{L^{2}}\|u\|_{L^{2}} \leq C\|u\|_{L^{2}}
$$

which gives

$$
\begin{equation*}
\|u\|_{L^{\infty}\left(0, T ; L^{2}\right)}+\|u\|_{L^{2}\left(0, T ; H^{1}\right)} \leq C . \tag{2.3}
\end{equation*}
$$

Here we used the well-known inequality:

$$
\|u\|_{H^{1}} \leq C\|\operatorname{curl} u\|_{L^{2}} .
$$

Applying curl to (1.1), using (1.2), we get

$$
\begin{equation*}
\partial_{t} \omega+u \cdot \nabla \omega-\Delta \omega=\operatorname{curl}\left(\theta e_{2}\right) \tag{2.4}
\end{equation*}
$$

Testing (2.4) by $|\omega|^{p-2} \omega(p>2)$, using (1.2), (1.4), and (2.1), we obtain

$$
\begin{aligned}
& \frac{1}{p} \frac{d}{d t} \int|\omega|^{p} d x+\frac{1}{2} \int|\omega|^{p-2}|\nabla \omega|^{2} d x+\left.\left.4 \frac{p-2}{p^{2}} \int|\nabla| \omega\right|^{p / 2}\right|^{2} d x \\
& \quad=\int \operatorname{curl}\left(\theta e_{2}\right)|\omega|^{p-2} \omega d x \\
& \quad \leq C\|\theta\|_{L^{\infty}} \int\left|\nabla\left(|\omega|^{p-2} \omega\right)\right| d x \\
& \quad \leq \frac{1}{2}\left(\frac{1}{2} \int|\omega|^{p-2}|\nabla \omega|^{2} d x+\left.\left.4 \frac{p-2}{p^{2}} \int|\nabla| \omega\right|^{p / 2}\right|^{2} d x\right) \\
& \quad+C \int|\omega|^{p} d x+C
\end{aligned}
$$

which gives

$$
\begin{equation*}
\|u\|_{L^{\infty}\left(0, T ; W^{1}, p\right)} \leq C\|\omega\|_{L^{\infty}\left(0, T ; L^{p}\right)} \leq C . \tag{2.5}
\end{equation*}
$$

(2.4) can be rewritten as

$$
\left\{\begin{array}{l}
\partial_{t} \omega-\Delta \omega=\operatorname{div} f:=\operatorname{curl}\left(\theta e_{2}\right)-\operatorname{div}(u \omega) \\
\omega=0 \text { on } \partial \Omega \times(0, \infty) \\
\omega(x, 0)=\omega_{0}(x) \text { in } \Omega
\end{array}\right.
$$

with $f_{1}:=\theta-u_{1} \omega, f_{2}:=-u_{2} \omega$.
Using (2.1), (2.5) and the L^{∞}-estimate of the heat equation, we reach the key estimate

$$
\begin{equation*}
\|\omega\|_{L^{\infty}\left(0, T ; L^{\infty}\right)} \leq C\left(\left\|\omega_{0}\right\|_{L^{\infty}}+\|f\|_{L^{\infty}\left(0, T ; L^{p}\right)} \leq C\right) . \tag{2.6}
\end{equation*}
$$

Let τ be any unit tangential vector of $\partial \Omega$, using (1.4), we infer that

$$
\begin{equation*}
u \cdot \nabla \theta=((u \cdot \tau) \tau+(u \cdot n) n) \cdot \nabla \theta=(u \cdot \tau) \tau \cdot \nabla \theta=(u \cdot \tau) \frac{\partial \theta}{\partial \tau}=0 \tag{2.7}
\end{equation*}
$$

on $\partial \Omega \times(0, \infty)$.
It follows from (1.3), (1.4), and (2.7) that

$$
\begin{equation*}
\Delta \theta=0 \quad \text { on } \partial \Omega \times(0, \infty) \tag{2.8}
\end{equation*}
$$

Applying Δ to (1.3), testing by $\Delta \theta$, using (1.2), (1.4), and (2.8), we derive

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t} \int|\Delta \theta|^{2} d x+\varepsilon \int|\nabla \Delta \theta|^{2} d x \\
&=-\int(\Delta(u \cdot \nabla \theta)-u \nabla \Delta \theta) \Delta \theta d x \tag{2.9}\\
& \quad=-\int\left(\Delta u \cdot \nabla \theta+2 \sum_{i} \partial_{i} u \cdot \nabla \partial_{i} \theta\right) \Delta \theta d x \\
& \quad \leq C\left(\|\Delta u\|_{L^{4}}\|\nabla \theta\|_{L^{4}}+\|\nabla u\|_{L^{\infty}}\|\Delta \theta\|_{L^{2}}\right)\|\Delta \theta\|_{L^{2}} .
\end{align*}
$$

Now using the Gagliardo-Nirenberg inequalities

$$
\begin{align*}
& \|\nabla \theta\|_{L^{4}}^{2} \leq C\|\theta\|_{L^{\infty}}\|\Delta \theta\|_{L^{2}}, \tag{2.10}\\
& \|\Delta u\|_{L^{4}}^{2} \leq C\|\nabla u\|_{L^{\infty}}\|u\|_{H^{3}},
\end{align*}
$$

we have

$$
\begin{align*}
\frac{1}{2} & \frac{d}{d t} \int|\Delta \theta|^{2} d x+\varepsilon \int|\nabla \Delta \theta|^{2} d x \\
& \leq C\|\nabla u\|_{L^{\infty}}\|\Delta \theta\|_{L^{2}}^{2}+C\|\Delta \theta\|_{L^{2}}^{2}+C\|\nabla u\|_{L^{\infty}}\|u\|_{H^{3}}^{2} \\
& \leq C\left(1+\|\nabla u\|_{L^{\infty}}\right)\left(\|u\|_{H^{3}}^{2}+\|\Delta \theta\|_{L^{2}}^{2}\right) \tag{2.11}\\
& \leq C\left(1+\|\omega\|_{L^{\infty}} \log \left(e+\|u\|_{H^{3}}\right)\right)\left(1+\|\Delta \omega\|_{L^{2}}^{2}+\|\Delta \theta\|_{L^{2}}^{2}\right) \\
& \leq C\left(1+\log \left(e+\|\Delta \omega\|_{L^{2}}+\|\Delta \theta\|_{L^{2}}\right)\right)\left(1+\|\Delta \omega\|_{L^{2}}^{2}+\|\Delta \theta\|_{L^{2}}^{2}\right) .
\end{align*}
$$

Similarly to (2.7) and (2.8), if follows from (2.4) and (1.4) that

$$
\begin{align*}
& u \cdot \nabla \omega=0 \quad \text { on } \partial \Omega \times(0, \infty) \tag{2.12}\\
& \Delta \omega+\operatorname{curl}\left(\theta e_{2}\right)=0 \quad \text { on } \partial \Omega \times(0, \infty) . \tag{2.13}
\end{align*}
$$

Applying Δ to (2.4), testing by $\Delta \omega$, using (1.2), (1.4), (2.13), (2.10), and Lemma 2.2, we reach

$$
\begin{aligned}
\frac{1}{2} & \frac{d}{d t} \int|\Delta \omega|^{2} d x+\int|\nabla \Delta \omega|^{2} d x \\
& =-\int(\Delta(u \cdot \nabla \omega)-u \nabla \Delta \omega) \Delta \omega d x-\int \nabla \operatorname{curl}\left(\theta e_{2}\right) \cdot \nabla \Delta \omega d x \\
& \leq C\left(\|\Delta u\|_{L^{4}}\|\nabla \omega\|_{L^{4}}+\|\nabla u\|_{L^{\infty}}\|\Delta \omega\|_{L^{2}}\right)\|\Delta \omega\|_{L^{2}}+C\|\Delta \theta\|_{L^{2}}\|\nabla \Delta \omega\|_{L^{2}} \\
& \leq C\left(\|\Delta u\|_{L^{4}}^{2}+\|\nabla u\|_{L^{\infty}}\|\Delta \omega\|_{L^{2}}\right)\|\Delta \omega\|_{L^{2}}+C\|\Delta \theta\|_{L^{2}}\|\nabla \Delta \omega\|_{L^{2}} \\
& \leq C\|\nabla u\|_{L^{\infty}}\|u\|_{H^{3}}\|\Delta \omega\|_{L^{2}}+C\|\Delta \theta\|_{L^{2}}\|\nabla \Delta \omega\|_{L^{2}} \\
& \leq C\|\nabla u\|_{L^{\infty}}\left(1+\|\Delta \omega\|_{L^{2}}\right)\|\Delta \omega\|_{L^{2}}+C\|\Delta \theta\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla \Delta \omega\|_{L^{2}}^{2}
\end{aligned}
$$

which yields

$$
\begin{align*}
& \frac{d}{d t} \int|\Delta \omega|^{2} d x+\int|\nabla \Delta \omega|^{2} d x \\
& \quad \leq C\|\nabla u\|_{L^{\infty}}\left(1+\|\Delta \omega\|_{L^{2}}\right)\|\Delta \omega\|_{L^{2}}+C\|\Delta \theta\|_{L^{2}}^{2} \tag{2.14}\\
& \quad \leq C\left(1+\log \left(e+\|\Delta \omega\|_{L^{2}}+\|\Delta \theta\|_{L^{2}}\right)\right)\left(1+\|\Delta \omega\|_{L^{2}}^{2}+\|\Delta \theta\|_{L^{2}}^{2}\right) .
\end{align*}
$$

Combining (2.11) and (2.14), using the Gronwall inequality, we conclude that

$$
\begin{align*}
& \|\theta\|_{L^{\infty}\left(0, T ; H^{2}\right)}+\sqrt{\varepsilon}\|\theta\|_{L^{\infty}\left(0, T ; H^{3}\right)} \leq C, \tag{2.15}\\
& \|u\|_{L^{\infty}\left(0, T ; H^{3}\right)}+\|u\|_{L^{2}\left(0, T ; H^{4}\right)} \leq C . \tag{2.16}
\end{align*}
$$

It follows from (1.1), (1.3), (2.15), and (2.16) that

$$
\left\|\partial_{t} u\right\|_{L^{2}\left(0, T: L^{2}\right)} \leq C, \quad\left\|\partial_{t} \theta\right\|_{L^{2}\left(0, T: L^{2}\right)} \leq C .
$$

This completes the proof.

Acknowledgements

This study was partially supported by the Zhejiang Innovation Project (Grant No. T200905), the ZJNSF (Grant No. R6090109), and the NSFC (Grant No. 11171154)

Author details

${ }^{1}$ Department of Mathematics, Zhejiang Normal University, Jinhua 321004, P. R. China ${ }^{2}$ Department of Applied Mathematics, Nanjing Forestry University, Nanjing 210037, P.R. China ${ }^{3}$ Department of Mathematics, Hokkaido University Sapporo 060-0810, Japan

Authors' contributions

All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.
Received: 12 November 2011 Accepted: 15 February 2012 Published: 15 February 2012

References

1. Chae, D: Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv Math. 203, 497-513 (2006). doi:10.1016/j.aim.2005.05.001
2. Beirão da Veiga, H, Crispo, F: Sharp inviscid limit results under Navier type boundary conditions. An Lp Theory, J MathFluid Mech. 12, 397-411 (2010)
3. Beirão da Veiga, H, Crispo, F: Concerning the $W^{k, p}$-inviscid limit for 3-D flows under a slip boundary condition. J Math Fluid Mech. 13, 117-135 (2011). doi:10.1007/s00021-009-0012-3
4. Clopeau, T, Mikelić, A, Robert, R: On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions. Nonlin-earity. 11, 1625-1636 (1998). doi:10.1088/0951-7715/11/6/011
5. Iftimie, D, Planas, G: Inviscid limits for the Navier-Stokes equations with Navier friction boundary conditions. Nonlinearity. 19, 899-918 (2006). doi:10.1088/0951-7715/19/4/007
6. Xiao, YL, Xin, ZP: On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition. Commun Pure Appl Math. 60, 1027-1055 (2007). doi:10.1002/cpa. 20187
7. Crispo, F: On the zero-viscosity limit for 3D Navier-Stokes equations under slip boundary conditions. Riv Math Univ Parma (N.S.). 1, 205-217 (2010)
8. Ferrari, AB: On the blow-up of solutions of 3-D Euler equations in a bounded domain. Commun Math Phys. 155, 277-294 (1993). doi:10.1007/BF02097394
9. Shirota, T, Yanagisawa, T: A continuation principle for the 3D Euler equations for incompressible fluids in a bounded domain. Proc Japan Acad Ser. A69, 77-82 (1993)
10. Bourguignon, JP, Brezis, H: Remarks on the Euler equation. J Funct Anal. 15, 341-363 (1974). doi:10.1016/0022-1236(74) 90027-5
[^0]
Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

[^0]: doi:10.1186/1687-2770-2012-20
 Cite this article as: Jin et al.: Partial vanishing viscosity limit for the 2D Boussinesq system with a slip boundary condition. Boundary Value Problems 2012 2012:20.

