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Abstract

In this article, we discuss the existence and multiplicity of positive solutions for the
sixth-order boundary value problem with three variable parameters as follows:{

u(6) + A(t)u(4) + B(t)u(2) + C(t)u + f (x, u) = 0,
u(0) = u(1) = u′′(0) = u′′(1) = u(4)(0) = u(4)(1) = 0,

where A(t), B(t), C(t) Î C[0,1], f(t, u) : [0,1] × [0, ∞) ® [0. ∞) is continuous. The proof
of our main result is based upon spectral theory of operators and fixed point
theorem in cone.

Keywords: sixth-order differential equation, positive solution, fixed point theorem,
spectral theory of operators

1 Introduction
In this article, we study the existence and multiplicity of positive solution for the fol-

lowing nonlinear sixth-order boundary value problem (BVP for short) with three vari-

able parameters{−u(6) − C(t)u(4) + B(t)u′′ − A(t)u = f (t, u), t ∈ (0, 1),
u(0) = u(1) = u′′(0) = u′′(1) = u(4)(0) = u(4)(1) = 0,

(1:1)

where A(t), B(t), C(t) Î C[0,1], f(t, u) : [0,1] × [0, ∞) ® [0. ∞) is continuous.

In recent years, BVPs for sixth-order ordinary differential equations have been stu-

died extensively, see [1-7] and the references therein. For example, Tersian and Cha-

parova [1] have studied the existence of positive solutions for the following systems

(1.2): {
u(6) + Au(4) + Bu′′ + Cu − f (t, u) = 0. 0 < x < L,
u(0) = u(L) = u′′(0) = u′′(L) = u(4)(0) = u(4)(L) = 0,

(1:2)

where A, B, and C are some given real constants and f(x, u) is a continuous function

on R2, is motivated by the study for stationary solutions of the sixth-order parabolic

differential equations
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∂u
∂t

=
∂6u
∂x6

+ A
∂4u
∂x4

+ B
∂2u
∂x2

+ f (x, u).

This equation arose in the formation of the spatial periodic patterns in bistable sys-

tems and is also a model for describing the behaviour of phase fronts in materials that

are undergoing a transition between the liquid and solid state. When f(x, u) = u - u3, it

was studied by Gardner and Jones [2] as well as by Caginalp and Fife [3]. In [1], exis-

tence of nontrivial solutions for (1.2) is proved using a minimization theorem and a

multiplicity result using Clarks theorem when C = 1 and f(x, u) = u3. The authors have

studied also the homoclinic solutions for (1.2) when C = -1 and f(x, u) = -a(x)u|u|s,

where a(x) is a positive periodic function and s is a positive constant by the moun-

tain-pass theorem of Brezis-Nirenberg and concentration-compactness arguments. In

[4], by variational tools, including two Brezis-Nirenbergs linking theorems, Gyulov et

al. have studied the existence and multiplicity of nontrivial solutions of BVP (1.2).

Recently, in [5], the existence and multiplicity of positive solutions of sixth-order

BVP with three parameters{−u(6) − γ u(4) + βu′′ − αu = f (t, u), t ∈ [0, 1],
u(i)(0) = u(i)(1) = 0, i = 0, 1, 2, 3, 4, 5

(1:3)

has been studied under the hypothesis of

(A1) f : [0,1] × [0, ∞) ® [0. ∞) is continuous.

(A2) a, b, g Î R and under the condition of satisfying

α

π6
+

β

π4
+

γ

π2
< 1,

3π4 − 2γπ2 − β > 0, γ < 3π2,

18αβγ − β2γ 2 + 4αγ 3 + 27α2 − 4β3 ≤ 0,

the existence and multiplicity for positive solution of BVP (1.3) are established by

using fixed point index theory. In this article, we consider more general BVP (1.1),

based upon spectral theory of operators and fixed point theorem in cone, we will

establish the existence and multiplicity positive solution of BVP (1.1) and extend the

result of [5] under appropriate conditions. Our ideas mainly come from [5,8-10].

We list the following conditions for convenience:

(H1) f : [0,1] × [0, +∞) ® [0. +∞) is continuous.

(H2) A(t), B(t), C(t) Î C[0,1], a = min0≤t≤1 A(t), b = min0≤t≤1 B(t), g = min0≤t≤1 C(t),

and satisfies

α

π6
+

β

π4
+

γ

π2
< 1,

3π4 − 2γπ2 − β > 0, γ < 3π2,

18αβγ − β2γ 2 + 4αγ 3 + 27α2 − 4β3 ≤ 0.

Let Y = C[0,1], Y+ = {u Î Y : u(t) ≥ 0, t Î [0,1]}. It is well known that Y is a Banach

space equipped with the norm ||u||0 = sup0≤t≤1 |u(t)|, u Î Y. Set X = { u Î C4[0,1] : u

(0) = u(1) = u’’(0) = u’’(1) = 0}, then X also is a Banach space equipped with the norm

||u||X = max {||u(t)||0, ||u“(t)||0, ||u
(4)(t)||0}. If u Î C4[0,1] ∩ C6(0,1) fulfils BVP (1.1),
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then we call u is a solution of BVP (1.1). If u is a solution of BVP (1.1), and u(t) > 0, t

Î (0, 1), then we say u is a positive solution of BVP (1.1).

2 Preliminaries
In this section, we will make some preliminaries which are needed to show our main

results.

Lemma 2.1. Let u Î X, then ||u||0 ≤ ||u“||0 ≤ ||u(4)||0 ≤ ||u||X.

Proof. The proof is similar to the Lemma 1 in [8], so we omit it. □
Lemma 2.2. [5] Let l1, l2, and l3 be the roots of the polynomial P (l) = l3 + gl2 -

bl + a. Suppose that condition (H2) holds, then l1, l2, and l3 are real and greater

than -π2.

Note : Based on Lemma 2.2, it is easy to learn that when the three parameters satisfy

the condition of (H2), they satisfy the condition of non-resonance.

Let Gi(t, s)(i = 1, 2, 3) be the Green’s function of the linear BVP

-u“(t) + liu(t) = 0, u(0) = u(1) = 0,

Lemma 2.3. [10]Gi(t, s)(i = 1, 2, 3) has the following properties

(c1) Gi(t, s) > 0, ∀t, s Î (0, 1).

(c2) Gi(t, s) <CiGi(s, s), ∀t, s Î [0,1], in which Ci > 0 is constant.

(c3) Gi(t, s) ≥ δiGi(t, t)Gi(s, s), ∀t, s Î [0,1], in which δi > 0 is constant.

We set

Mi = max
0≤t≤1

Gi(s, s), mi = min
1
4≤t≤ 3

4

Gi(s, s), i = 1, 2, 3.
(2:1)

Cij =

1∫
0

Gi(δ, δ)Gj(δ, δ)dδ, cij =

3
4∫
1
4

Gi(δ, δ)Gj(δ, δ)dδ, i, j = 1, 2, 3. (2:2)

Di = max
0≤t≤1

1∫
0

Gi(t, s)ds, di = max
1
4

≤t≤
3
4

3
4∫
1
4

Gi(t, s)ds i = 1, 2, 3, (2:3)

then starting from Lemma 2.3 we know Mi, mi, Cij > 0.

For any h Î Y, take into consideration of linear BVP:{−u(6) − γ u(4) + βu′′ − αu = h(t), t ∈ [0, 1],
u(0) = u(1) = u′′(0) = u′′(1) = u(4)(0) = u(4)(1) = 0,

(2:4)

where a, b, g satisfy assumption (H2). Since

−u(6) − γ u(4) + βu′′ − αu =
(

− d2

dt2
+ λ1

) (
− d2

dt2
+ λ2

) (
− d2

dt2
+ λ3

)
u, (2:5)

then for any h Î Y, the LBVP(2.4) has a unique solution u, which we denoted by Ah

= u. The operator A can be expressed by
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u(t) = (Ah)(t) :=

1∫
0

1∫
0

1∫
0

G1(t, δ)G2(δ, τ )G3(τ , s)h(t)dsdτdδ. (2:6)

Lemma 2.4. The linear operator A : Y ® X is completely continuous and ||A|| ≤ ϖ,

where ϖ = |l2+l3|(C1C2C3M1M2M3|l3|+C1C2M1M2)+| l2l3|(C1C2C3M1M2M3+C1M1).

Proof. It is easy to show that the operator A : Y ® X is linear operator. ∀h Î Y, u =

Ah Î X, u(0) = u(1) = u“(0) = u“(1) = u(4)(0) = u(4)(1) = 0. Let

v =
(
− d2

dt2 + λ2

) (
− d2

dt2 + λ3

)
u, that is

v =
(

− d2

dt2
+ λ2

) (
− d2

dt2
+ λ3

)
u = u(4) − (λ2 + λ3) u′′ + λ2λ3u, (2:7)

by (2.5) and (2.7), we have{−v′′ + λ1v = h(t), t ∈ (0, 1),
v(0) = v(1) = 0,

and v(t) =
∫ 1
0 G1(t, s)h(s)ds, t ∈ [0, 1], so

u(4) − (λ2 + λ3) u′′ + λ2λ3u =

1∫
0

G1(t, s)h(s)ds, t ∈ [0, 1]. (2:8)

By (2.6), for any t Î [0,1], we have

|u(t)| ≤
1∫

0

1∫
0

1∫
0

G1(t, δ)G2(δ, τ )G3(τ , s)|h(t)|dsdτdδ ≤ C1C2C3M1M2M3||h||0. (2:9)

Again, let ω = -u“ + l3u, then ω(0) = ω(1) = ω“(0) = ω“(1) = 0, by (2,5), we have{
ω(4) − (λ1 + λ2)ω′′ + λ1λ2ω = h(t), t ∈ (0, 1),
ω(0) = ω(1) = ω′′(0) = ω′′(1) = 0.

(2:10)

Then ω(t) =
∫ 1
0

∫ 1
0 G1(t, τ )G2(τ , s)h(s)dsdτ , t ∈ [0, 1], that is

−u′′ + λ3u =

1∫
0

1∫
0

G1(t, τ )G2(τ , s)h(s)dsdτ , t ∈ [0, 1]. (2:11)

So

|u′′| ≤ C1C2M1M2(1 + |λ3|C3M3)||h||0, t ∈ [0, 1]. (2:12)

Based on (2.8), (2.9), and (2.12), we have

|u(4)(t)| ≤ |λ2 + λ3||u′′(t)| + |λ2λ3||u(t)| +
1∫

0

G1(t, s)|h(s)|ds

≤ |λ2 + λ3|(C1C2C3M1M2M3|λ3| + C1C2M1M2)||h||0
+ |λ2λ3|(C1C2C3M1M2M3||h||0 + C1M1)||h||0

≤ � ||h||0, t ∈ [0, 1],

(2:13)
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where

� = |λ2 + λ3|(C1C2C3M1M2M3|λ3| + C1C2M1M2)

+ |λ2λ3|(C1C2C3M1M2M3 + C1M1).
(2:14)

So, ||u(4)(t)|| ≤ ϖ||h||0, by Lemma2.1, ||u||X ≤ ϖ||h||0, then

||Ah||X ≤ � ||h||0, (2:15)

so A is continuous, and ||A|| ≤ ϖ.

Next, we will show that A is compact with respect to the norm ||·||X on X.

Suppose {hn}(n = 1, 2, . . .) an arbitrary bounded sequence in Y, then there exists K0

>0 such that ||hn||0 ≤ K0, n = 1, 2, . . . . Let un = Ahn, 1, 2, ...By (2.8), ∀t1, t2 Î [0, 1],

t1 < t2, we have
∣∣∣u(4)n (t2) − u(4)n (t1)

∣∣∣
≤ |λ2 + λ3||u′′

n(t2) − u′′
n(t1)| + |λ2λ3||un(t2) − un(t1)| +

1∫
0

|G1(t2, s) − G1(t1, s)||hn(s)|ds.

≤ |λ2 + λ3|
⎛
⎝|λ3||un(t2) − un(t1)| +

1∫
0

1∫
0

|G1(t2, τ ) − G1(t1, τ )||G2(τ , s)||hn(s)|dsdτ
⎞
⎠

+|λ2λ3||un(t2) − un(t1)| +
1∫

0

|G1(t2, s) − G1(t1, s)||hn(s)|ds.

≤ (λ2
3 + 2|λ2λ3|)

1∫
0

1∫
0

1∫
0

|G1(t2, δ) − G1(t1, δ)||G2(δ, τ )||G3(τ , s)||hn(s)|dsdτdδ.

+|λ2 + λ3|
1∫

0

1∫
0

|G1(t2, τ ) − G1(t1, τ )||G2(τ , s)||hn(s)|dsdτ

+

1∫
0

|G1(t2, s) − G1(t1, s)||hn(s)|ds.

≤
⎛
⎝(λ2

3 + 2|λ2λ3|)
1∫

0

1∫
0

1∫
0

|G1(t2, δ) − G1(t1, δ)|G2(δ, τ )G3(τ , s)dsdτdδ.

+|λ2 + λ3|
1∫

0

1∫
0

|G1(t2, τ ) − G1(t1, τ )G2(τ , s)dsdτ +

1∫
0

|G1(t2, s) − G1(t1, s)|ds
⎞
⎠K0.

Because Gi(t, s)(i = 1, 2, 3) is uniform continuity on [0,1] × [0,1], based on the above

demonstration, it is easy to proof that
{
u(4)n

}∞
n=1

is equicontinuous on [0,1]. From

(2.15), we know ||u||0, ||u“||0, ||u
(4)||0 ≤ ||u||X ≤ ϖ||hn||0 ≤ ϖK0, so

{
un(t)

}
, {u′′

n(t)}
and

{
u(4)n (t)

}
are relatively compact in R. Based on Lemma 1.2.7 in [11], we know

{un}∞n=1 is the relatively compact in X, so A is compact operator. □
The main tools of this article are the following well-known fixed point index

theorems.

Let E be a Banach Space and K ⊂ E be a closed convex cone in E. Assume that Ω is

a bounded open subset of E with boundary ∂Ω, and K ∩ Ω ≠ ∅. Let A : K ∩ �̄ → K
be a completely continuous mapping. If Au ≠u for every u Î K ∩ ∂Ω, then the fixed
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point index i(A, K ∩ Ω, K) is well defined. We have that if i(A, K ∩ Ω, K) ≠0, then A

has a fixed point in K ∩ Ω.

Let Kr = {u Î K |||u|| <r} and ∂Kr = {u Î K |||u|| <r} for every r >0.

Lemma 2.5. [12] Let A : K ® K be a completely continuous mapping. If μAu ≠u for

every u Î ∂Kr and 0 < μ ≤ 1, then i(A, Kr, K) = 1.

Lemma 2.6. [12] Let A : K ® K be a completely continuous mapping. Suppose that

the following two conditions are satisfied:

(i) infu∈∂Kr ||Au|| > 0,

(ii) μAu ≠u for every u Î ∂Kr and μ ≥ 1,

then i(A, Kr, K) = 0.

Lemma 2.7. [12] Let X be a Banach space, and let K ⊆ X be a cone in X. For p >0,

define Kp = {u ∈ K| ||u|| < p} . Assume that A : Kp ® K is a completely continuous

mapping such that Au ≠u for every u Î ∂Kp = {u Î K|||u|| = p}.

(i) If ||u|| ≤ ||Au||, for every u Î ∂Kp, then i(A, Kp, K) = 0.

(ii) If ||u|| ≥ ||Au||, for every u Î ∂Kp, then i(A, Kp, K) = 1.

3 Main results
We bring in following notations in this section:

f
0
= lim

u→0+
inf min

0≤t≤1
(f (t, u)/u), f̄∞ = lim

u→+∞ sup max
0≤t≤1

(f (t, u)/u),

f̄0 = lim
u→0+

sup max
0≤t≤1

(f (t, u)/u), f∞ = lim
u→+∞ inf min

0≤t≤1
(f (t, u)/u).

a(t) = A(t) − α, b(t) = B(t) − β , c(t) = C(t) − γ ,

 = π6 − γπ4 − βπ2 − α, K = max
0≤t≤1

[a(t) + b(t) + c(t)],

Suppose that:

(H3) L = ϖK <1, where ϖ is defined as in (2.14).

Theorem 3.1. Assume that (H1)-(H3) hold, and

b(t) ≥ (λ2 + λ3)c(t), λ3b(t) − a(t) ≤ λ2
3c(t), then in each of the following cases:

(i) f
0

> , f̄∞ < (1 − L), (ii) f̄0 < (1 − L), f∞ > , the BVP (1.1) has at least

one positive solution.

Proof. ∀h Î Y, consider the LBVP{−u(6) − C(t)u(4) + B(t)u′′ − A(t)u = h(t),
u(0) = u(1) = u′′(0) = u′′(1) = u(4)(0) = u(4)(1) = 0,

0 < t < 1 (3:1)

It is easy to prove (3.1) is equivalent to the following BVP{−u(6) − γ u(4) + βu′′ − α = Gu + h(t),
u(0) = u(1) = u′′(0) = u′′(1) = u(4)(0) = u(4)(1) = 0,

0 < t < 1 (3:2)

where Gv := (C(t) - g)v(4) - (B(t)- b)v“ + (A(t) - a)v, ∀v Î X. Obviously, the operator

G : X ® Y is linear, and ∀v Î X, t Î [0,1], we have |Gv(t)| ≤ K ||v||X. Hence ||Gv||0 ≤

K ||v||X, and so ||G|| ≤ K. On the other hand, u Î C4[0,1]⋂C6(0,1), t Î [0,1] is a solu-

tion of (3.2) iff u Î X satisfies u = A(Gu + h), i.e.,

u ∈ X, (I − AG)u = Ah. (3:3)
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Owing to G : X ® Y and A : Y ® X, the operator I - AG maps X into Y. From A ≤

ϖ (by Lemma 2.4) together with ||G|| ≤ K and condition (H3), applying operator spec-

tral theorem, we have that the operator (I - AG)-1 exists and is bounded. Let H = (I -

AG)-1A, then (3.3) is equivalent to u = Hh. By the Neumann expansion formula, H can

be expressed by

H = (I + AG + · · · + (AG)n + · · · )A = A + (AG)A + · · · + (AG)nA + · · · . (3:4)

The complete continuity of A with the continuity of (I - AG)-1 yields that the opera-

tor H : Y ® X is completely continuous. If we restrict H : Y+ ® Y, ∀h Î Y+ and mark

u = Ah, then u Î X ∩ Y+. Based on equation (2.8), (2.11) and Lemma 2.4, we have

u′′ = λ3u −
1∫

0

1∫
0

G1(t, τ )G2(τ , s)h(s)dsdτ ≤ λ3u, t ∈ [0, 1],

u(4) = (λ2 + λ3)u′′ − λ2λ3u +

1∫
0

G1(t, s)h(s)ds ≥ (λ2 + λ3)u′′ − λ2λ3u, t ∈ [0, 1],

by b(t) ≥ (l2 + l3)c(t) and λ3b(t) − a(t) ≤ λ2
3c(t) , we have

(Gu)(t) = c(t)u(4) − b(t)u′′ + a(t)u

≥ [
(λ2 + λ3)c(t) − b(t)

]
u′′ − [

λ2λ3c(t) − a(t)
]
u

≥ λ3
[
(λ2 + λ3)c(t) − b(t)

]
u − [

λ2λ3c(t) − a(t)
]
u

≥ [
λ2
3c(t) − λ3b(t) + a(t)

]
u ≥ 0, t ∈ [0, 1].

Hence

∀h ∈ Y+, (GAh)(t) ≥ 0, ∀t ∈ [0, 1] , (3:5)

and so (AG)(Ah)(t) = A(GAh)(t) ≥ 0, ∀t Î [0,1]. Suppose that ∀h Î Y+, (AG)
k (Ah)(t)

≥ 0, ∀t Î [0,1]. For any h Î Y+, let h1 = GAh, by (3.5) we have h1 Î Y+, and so

(AG)k+1(Ah)(t) = (AG)k(AGAh)(t) = (AG)k(Ah1)(t) ≥ 0, ∀t ∈ [0, 1].

Thus by induction it follows that ∀n ≥ 1, ∀h Î Y+, (AG)
n (Ah)(t) ≥ 0, ∀t Î [0,1]. By

(3.4), we have

∀h ∈ Y+, (Hh)(t) = (Ah)(t) + (AG)(Ah)(t) + · · · + (AG)n(Ah)(t) + · · ·
≥ (Ah)(t), ∀t ∈ [0, 1].

(3:6)

So H : Y+ ® Y+ ∩ X.

On the other hand, we have

∀h ∈ Y+, (Hh)(t) ≤ (Ah)(t) + ||(AG)||(Ah)(t) + · · · + ||(AG)n||(Ah)(t) + · · ·
≤ (1 + L + · · · + Ln + · · · )(Ah)(t)
≤ 1

1 − L
(Ah)(t), ∀t ∈ [0, 1].

(3:7)
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So the following inequalities hold

||Hh||0 ≤ 1
1 − L

||Ah||0, ∀t ∈ [0, 1]. (3:8)

For any u Î Y+, define Fu = f(t, u). Based on condition (H1), it is easy to show F :

Y+ ® Y+ is continuous. By (3.1)-(3.3), It is easy to see that u Î C4[0,1] ∩ C6(0, 1) is

a positive solution of BVP (1.1) iff u Î Y+ is a nonzero solution of an operator equa-

tion as follows

u = HFu. (3:9)

Let Q = HF. Obviously, Q : Y+ ® Y+ is completely continuous. We next show that

the operator Q has at least one nonzero fixed point in Y+.

Let

P = {u ∈ Y+|u(t) ≥ σ ||u||0, ∀t ∈ [0, 1]}.

In which

σ =
δ1δ2δ3C12C23

C1C2C3M1M2
(1 − L)G1(t, t). (3:10)

Here M1 and M2 can be defined as that in (2.1), C12 and C23 can be defined as that

in (2.2), Ci,δi(i = 1, 2, 3) can be defined as that in Lemma 2.3. It is easy to prove that P

is a cone in Y. We will prove QP ⊂ P next.

For any u Î P, let h = Fu, then h Î Y+. By (3.6) and Lemma 2.3, we have

(Qu)(t) = (HFu)(t) ≥ (AFu)(t), ∀t ∈ [0, 1]}.

By Lemma 2.3, for all u Î P, we have

(AFu)(t) =

1∫
0

1∫
0

1∫
0

G1(t, δ)G2(δ, τ )G3(τ , s)(Fu)(s)dsdτdδ

≤ C1C2C3M1M2

1∫
0

G3(s, s)(Fu)(s)ds.

And accordingly we have ||AFu||0 ≤ C1C2C3M1M2
∫ 1
0 G3(s, s)(Fu)(s)ds , that is

∫ 1

0
G3(s, s)(Fu)(s)ds ≥ ||AFu||0

C1C2C3M1M2
. (3:11)

Li Boundary Value Problems 2012, 2012:22
http://www.boundaryvalueproblems.com/content/2012/1/22

Page 8 of 16



By using (c3) in Lemma 2.3, (3.8) and (3.11), we have

(AFu)(t) ≥ δ1δ2δ3C12C23G1(t, t)

1∫
0

G3(s, s)(Fu)(s)ds

≥ δ1δ2δ3C12C23G1(t, t)
C1C2C3M1M2

||AFu||0

≥ δ1δ2δ3C12C23G1(t, t)
C1C2C3M1M2

(1 − L)||HFu||0

≥ δ1δ2δ3C12C23G1(t, t)
C1C2C3M1M2

(1 − L)||Qu||0.

So(Qu)(t) ≥ δ1δ2δ3C12C23G1(t,t)
C1C2C3M1M2

(1 − L)||Qu||0 = σ ||Qu||0 . Thus QP ⊂ P.

Let

ρ =
δ1δ2δ3C12C23m1(1 − L)

C1C2C3M1M2
, (3:12)

in which m1 can be defined as that in (2.1). It’s easy to prove

∀u ∈ P ⇒ u(t) ≥ ρ||u||0, ∀t ∈
[
1
4
,
3
4

]
. (3:13)

Case (i), since f
0

>  , there exist ε >0 and r0 >0 such that f(t, x) ≥ (Γ + ε)x, 0 ≤ t ≤

1, 0 < × ≤ r0. Let r Î (0, r0) and Ωr = {u Î P | ||u||0 ≤ r}, then for every u Î ∂Ωr, we

have ||u||0 = r, 0 < u(t) ≤ r, t Î (0, 1), and so f(t, u(t)) ≥ (Γ + ε)u(t), t Î (0,1). By

(3.13), it follows that

f (t, u(t)) > ( + ε)u(t) ≥ ( + ε)ρr, ∀t ∈
[
1
4
,
3
4

]
. (3:14)

From (3.6) and (3.14), we have

||Qu||0 ≥ Qu
(
1
2

)
= (HFu)

(
1
2

)
≥ (AFu)

(
1
2

)

=

1∫
0

1∫
0

1∫
0

G1

(
1
2
, δ

)
G2(δ, τ )G3(τ , s)f (s, u(s))dsdτdδ

≥

3
4∫

1
4

3
4∫

1
4

3
4∫

1
4

G1

(
1
2
, δ

)
G2(δ, τ )G3(τ , s)( + ε)ρrdsdτdδ

≥ δ1δ2δ3m1C12C23( + ε)ρr

3
4∫

1
4

G3(s, s)ds.

≥ 1
2

δ1δ2δ3m1m3C12C23( + ε)ρr > 0.

Therefore, inf
u∈∂�r

‖Qu‖0 > 0 . Now we shall prove ∀u Î ∂Ωr, μ ≥ 1, μQu ≠ u. In fact,

suppose the contrary, then there exist u0 ∈ ∂�r , and μ0 ≥ 1 such that μ0Qu0 = u0. By
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(3.6), we have u0(t) ≥ 1
μ0
u0(t) = Qu0(t) ≥ (AFu0)(t). Let ω0 = AFu0, then u0 ≥ ω0 and

ω0(t) satisfies BVP (2.4) with h = Fu0. Hence{
−ω

(6)
0 − γω

(4)
0 + βω′′

0 − αω0 = f (t, u0), t ∈ (0, 1),

ω0(0) = ω0(1) = ω′′
0(0) = ω′′

0(1) = ω
(4)
0 (0) = ω

(4)
0 (1) = 0,

(3:15)

After multiplying the two sides of the first equation in (3.15) by sin &#960t and inte-

grating on [0,1], we have



1∫
0

ω0(t) sin π tdt =

1∫
0

f (t, u0(t)) sin π tdt,

then

( + ε)

1∫
0

u0(t) sin π tdt ≤
1∫

0

f (t, u0(t)) sin π tdt

= 

1∫
0

ω0(t) sin π tdt ≤ 

1∫
0

u0(t) sin π tdt.

(3:16)

Since u0(t) ≥ ρ‖u0‖0 = ρr, ∀t ∈ [ 1
4 ,

3
4

]
, so

∫ 1

0
u0(t) sin π tdt > 0 and we see that Γ

+ ε < Γ, which is a contradiction. Then based on Lemma 2.6, we come to

i(Q,�r ,P) = 0. (3:17)

On the other hand, since f̄∞ < (1 − L) , there exist ε Î (0, (1 - L)Γ) and R0 >0

such that f(t, x) ≤ [(1-L)Γ - ε] x, 0 ≤ t ≤ 1, x >R0. Let MR0 = sup
0≤t≤1,0≤x≤R0

f (t, x) . Then

f (t, x) <
[
(1 − L) − ε

]
x +MR0 , 0 ≤ t ≤ 1, x ≥ 0.

We choose R > max
{
R0, r,

√
2MR0
ρε

}
and let �R = {u ∈ P| ||u||0 < R}. Next we prove

∀u Î ∂ΩR, μ ≥ 1, μu ≠ Qu. Assume on the contrary that ∃μ0 ≥ 1, u0 Î ∂ΩR, such that

μ0u0 = Qu0. Let ω1 = AFu0, by (3.6), we have u0 ≤ μ0u0 = Qu0 ≤ 1
1−LAFu0 ≤ 1

1−Lω1

and ω1(t) satisfies BVP (2.4) with h = Fu0. Similarly to (3.16), we can prove

(1 − L)

1∫
0

u0(t) sinπ tdt ≤ 

1∫
0

ω1(t) sin π tdt =

1∫
0

f (t, u0(t)) sin π tdt

≤ [
(1 − L) − ε

] 1∫
0

u0(t) sin π tdt +MR0

1∫
0

sinπ tdt,

(3:18)

and so

MR0

1∫
0

sinπ tdt ≥ ε

1∫
0

u0(t) sinπ tdt ≥ ε

3
4∫

1
4

u0(t) sin π tdt

≥ ρε||u0||0
1∫

0

sinπ tdt,

(3:19)
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Thus, by (3.19), we have R = ||u0||0 ≤
√
2MR0
ρε

which is contradictory with

R >

√
2MR0
ρε

.

Then by Lemma 2.5 we know

i(Q,�R,P) = 1. (3:20)

Now, by the additivity of fixed point index, combine (3.17) and (3.20) to conclude

that

i(Q,�R\�̄r ,P) = i(Q,�R,P) − i(Q,�r ,P) = 1.

Therefore Q has a fixed point in �R\�̄r , which is the positive solution of BVP (1.1).

Case (ii), since f̄0 < (1 − L), based on the definition of f̄0, we may choose ε >0

and ω >0, so that

f (t, u) ≤ [
(1 − L) − ε

]
u, 0 ≤ t ≤ 1, 0 ≤ u ≤ ω. (3:21)

Let r Î (0, ω), we now prove that μQu ≠ u for every u Î ∂Ωr, and 0 < μ ≤ 1. In fact,

suppose the contrary, then there exist u0 Î ∂Ωr, and 0 < μ0 ≤ 1 such that μ0Qu0 = u0.

Let ω2 = AFu0, by (3.6), we have u0 = μ0Qu0 ≤ 1
1−LAFu0 ≤ 1

1−Lω2 and ω2(t) satisfies

BVP (2.4) with h = Fu0. Similarly to (3.18), we have

(1 − L)

1∫
0

u0(t) sinπ tdt ≤ 

1∫
0

ω2(t) sin π tdt =

1∫
0

f (t, u0(t)) sin π tdt

≤ [
(1 − L) − ε

] 1∫
0

u0(t) sin π tdt.

(3:22)

Since
∫ 1
0 u0(t) sin π tdt > 0, We see that (1 - L)Γ ≤ (1 - L)Γ - ε, which is a contradic-

tion. By Lemma 2.5, we have

i(Q,�r ,P) = 1. (3:23)

On the other hand, because f∞ > , there exist ε Î (0, Γ) and H >0 such that

f (t, x) ≥ ( + ε)x, t ∈ [0, 1], x > H. (3:24)

Let C = max0≤t≤1,0≤x≤H|f(t,x) - (Γ + ε)x| + 1, then it is clear that

f (t, x) ≥ ( + ε)x − C, t ∈ [0, 1], x ≥ 0. (3:25)

Choose R > R0 = max {H/r, ω}, ∀u Î ∂ΩR. By (3.13) and (3.25), we have

u(s) ≥ ρ||u||0 > H, ∀s ∈
[
1
4
,
3
4

]
.

And so

f (s, u(s)) ≥ ( + ε)u(s) ≥ ( + ε)ρ||u||0, ∀s ∈
[
1
4
,
3
4

]
. (3:26)
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From (3.6) and (3.26), we get

||Qu||0 ≥ Qu
(
1
2

)
= (HFu)

(
1
2

)
≥ (AFu)

(
1
2

)

=

1∫
0

1∫
0

1∫
0

G1

(
1
2
, δ

)
G2(δ, τ )G3(τ , s)f (s, u(s))dsdτdδ

≥

3
4∫
1
4

3
4∫
1
4

3
4∫
1
4

G1

(
1
2
, δ

)
G2(δ, τ )G3(τ , s)( + ε)ρ||u||0dsdτdδ

≥ δ1δ2δ3m1C12C23( + ε)ρ||u||0

3
4∫
1
4

G3(s, s)ds.

≥ 1
2

δ1δ2δ3m1m3C12C23( + ε)ρ||u||0 > 0,

from which we see that infu∈∂�r ||Qu||0 > 0, namely the hypotheses (i) of Lemma 2.6

holds. Next, we show that if R is large enough, then μQu ≠u for any u Î ∂ΩR and μ ≥ 1.

In fact, suppose the contrary, then there exist u0 Î ∂ΩR and μ0 ≥ 1 such that μ0Qu0 =

u0, then by (3.6), AFu0 ≤ Qu0 ≤ u0 = μ0Qu0 ≤ μ0
1−LAFu0.Let ω0 = AFu0, then

ω0 ≤ u0 ≤ μ0
1−Lω0, and ω0 satisfies BVP (2.4), in which h = Fu0, consequently,{

−ω
(6)
0 − γω

(4)
0 + βω′′

0 − αω0 = f (t, u0), t ∈ [0, 1],

ω0(0) = ω0(1) = ω′′
0(0) = ω′′

0(1) = ω
(4)
0 (0) = ω

(4)
0 (1) = 0,

(3:27)

After multiplying the two sides of the first equation in (3.27) by sin πt and integrat-

ing on [0,1], we have



1∫
0

ω0(t) sinπ tdt =

1∫
0

f (t, u0(t)) sinπ tdt ≥ ( + ε)

1∫
0

u0(t) sin π tdt − 2C
π

≥ ( + ε)

1∫
0

ω0(t) sin π tdt − 2C
π

.

Consequently, we obtain that

1∫
0

ω0(t) sinπ tdt ≤ 2C
πε

. (3:28)

It’s easy to prove that ω0(t), the solution of LBVF (3.27) satisfies

ω0(t) ≥ δ1δ2δ3C12C23

C1C2C3M1M2
G1(t, t)||ω0||0,

and accordingly,

1∫
0

ω0(t) sin π tdt ≥ δ1δ2δ3C12C23||ω0||0
C1C2C3M1M2

1∫
0

G1(t, t) sin π tdt, (3:29)
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by (3.28), we get

||ω0||0 ≤ 2CC1C2C3M1M2

δ1δ2δ3C12C23πε

⎛
⎝ 1∫

0

G1(t, t) sin π tdt

⎞
⎠

−1

:= R̄, (3:30)

Consequently, ||u0||0 ≤ μ0
1−L ||ω0||0 ≤ μ0

1−L R̄.

We choose R > max{ μ0
1−L R̄,R0}, then to any u Î ∂ΩR, μ ≥ 1, there is always μQu ≠u.

Hence, hypothesis (ii) of Lemma 2.6 also holds. By Lemma 2.6, we have

i(Q,�R,P) = 0. (3:31)

Now, by the additivity of fixed point index, combine (3.23) and (3.31) to conclude

that

i(Q,�R\�̄r ,P) = i(Q,�R,P) − i(Q,�r,P) = −1.

Therefore, Q has a fixed poind in �R\�̄r , which is the positive solution of BVP (1.1).

The proof is completed. □
From Theorem 3.1, we immediately obtain the following.

Corollary 3.1. Assume (H1)-(H3) hold, then in each of the following cases:

(i) f
0
= ∞, f̄∞ = 0, (ii) f̄0 = 0, f∞ = ∞,

the BVP (1.1) has at least one positive solution.

4 Multiple solutions
Next, we study the multiplicity of positive solutions of BVP (1.1) and assume in this

section that

(H4) there is a p >0 such that 0 ≤ u ≤ p and 0 ≤ t ≤ 1 imply f(t, u) < hp, where

η =
(
C1C2C3M1M2

1−L

∫ 1
0 G1(s, s)ds

)−1
.

(H5) there is a p >0 such that sp ≤ u ≤ p and 0 ≤ t ≤ 1 imply f (t, u) ≥ lp,

whereλ−1 = δ1δ2δ3m1C12C23

∫ 3
4

1
4

G3(s, s)ds . Here, s can be defined as (3.10).

Theorem 4.1. Assume (H1)-(H4) hold. If f
0

>  and f∞ >  , then BVP (1.1) has at

least two positive solution u1 and u2 such that 0 ≤ ||u1||0 ≤ p ≤ ||u2||0.

Proof. According to the proof of Theorem 3.1, there exists 0 < r0 < p < R1 <+∞,

such that 0 < r < r0 implies i(Q, Ωr, P) = 0 and R ≥ R1 implies i(Q, ΩR, P) = 0.

Next we prove i(Q, Ωp, P) = 1 if (H4) is satisfied. In fact, for every u Î ∂Ωp, based on

the preceding definition of Q we come to

(Qu) (t) = (HFu)(t) ≤ 1
1 − L

||AFu||0

=
1

1 − L
max
0≤t≤1

∣∣∣∣∣∣
1∫

0

1∫
0

1∫
0

G1(t, δ)G2(δ, τ )G3(τ , s)(Fu)(s)dsdτdδ

∣∣∣∣∣∣
≤ C1C2C3M1M2

1 − L

∣∣∣∣∣∣
1∫

0

G3(s, s)f (s, u(s)ds

∣∣∣∣∣∣ .
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Consequently,

||Qu||0 ≤ C1C2C3M1M2

1 − L

∣∣∣∣∣∣
1∫

0

G3(s, s)f (s, u(s))ds

∣∣∣∣∣∣
≤ C1C2C3M1M2

1 − L

1∫
0

G3(s, s)ηpds = p = ||u||0.

Therefore, by (ii) of Lemma 2.7 we have

i(Q,�p,P) = 1. (4:1)

Combined with (3.17), (3.31), and (4.1), we have

i(Q,�R\�̄p,P) = i(Q,�R,P) − i(Q,�p,P) = −1.

i(Q,�p\�̄r ,P) = i(Q,�p,P) − i(Q,�r ,P) = 1.

Therefore, Q has fixed points u1 and u2 in �p\�̄r and �R\�̄p, respectively, which

means that u1(t) and u2(t) are positive solutions of BVP (1.1) and 0 ≤ ||u1||0 ≤ p ≤ ||

u2||0. The proof is completed. □
Theorem 4.2. Assume (H1)-(H3) and (H5) can be established, and f̄0 < (1 − L) and

f̄∞ < (1 − L) , then BVP (1.1) has at least two positive solution u1 and u2 such that 0

≤ ||u1||0 ≤ p ≤ ||u2||0.

Proof. According to the proof of Theorem 3.1, there exists 0 < ω < p < R2 <+ ∞,

such that 0 < r < ω implies i(Q, Ωr, P) = 1 and R ≥ R2 implies i(Q, ΩR, P) = 1.

We now prove that i(Q, Ωp, P) = 0 if (H5) is satisfied. In fact, for every u Î ∂Ωp, by

(3.13) we come to rp ≤ r||u||0 ≤ u(t) ≤ ||u||0 = p, t Î [1/4, 3/4], accordingly, by (H5),

we have

f (t, u) ≥ λp, t ∈
[
1
4
,
3
4

]
, ∀u ∈ ∂�p.

from the proof of (ii) of Theorem 3.1, we have

||Qu||0 ≥ Qu
(
1
2

)
= (HFu)

(
1
2

)
≥ (AFu)

(
1
2

)

=

1∫
0

1∫
0

1∫
0

G1

(
1
2
, δ

)
G2(δ, τ )G3(τ , s)f (s, u(s))dsdτdδ

≥

3
4∫
1
4

3
4∫
1
4

3
4∫
1
4

G1

(
1
2
, δ

)
G2(δ, τ )G3(τ , s)λpdsdτdδ

≥ δ1δ2δ3m1C12C23

3
4∫
1
4

G3(s, s)λpds = p = ||u||0.

Li Boundary Value Problems 2012, 2012:22
http://www.boundaryvalueproblems.com/content/2012/1/22

Page 14 of 16



Therefore, ||Qu||0 ≥ Qu
( 1
2

) ≥ ||u||0, according to (i) of Lemma 2.7, we come to

i(Q,�p,P) = 0. (4:2)

Combined with (3.20), (3.23), and (4.2), there exist

i(Q,�R\�̄p,P) = i(Q,�R,P) − i(Q,�p,P) = 1.

i(Q,�p\�̄r ,P) = i(Q,�p,P) − i(Q,�r,P) = −1.

Therefore, Q has fixed points u1 and u2 in �p\�̄r and �R\�̄p, respectively, which

means that u1(t) and u2(t) are positive solutions of BVP (1.1) and 0 ≤ ||u1||0 ≤ p ≤ ||

u2||0. The proof is completed. □

Theorem 4.3. Assume that (H1)-(H3) hold. If f
0

>  and f̄∞ < (1 − L) , and there

exists p2 > p1 >0 that satisfies

(i) f(t, u) < hp1 if 0 ≤ t ≤ 1 and 0 ≤ u ≤ p1,

(ii) f(t, u) ≥ lp2 if 0 ≤ t ≤ 1 and sp2 ≤ u ≤ p2,

where h, s, l are just as the above, then BVP (1.1) has at least three positive solu-

tions u1, u2, and u3 such that 0 ≤ ||u1||0 ≤ p1 ≤ ||u2||0 ≤ p2 ≤ ||u3||0.

Proof. According to the proof of Theorem 3.1, there exists 0 < r0 < p1 < p2 < R3 <

+∞, such that 0 < r < r0 implies i(Q, Ωr, P) = 0 and R ≥ R3 implies i(Q, ΩR, P) = 1.

From the proof of Theorems 4.1 and 4.2, we have i(Q, �p1 ,P) = 1 , i(Q, �p2 ,P) = 0 .

Combining the four afore-mentioned equations, we have

i(Q,�R\�̄p2 ,P) = i(Q,�R,P) − i(Q,�p2 ,P) = 1.

i(Q,�p2\�̄p1 ,P) = i(Q,�p2 ,P) − i(Q,�p1 ,P) = −1.

i(Q,�p1\�̄r ,P) = i(Q,�p1 ,P) − i(Q,�r,P) = 1.

Therefore, Q has fixed points u1, u2 and u3 in �R\�̄p2 , �p2\�̄p1and �p1\�̄r ,

respectively, which means that u1(t), u2(t) and u3(t) are positive solutions of BVP (1.1)

and 0 ≤ ||u1||0 ≤ p1 ≤ ||u2||0 ≤ p2 ≤ ||u3||0. The proof is completed. □
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