

RESEARCH Open Access

Multiple positive solutions of semilinear elliptic equations involving concave and convex nonlinearities in \mathbb{R}^N

Huei-li Lin

Correspondence: hlin@mail.cgu. edu.tw

Department of Natural Sciences in the Center for General Education, Chang Gung University, Tao-Yuan 333, Taiwan

Abstract

In this article, we investigate the effect of the coefficient f(z) of the sub-critical nonlinearity. For sufficiently large $\lambda > 0$, there are at least k+1 positive solutions of the semilinear elliptic equations

$$\begin{cases} -\Delta v + \lambda v = f(z)v^{p-1} + h(z)v^{q-1} \text{ in } \mathbb{R}^N; \\ v \in H^1(\mathbb{R}^N), \end{cases}$$

where $1 \le q < 2 < p < 2^* = 2N/(N-2)$ for $N \ge 3$.

AMS (MOS) subject classification: 35J20; 35J25; 35J65.

Keywords: semilinear elliptic equations, concave and convex, positive solutions

1 Introduction

For $N \ge 3$, $1 \le q < 2 < p < 2^* = 2N/(N-2)$, we consider the semilinear elliptic equations

$$\begin{cases} -\Delta v + \lambda v = f(z)v^{p-1} + h(z)v^{q-1} \text{ in } \mathbb{R}^N; \\ v \in H^1(\mathbb{R}^N), \end{cases}$$
 (E_{\lambda})

where $\lambda > 0$.

Let *f* and *h* satisfy the following conditions:

- (f 1) f is a positive continuous function in \mathbb{R}^N and $\lim_{|z| \to \infty} f(z) = f_{\infty} > 0$.
- (f2) there exist k points a^1 , a^2 ,..., a^k in \mathbb{R}^N such that

$$f(a^i) = f_{\max} = \max_{z \in \mathbb{R}^N} f(z) \text{ for } 1 \le i \le k,$$

and $f_{\infty} < f_{\text{max}}$.

$$(h\ 1)\ h\in L^{\dfrac{p}{p-q}}(\mathbb{R}^N)\cap L^\infty\big(\mathbb{R}^N\big)\ \ \text{and}\ \ h\geqq 0.$$

Semilinear elliptic problems involving concave-convex nonlinearities in a bounded domain

$$\begin{cases} -\Delta u = ch(z)|u|^{q-2}u + |u|^{p-2}u \text{ in } \Omega; \\ u \in H_0^1(\Omega), \end{cases}$$
 (E_c)

have been studied by Ambrosetti et al. [1] ($h \equiv 1$, and $1 < q < 2 < p \le 2^* = 2N/(N-2)$) and Wu [2] $h \in C(\bar{\Omega})$ and changes sign, $1 < q < 2 < p < 2^*$). They proved that this equation has at least two positive solutions for sufficiently small c > 0. More general results of Equation (E_c) were done by Ambrosetti et al. [3], Brown and Zhang [4], and de Figueiredo et al. [5].

In this article, we consider the existence and multiplicity of positive solutions of Equation (E_{λ}) in \mathbb{R}^{N} . For the case $q = \lambda = 1$ and $f(z) \equiv 1$ for all $z \in \mathbb{R}^{N}$, suppose that h is nonnegative, small, and exponential decay, Zhu [6] showed that Equation (E_{λ}) admits at least two positive solutions in \mathbb{R}^{N} . Without the condition of exponential decay, Cao and Zhou [7] and Hirano [8] proved that Equation (E_{λ}) admits at least two positive solutions in \mathbb{R}^{N} . For the case $q = \lambda = 1$, by using the idea of category and Bahri-Li's minimax argument, Adachi and Tanaka [9] asserted that Equation (E_{λ}) admits at least four positive solutions in \mathbb{R}^{N} , where $f(z) \boxtimes 1$, $f(z) \ge 1 - C \exp((-(2 + \delta) |z|))$ for some C, $\delta > 0$, and sufficiently small $||h||_{H^{-1}} > 0$. Similarly, in Hsu and Lin [10], they have studied that there are at least four positive solutions of the general case $-\Delta u + u = f(z)v^{p-1} + \lambda h(z) v^{q-1}$ in \mathbb{R}^{N} for sufficiently small $\lambda > 0$.

By the change of variables

$$\varepsilon = \lambda^{-\frac{1}{2}} \text{ and } u(z) = \varepsilon^{\frac{2}{p-2}} v(\varepsilon z),$$

Equation (E_{λ}) is transformed to

$$\begin{cases} -\Delta u + u = f(\varepsilon z)u^{p-1} + \varepsilon \frac{2(p-q)}{p-2} h(\varepsilon z)u^{q-1} \text{ in } \mathbb{R}^N; \\ u \in H^1(\mathbb{R}^N), \end{cases}$$
 (E_\varepsilon)

Associated with Equation (E_{ε}) , we consider the C^1 -functional J_{ε} , for $u \in H^1(\mathbb{R}^N)$,

$$J_{\varepsilon}(u) = \frac{1}{2} \|u\|_{H}^{2} - \frac{1}{p} \int\limits_{\mathbb{R}^{N}} f(\varepsilon z) u_{+}^{p} dz - \frac{1}{q} \int\limits_{\mathbb{R}^{N}} \varepsilon \frac{2(p-q)}{p-2} h(\varepsilon z) u_{+}^{q} dz,$$

where $\|u\|_H^2 = \int_{\mathbb{R}^N} \left(|\Delta u|^2 + |u|^2\right) dz$ is the norm in $H^1(\mathbb{R}^N)$ and $u_+ = \max\{u, 0\} \ge 0$. We know that the nonnegative weak solutions of Equation (E_ε) are equivalent to the critical points of J_ε . This article is organized as follows. First of all, we use the argument of Tarantello [11] to divide the Nehari manifold \mathbf{M}_ε into the two parts \mathbf{M}_ε^+ and \mathbf{M}_ε^- . Next, we prove that the existence of a positive ground state solution $u_0 \in \mathbf{M}_\varepsilon^+$ of Equation

we prove that the existence of a positive ground state solution $u_0 \in \mathbf{M}_{\varepsilon}$ of Equation (E_{ε}) . Finally, in Section 4, we show that the condition (f^2) affects the number of positive solutions of Equation (E_{ε}) , that is, there are at least k critical points $u_1, ..., u_k \in \mathbf{M}_{\varepsilon}^-$ of J_{ε} such that $J_{\varepsilon}(u_i) = \beta_{\varepsilon}^i((PS) - \text{value})$ for $1 \le i \le k$.

Let

$$S = \sup_{u \in H^1(\mathbb{R}^N)} \|u\|_{L^p},$$

then

$$||u||_{L^p} \le S||u||_H \quad \text{for any } u \in H^1(\mathbb{R}^N) \setminus \{0\}.$$
 (1.1)

For the semilinear elliptic equations

$$\begin{cases} -\Delta u + u = f(\varepsilon z)u^{p-1} \text{ in } \mathbb{R}^N; \\ u \in H^1(\mathbb{R}^N), \end{cases}$$
 (E0)

we define the energy functional $I_{\varepsilon}(u) = \frac{1}{2} \|u\|_{H}^{2} - \frac{1}{p} \int_{\mathbb{R}^{N}} f(\varepsilon z) u_{+}^{p} dz$, and

$$\gamma_{\varepsilon} = \inf_{u \in \mathbf{N}_{\varepsilon}} I_{\varepsilon}(u),$$

where $\mathbf{N}_{\varepsilon} = \{u \in H^1(\mathbb{R}^N) \setminus \{0\} \mid u_+ \boxtimes 0 \text{ and } \langle I_{\varepsilon}'(u), u \rangle = 0\}.$ Note that

(i) if
$$f \equiv f_{\infty}$$
, we define $I_{\infty}(u) = \frac{1}{2} \|u\|_H^2 - \frac{1}{p} \int_{\mathbb{R}^N} f_{\infty} u_+^p dz$ and

$$\gamma_{\infty} = \inf_{u \in \mathbf{N}_{-n}} I_{\infty}(u),$$

where $\mathbf{N}_{\infty} = \{u \in H^1(\mathbb{R}^N) \setminus \{0\} \mid u_+ \boxtimes 0 \text{ and } \langle I_{\infty}'(u), u \rangle = 0\};$

(ii) if
$$f = f_{\text{max}}$$
 we define $I_{\text{max}}(u) = \frac{1}{2} ||u||_H^2 - \frac{1}{p} \int_{\mathbb{R}^N} f_{\text{max}} u_+^p dz$ and

$$\gamma_{\max} = \inf_{u \in \mathbf{N}_{\max}} I_{\max}(u),$$

where $\mathbf{N}_{\max} = \{u \in H^1(\mathbb{R}^N) \setminus \{0\} \mid u_+ \boxtimes 0 \text{ and } \langle I'_{\max}(u), u \rangle = 0\}.$

Lemma 1.1

$$\gamma_{\text{max}} = \frac{p-2}{2p} (f_{\text{max}} S^p)^{-2/(p-2)} > 0.$$

Proof. It is similar to Theorems 4.12 and 4.13 in Wang [[12], p. 31].

Our main results are as follows.

(I) Let $\Lambda = \varepsilon^{2(p-q)/(p-2)}$. Under assumptions (f 1) and (h1), if

$$0 < \Lambda < \Lambda_0 = (p-2) \left(\frac{2-q}{f_{\text{max}}}\right)^{\frac{2-q}{p-2}} \left[(p-q)S^2\right]^{\frac{q-p}{p-2}} \|h\|_{\#}^{-1},$$

where $||h||_{\#}$ is the norm in $\frac{p}{L^{p-q}(\mathbb{R}^{N})}$, then Equation (E_{ε}) admits at least a positive ground state solution. (See Theorem 3.4)

(II) Under assumptions (f1) - (f2) and (h1), if λ is sufficiently large, then Equation (E_{λ}) admits at least k+1 positive solutions. (See Theorem 4.8)

2 The Nehari manifold

First of all, we define the Palais-Smale (denoted by (PS)) sequences and (PS)-conditions in $H^1(\mathbb{R}^N)$ for some functional J.

Definition 2.1 (i) For $\beta \in \mathbb{R}$, a sequence $\{u_n\}$ is a $(PS)_{\beta}$ -sequence in $H^1(\mathbb{R}^N)$ for J if J $(u_n) = \beta + o_n(1)$ and $J'(u_n) = o_n(1)$ strongly in $H^1(\mathbb{R}^N)$ as $n \to \infty$, where $H^1(\mathbb{R}^N)$ is the dual space of $H^1(\mathbb{R}^N)$;

(ii) I satisfies the $(PS)_{\beta}$ -condition in $H^1(\mathbb{R}^N)$ if every $(PS)_{\beta}$ -sequence in $H^1(\mathbb{R}^N)$ for I contains a convergent subsequence.

Next, since J_{ε} is not bounded from below in H^1 (\mathbb{R}^N), we consider the Nehari manifold

$$\mathbf{M}_{\varepsilon} = \left\{ u \in H^{1}(\mathbb{R}^{N}) \setminus \{0\} \middle| u_{+} \not\equiv 0 \text{ and } \langle J'_{\varepsilon}(u), u \rangle = 0 \right\}, \tag{2.1}$$

where

$$\langle J_\varepsilon'(u),u\rangle=\|u\|_H^2-\int\limits_{\mathbb{R}^N}f(\varepsilon z)u_+^pdz-\int\limits_{\mathbb{R}^N}\varepsilon\frac{2(p-q)}{p-2}h(\varepsilon z)u_+^qdz.$$

Note that \mathbf{M}_{ε} contains all nonnegative solutions of Equation (E_{ε}). From the lemma below, we have that J_{ε} is bounded from below on \mathbf{M}_{ε} .

Lemma 2.2 The energy functional J_{ε} is coercive and bounded from below on \mathbf{M}_{ε} .

Proof. For $u \in \mathbf{M}_{\varepsilon}$, by (2.1), the Hölder inequality $\left(p_1 = \frac{p}{p-q}, p_2 = \frac{p}{q}\right)$ and the Sobolev embedding theorem (1.1), we get

$$J_{\varepsilon}(u) = \left(\frac{1}{2} - \frac{1}{p}\right) \|u\|_{H}^{2} - \left(\frac{1}{q} - \frac{1}{p}\right) \int_{\mathbb{R}^{N}} \varepsilon \frac{2(p-q)}{p-2} h(\varepsilon z) u_{+}^{q} dz$$

$$\geq \frac{\|u\|_{H}^{q}}{p} \left[\frac{p-2}{2} \|u\|_{H}^{2-q} - \frac{p-q}{q} \varepsilon \frac{2(p-q)}{p-2} \|h\|_{\#} S^{q} \right].$$

Hence, we have that J_{ε} is coercive and bounded from below on \mathbf{M}_{ε} . Define

$$\psi_{\varepsilon}(u) = \langle J'_{\varepsilon}(u), u \rangle.$$

Then for $u \in \mathbf{M}_{\varepsilon}$, we get

$$\langle \psi'_{\varepsilon}(u), u \rangle = 2 \|u\|_{H}^{2} - p \int_{\mathbb{R}^{N}} f(\varepsilon z) u_{+}^{p} dz - q \int_{\mathbb{R}^{N}} \varepsilon \frac{2(p-q)}{p-2} h(\varepsilon z) u_{+}^{q} dz$$

$$= (p-q) \int_{\mathbb{R}^{N}} \varepsilon \frac{2(p-q)}{p-2} h(\varepsilon z) u_{+}^{q} dz - (p-2) \|u\|_{H}^{2}$$

$$(2.2)$$

$$= (2-q) \|u\|_H^2 - (p-q) \int_{\mathbb{R}^N} f(\varepsilon z) u_+^p dz.$$
 (2.3)

We apply the method in Tarantello [11], let

$$\mathbf{M}_{\varepsilon}^{+} = \{ u \in \mathbf{M}_{\varepsilon} \, \big| \, \langle \psi'_{\varepsilon}(u), u \rangle > 0 \, \};$$

$$\mathbf{M}_{\varepsilon}^{0} = \{ u \in \mathbf{M}_{\varepsilon} \, \big| \, \langle \psi'_{\varepsilon}(u), u \rangle = 0 \, \};$$

$$\mathbf{M}_{\varepsilon}^{-} = \{ u \in \mathbf{M}_{\varepsilon} \, \big| \, \langle \psi'_{\varepsilon}(u), u \rangle < 0 \, \}.$$

Lemma 2.3 Under assumptions (f1) and (h1), if $0 < \Lambda$ (= $\varepsilon^{2(p-q)/(p-2)}$) $< \Lambda_0$, then $\mathbf{M}_{\varepsilon}^0 = \emptyset$.

Proof. See Hsu and Lin [[10], Lemma 5].

Lemma 2.4 Suppose that u is a local minimizer for J_{ε} on \mathbf{M}_{ε} and $u \notin \mathbf{M}_{\varepsilon}^{0}$. Then $J'_{\varepsilon}(u) = 0$ in $H^{-1}(\mathbb{R}^{N})$.

Proof. See Brown and Zhang [[4], Theorem 2.3].

Lemma 2.5 We have the following inequalities.

(i)
$$\int_{\mathbb{R}^N} h(\varepsilon z) u_+^q dz > 0_{for \ each \ } u \in \mathbf{M}_{\varepsilon}^+$$

(ii)
$$\|u\|_{H} < \left(\frac{p-q}{p-2}\Lambda\|h\|_{\#}S^{q}\right)^{1/(2-q)}$$
 for each $u \in \mathbf{M}_{\varepsilon}^{+}$;

(iii)
$$\|u\|_H > \left\lceil \frac{2-q}{(p-q)f_{\max}S^p} \right\rceil^{1/(p-2)}$$
 for each $u \in \mathbf{M}_{\varepsilon}^-$;

$$(iv) \ If \ 0 < \Lambda \left(=\varepsilon^{2(p-q)/(p-2)}\right) < \frac{q\Lambda_0}{2}, \ then \ J_\varepsilon(u) > 0 \ for \ each \ u \in \mathbf{M}_\varepsilon^-.$$

Proof. (i) It can be proved by using (2.2).

(ii) For any $u \in \mathbf{M}_{\varepsilon}^+ \subset \mathbf{M}_{\varepsilon}$, by (2.2), we apply the Hölder inequality $(p_1 = \frac{p}{p-q}, p_2 = \frac{p}{q})$ to obtain that

$$0<(p-q)\int\limits_{\mathbb{R}^N}\Lambda h(\varepsilon z)u_+^qdz-(p-2)\|u\|_H^2$$

$$\leq (p-q)\Lambda \|h\|_{\#}S^q \|u\|_H^q - (p-2) \|u\|_H^2.$$

(iii) For any $u \in \mathbf{M}_{\varepsilon}^{-}$, by (2.3), we have that

$$||u||_H^2 < \frac{p-q}{2-q} \int_{\mathbb{R}^N} f(\varepsilon z) u_+^p dz \le \frac{p-q}{2-q} S^p ||u||_H^p f_{\text{max}}.$$

(iv) For any $u \in \mathbf{M}_{\varepsilon}^- \subset \mathbf{M}_{\varepsilon}$, by (iii), we get that

$$\begin{split} J_{\varepsilon}(u) &= \left(\frac{1}{2} - \frac{1}{p}\right) \|u\|_{H}^{2} - \left(\frac{1}{q} - \frac{1}{p}\right) \int_{\mathbb{R}^{N}} \Delta h(\varepsilon z) u_{+}^{q} dz \\ &\geq \frac{\|u\|_{H}^{q}}{p} \left[\frac{p-2}{2} \|u\|_{H}^{2-q} - \frac{p-q}{q} \Delta \|h\|_{\#} S^{q}\right] \\ &> \frac{1}{p} \left[\frac{2-q}{(p-q)f_{\max}S^{p}}\right]^{\frac{q}{p-2}} \left[\frac{p-2}{2} \left[\frac{2-q}{(p-q)f_{\max}S^{p}}\right]^{\frac{2-q}{p-2}} - \frac{p-q}{q} \Delta \|h\|_{\#} S^{q}\right]. \end{split}$$

Thus, if
$$0 < \Lambda < \frac{q}{2}(p-2)\left(\frac{2-q}{f_{\max}}\right)^{\frac{2-q}{p-2}} [(p-q)S^2]^{\frac{q-p}{p-2}} \|h\|_{\#}^{-1}$$
, we get that $J_{\varepsilon}(u) \ge 1$

 $d_0 > 0$ for some constant $d_0 = d_0(\varepsilon, p, q, S, ||h||_{\#}, f_{\max}).$

For $u \in H^1(\mathbb{R}^N) \setminus \{0\}$ and $u_+ \boxtimes 0$, let

$$\bar{t} = \bar{t}(u) = \left[\frac{(2-q)\|u\|_H^2}{(p-q)\int\limits_{\mathbb{R}^N} f(\varepsilon z) u_+^p dz}\right]^{1/(p-2)} > 0.$$

Lemma 2.6 For each $u \in H^1(\mathbb{R}^N) \setminus \{0\}$ and $u_+ \boxtimes 0$, we have that

(i) if $\int_{\mathbb{R}^N} h(\varepsilon z) u_+^q dz = 0$, then there exists a unique positive number $t^- = t^-(u) > \overline{t}$ such that $t^- u \in \mathbf{M}_{\varepsilon}$ and $J_{\varepsilon}(t^- u) = \sup_{t \ge 0} J_{\varepsilon}(tu)$;

(ii) if $0 < \Lambda$ (= $\varepsilon^{2(p-q)/(p-2)}$) $< \Lambda_0$ and $\int_{\mathbb{R}^N} h(\varepsilon z) u_+^q dz > 0$, then there exist unique positive numbers $t^+ = t^+(u) < \bar{t} < t^- = t^-(u)$ such that $t^+u \in \mathbf{M}_{\varepsilon}^+$, $t^-u \in \mathbf{M}_{\varepsilon}^-$ and

$$J_{\varepsilon}(t^{+}u) = \inf_{0 \le t \le \bar{t}} J_{\varepsilon}(tu), \quad J_{\varepsilon}(t^{-}u) = \sup_{t > \bar{t}} J_{\varepsilon}(tu).$$

Proof. See Hsu and Lin [[10], Lemma 7].

Applying Lemma 2.3 $(\mathbf{M}_{\varepsilon}^0 = \emptyset \text{ for } 0 < \Lambda < \Lambda_0)$, we write $\mathbf{M}_{\varepsilon} = \mathbf{M}_{\varepsilon}^+ \cup \mathbf{M}_{\varepsilon}^-$, where

$$\mathbf{M}_{\varepsilon}^{+} = \left\{ u \in \mathbf{M}_{\varepsilon} | (2-q) \| u \|_{H}^{2} - (p-q) \int_{\mathbb{R}^{N}} f(\varepsilon z) u_{+}^{p} dz > 0 \right\},$$

$$\mathbf{M}_{\varepsilon}^{-} = \left\{ u \in \mathbf{M}_{\varepsilon} | (2-q) \| u \|_{H}^{2} - (p-q) \int_{\mathbb{R}^{N}} f(\varepsilon z) u_{+}^{p} dz < 0 \right\}.$$

Define

$$\alpha_{\varepsilon} = \inf_{u \in M_{\varepsilon}} J_{\varepsilon}(u); \quad \alpha_{\varepsilon}^{+} = \inf_{u \in M_{\varepsilon}^{+}} J_{\varepsilon}(u); \quad \alpha_{\varepsilon}^{-} = \inf_{u \in M_{\varepsilon}^{-}} J_{\varepsilon}(u).$$

Lemma 2.7 (i) If $0 < \Lambda$ (= $\varepsilon^{2(p-q)/(p-2)}$) < Λ_0 , then $\alpha_{\varepsilon} \le \alpha_{\varepsilon}^+ < 0$; (ii) If $0 < \Lambda < q\Lambda_0/2$, then $\alpha_{\varepsilon}^- \ge d_0 > 0$ for some constant $d_0 = d_0$ (ε , p, q, S, $||h||_{\#}$, f_{\max}). **Proof**. (i) Let $u \in M_{\varepsilon}^+$, by (2.2), we get

$$(p-2) \|u\|_H^2 < (p-q) \int_{\mathbb{R}^N} \Lambda h(\varepsilon z) u_+^q dz.$$

Then

$$\begin{split} J_{\varepsilon}(u) &= \left(\frac{1}{2} - \frac{1}{p}\right) \|u\|_{H}^{2} - \left(\frac{1}{q} - \frac{1}{p}\right) \int_{\mathbb{R}^{N}} \Lambda h(\varepsilon z) u_{+}^{q} dz \\ &< \left[\left(\frac{1}{2} - \frac{1}{p}\right) - \left(\frac{1}{q} - \frac{1}{p}\right) \frac{p-2}{p-q}\right] \|u\|_{H}^{2} \\ &= -\frac{(2-q)(p-2)}{2pq} \|u\|_{H}^{2} < 0. \end{split}$$

By the definitions of α_{ε} and α_{ε}^+ , we deduce that $\alpha_{\varepsilon} \leq \alpha_{\varepsilon}^+ < 0$.

(ii) See the proof of Lemma 2.5 (iv).

Applying Ekeland's variational principle and using the same argument in Cao and Zhou [7] or Tarantello [11], we have the following lemma.

Lemma 2.8 (i) There exists a (PS)_{α_{ε}}-sequence $\{u_n\}$ in \mathbf{M}_{ε} for J_{ε} ;

- (ii) There exists a $(PS)_{\alpha_{\varepsilon}^+}$ -sequence $\{u_n\}$ in $\mathbf{M}_{\varepsilon}^+$ for J_{ε} ;
- (iii) There exists a $(PS)_{\alpha_s}$ -sequence $\{u_n\}$ in \mathbf{M}_{ε} -for J_{ε} .

3 Existence of a ground state solution

In order to prove the existence of positive solutions, we claim that J_{ε} satisfies the (PS)_B-

condition in
$$H^1(\mathbb{R}^N)$$
 for $\beta \in \left(-\infty, \gamma_\infty - C_0 \Lambda^{\frac{2}{2-q}}\right)$, where $\Lambda = \varepsilon^{2(p-q)/(p-2)}$ and C_0 is

defined in the following lemma.

Lemma 3.1 Assume that h satisfies (h1) and $0 < \Lambda$ $(= \varepsilon^{2(p-q)/(p-2)}) < \Lambda_0$. If $\{u_n\}$ is a $(PS)_{\beta}$ -sequence in $H^1(\mathbb{R}^N)$ for J_{ε} with $u_n \to u$ weakly in $H^1(\mathbb{R}^N)$, then $J'_{\varepsilon}(u) = 0$ in H^{-1}

$$(\mathbb{R}^N)$$
 and $J_{\varepsilon}(u) \geq -C_0 \Lambda^{\frac{2}{2-q}} \geq -C_0'$, where

$$C_0 = (2-q) [(p-q)||h||_{\#} S^q]^{\frac{2}{2-q}} / \left[2pq(p-2)^{\frac{q}{2-q}} \right],$$

and

$$C_0' = \left\lceil (p-2)(2-q)^{\frac{p}{p-2}} \right\rceil / \left\{ 2pq [f_{\max}(p-q)]^{\frac{2}{p-2}} S^{\frac{2p}{p-2}} \right\}.$$

Proof. Since $\{u_n\}$ is a $(PS)_{\beta}$ -sequence in $H^1(\mathbb{R}^N)$ for J_{ε} with $u_n \to u$ weakly in $H^1(\mathbb{R}^N)$, it is easy to check that $J'_{\varepsilon}(u) = 0$ in $H^{-1}(\mathbb{R}^N)$ and $u \ge 0$. Then we have $\langle J'_{\varepsilon}(u), u \rangle = 0$, that is, $\int_{\mathbb{R}^N} f(\varepsilon z) u^p dz = \|u\|_H^2 - \int_{\mathbb{R}^N} \Lambda h(\varepsilon z) u^q dz$. Hence, by the Young inequality $\left(p_1 = \frac{2}{d} \text{ and } p_2 = \frac{2}{2-d}\right)$

$$\begin{split} J_{\varepsilon}(u) &= \left(\frac{1}{2} - \frac{1}{p}\right) \|u\|_{H}^{2} - \left(\frac{1}{q} - \frac{1}{p}\right) \int_{\mathbb{R}^{N}} \Lambda h(\varepsilon z) u^{q} dz \\ &\geq \frac{p-2}{2p} \|u\|_{H}^{2} - \frac{p-q}{pq} \Lambda \|h\|_{\#} S^{q} \|u\|_{H}^{q} \\ &\geq \frac{p-2}{2p} \|u\|_{H}^{2} - \frac{p-2}{pq} \left[\frac{q \|u\|_{H}^{2}}{2} + \left(\frac{p-q}{p-2} \Lambda \|h\|_{\#} S^{q}\right)^{\frac{2}{2-q}} \frac{2-q}{2}\right] \\ &\geq - \frac{(p-2)(2-q)^{\frac{p}{p-2}}}{2pq[f_{\max}(p-q)]^{\frac{p}{p-2}} S^{\frac{2p}{p-2}}}. \end{split}$$

Lemma 3.2 Assume that f and h satisfy (f1) and (h1). If $0 < \Lambda$ (= $\varepsilon^{2(p-q)/(p-2)}$) $< \Lambda_0$, then J_{ε} satisfies the $(PS)_{\beta}$ -condition in $H^1(\mathbb{R}^N)$ for $\beta \in \left(-\infty, \gamma_{\infty} - C_0\Lambda^{\frac{2}{2-q}}\right)$.

Proof. Let $\{u_n\}$ be a $(PS)_{\beta}$ -sequence in $H^1(\mathbb{R}^N)$ for J_{ε} such that $J_{\varepsilon}(u_n) = \beta + o_n(1)$ and $J'_{\varepsilon}(u_n) = o_n(1)$ in $H^1(\mathbb{R}^N)$. Then

$$|\beta| + c_n + \frac{d_n ||u_n||_H}{p} \ge J_{\varepsilon}(u_n) - \frac{1}{p} \langle J'_{\varepsilon}(u_n), (u_n) \rangle$$

$$= \left(\frac{1}{2} - \frac{1}{p}\right) ||u_n||_H^2 - \left(\frac{1}{q} - \frac{1}{p}\right) \int_{\mathbb{R}^N} \varepsilon \frac{2(p-q)}{p-2} h(\varepsilon z) (u_n)_+^q dz$$

$$\ge \frac{p-2}{2p} ||u_n||_H^2 - \frac{p-q}{pq} \Lambda ||h||_\# S^q ||u_n||_H^q,$$

where $c_n = o_n(1)$, $d_n = o_n(1)$ as $n \to \infty$. It follows that $\{u_n\}$ is bounded in $H^1(\mathbb{R}^N)$. Hence, there exist a subsequence $\{u_n\}$ and a nonnegative $u \in H^1(\mathbb{R}^N)$ such that $J'_{\varepsilon}(u) = 0$ in $H^{-1}(\mathbb{R}^N)$, $u_n \to u$ weakly in $H^1(\mathbb{R}^N)$, $u_n \to u$ a.e. in \mathbb{R}^N , $u_n \to u$ strongly in $L^s_{loc}(\mathbb{R}^N)$ for any $1 \le s < 2^*$. Using the Brézis-Lieb lemma to get (3.1) and (3.2) below.

$$\int_{\mathbb{R}^N} f(\varepsilon z) (u_n - u)_+^p dz = \int_{\mathbb{R}^N} f(\varepsilon z) (u_n)_+^p dz - \int_{\mathbb{R}^N} f(\varepsilon z) u^p dz + o_n(1);$$
(3.1)

$$\int_{\mathbb{R}^N} h(\varepsilon z) (u_n - u)_+^q dz = \int_{\mathbb{R}^N} h(\varepsilon z) (u_n)_+^q dz - \int_{\mathbb{R}^N} h(\varepsilon z) u^q dz + o_n(1).$$
(3.2)

Next, claim that

$$\int_{\mathbb{R}^N} h(\varepsilon z) |u_n - u|^q dz \to 0 \text{ as } n \to \infty.$$
(3.3)

For any $\sigma > 0$, there exists r > 0 such that $\int_{[B^N(0;r)]^c} h(\varepsilon z)^{\frac{p}{p-q}} dz < \sigma$. By the Hölder inequality and the Sobolev embedding theorem, we get

$$\left| \int_{\mathbb{R}^{N}} h(\varepsilon z) |u_{n} - u|^{q} dz \right| \leq \int_{B^{N}(0;r)} h(\varepsilon z) |u_{n} - u|^{q} dz$$

$$+ \int_{[B^{N}(0;r)]^{c}} h(\varepsilon z) |u_{n} - u|^{q} dz$$

$$\leq \|h\|_{\#} \left(\int_{B^{N}(0;r)} |u_{n} - u|^{p} dz \right)^{q/p}$$

$$+ S^{q} \left(\int_{[B^{N}(0;r)]^{c}} h(\varepsilon z) \frac{p}{p - q} dz \right)^{\frac{p - q}{p}} \|u_{n} - u\|_{H}^{q}$$

$$\leq C'\sigma + o_{n}(1).$$

$$(\because \{u_{n}\} \text{ is bounded in } H^{1}(\mathbb{R}^{N}) \text{ and } u_{n} \to u \text{ in } L_{loc}^{p}(\mathbb{R}^{N}))$$

Applying (f1) and $u_n \to u$ in $L^p_{loc}(\mathbb{R}^N)$, we get that

$$\int_{\mathbb{R}^N} f(\varepsilon z) (u_n - u)_+^p dz = \int_{\mathbb{R}^N} f_\infty(u_n - u)_+^p dz + o_n(1).$$
(3.4)

Let $p_n = u_n - u$. Suppose $p_n \to 0$ strongly in $H^1(\mathbb{R}^N)$. By (3.1)-(3.4), we deduce that

$$\begin{aligned} \|p_{n}\|_{H}^{2} &= \|u_{n}\|_{H}^{2} - \|u\|_{H}^{2} + o_{n}(1) \\ &= \int_{\mathbb{R}^{N}} f(\varepsilon z)(u_{n})_{+}^{p} dz - \int_{\mathbb{R}^{N}} \varepsilon \frac{2(p-q)}{p-2} h(\varepsilon z)(u_{n})_{+}^{q} dz \\ &- \int_{\mathbb{R}^{N}} f(\varepsilon z) u^{p} dz + \int_{\mathbb{R}^{N}} \varepsilon \frac{2(p-q)}{p-2} h(\varepsilon z) u^{q} dz + o_{n}(1) \\ &= \int_{\mathbb{R}^{N}} f(\varepsilon z)(u_{n} - u)_{+}^{p} dz + o_{n}(1) = \int_{\mathbb{R}^{N}} f_{\infty}(p_{n})_{+}^{p} dz + o_{n}(1). \end{aligned}$$

Then

$$I_{\infty}(p_n) = \frac{1}{2} \|p_n\|_H^2 - \frac{1}{p} \int_{\mathbb{R}^N} f_{\infty}(p_n)_+^p dz$$
$$= \left(\frac{1}{2} - \frac{1}{p}\right) \|p_n\|_H^2 + o_n(1) > 0.$$

By Theorem 4.3 in Wang [12], there exists a sequence $\{s_n\} \subseteq \mathbb{R}^+$ such that $s_n = 1 + o_n(1)$, $\{s_n \ p_n\} \subseteq \mathbb{N}_{\infty}$ and $I_{\infty}(s_n \ p_n) = I_{\infty}(p_n) + o_n(1)$. It follows that

$$\gamma_{\infty} \leq I_{\infty}(s_n p_n) = I_{\infty}(p_n) + o_n(1)$$

$$= J_{\varepsilon}(u_n) - J_{\varepsilon}(u) + o_n(1)$$

$$= \beta - J_{\varepsilon}(u) + o_n(1) < \gamma_{\infty},$$

which is a contradiction. Hence, $u_n \to u$ strongly in $H^1(\mathbb{R}^N)$.

Remark 3.3 By Lemma 1.1, we obtain

$$C_0' = \frac{2-q}{q} \left(\frac{2-q}{p-q}\right)^{\frac{2}{p-2}} \gamma_{\text{max}} < \gamma_{\text{max}} < \gamma_{\infty},$$

and
$$\gamma_{\infty} - C_0 \Lambda^{\frac{2}{2-q}} > 0$$
 for $0 < \Lambda < \Lambda_0$.

By Lemma 2.8 (*i*), there is a $(PS)_{\alpha_{\varepsilon}}$ -sequence $\{u_n\}$ in \mathbf{M}_{ε} for J_{ε} . Then we prove that Equation (E_{ε}) admits a positive ground state solution u_0 in \mathbb{R}^N .

Theorem 3.4 Under assumptions (f1), (h1), if $0 < \Lambda$ (= $\varepsilon^{2(p-q)/(p-2)}$) < Λ_0 , then there exists at least one positive ground state solution u_0 of Equation (E_ε) in \mathbb{R}^N . Moreover, we have that $u_0 \in \mathbf{M}_\varepsilon^*$ and

$$J_{\varepsilon}(u_0) = \alpha_{\varepsilon} = \alpha_{\varepsilon}^+ \ge -C_0 \Lambda^{\frac{2}{2-q}}. \tag{3.5}$$

Proof. By Lemma 2.8 (*i*), there is a minimizing sequence $\{u_n\} \subset \mathbf{M}_{\varepsilon}$ for J_{ε} such that

$$J_{\varepsilon}(u_n) = \alpha_{\varepsilon} + o_n(1)$$
 and $J'_{\varepsilon}(u_n) = o_n(1)$ in $H^1(\mathbb{R}^N)$. Since $\alpha_{\varepsilon} < 0 < \gamma^{\infty} - C_0 \Lambda^{\frac{2}{2-q'}}$ by

Lemma 3.2, there exist a subsequence $\{u_n\}$ and $u_0 \in H^1(\mathbb{R}^N)$ such that $u_n \to u_0$ strongly in $H^1(\mathbb{R}^N)$. It is easy to see that $u_0 \geq 0$ is a solution of Equation (E_{ε}) in \mathbb{R}^N and $J_{\varepsilon}(u_0) = \alpha_{\varepsilon}$. Next, we claim that $u_0 \in \mathbf{M}_{\varepsilon}^+$. On the contrary, assume that $u_0 \in \mathbf{M}_{\varepsilon}^-(\mathbf{M}_{\varepsilon}^0 = \emptyset \text{ for } 0 < \Lambda(=\varepsilon^{2(p-q)/(p-2)}) < \Lambda_0)$.

We get that

$$\int\limits_{\mathbb{R}^N} \Lambda h(\varepsilon z) (u_0)_+^q dz > 0.$$

Otherwise,

$$0 = \int_{\mathbb{R}^N} \Lambda h(\varepsilon z) (u_0)_+^q dz = \int_{\mathbb{R}^N} \Lambda h(\varepsilon z) (u_n)_+^q dz + o_n(1)$$
$$= \|u_n\|_H^2 - \int_{\mathbb{R}^N} f(\varepsilon z) (u_n)_+^p dz + o_n(1).$$

It follows that

$$\alpha_{\varepsilon}+o_n(1)=J_{\varepsilon}(u_n)=\left(\frac{1}{2}-\frac{1}{p}\right)\|u_n\|_H^2+o_n(1),$$

which contradicts to $\alpha_{\varepsilon} < 0$. By Lemma 2.6 (*ii*), there exist positive numbers $t^+ < \bar{t} < t^- = 1$ such that $t^+ u_0 \in \mathbf{M}_{\varepsilon}^+$, $t^- u_0 \in \mathbf{M}_{\varepsilon}^-$ and

$$J_{\varepsilon}(t^{+}u_{0}) < J_{\varepsilon}(t^{-}u_{0}) = J_{\varepsilon}(u_{0}) = \alpha_{\varepsilon},$$

which is a contradiction. Hence, $u_0 \in \mathbf{M}_{\varepsilon}^+$ and

$$-C_0\Lambda^{\frac{2}{2-q}} \leq J_{\varepsilon}(u_0) = \alpha_{\varepsilon} = \alpha_{\varepsilon}^+.$$

By Lemma 2.4 and the maximum principle, then u_0 is a positive solution of Equation (E_E) in \mathbb{R}^N .

4 Existence of k + 1 solutions

From now, we assume that f and h satisfy (f1)-(f2) and (h1). Let $w \in H^1$ (\mathbb{R}^N) be the unique, radially symmetric, and positive ground state solution of Equation (E0) in \mathbb{R}^N for $f = f_{\text{max}}$. Recall the facts (or see Bahri and Li [13], Bahri and Lions [14], Gidas et al. [15], and Kwong [16]).

- (i) $w \in L^{\infty}(\mathbb{R}^N) \cap C^{2,\theta}_{loc}(\mathbb{R}^N)$ for some $0 < \theta < 1$ and $\lim_{|z| \to \infty} w(z) = 0$;
- (ii) for any $\varepsilon > 0$, there exist positive numbers C_1 , C_1 , C_2^{ε} , and C_3^{ε} such that for all $z \in \mathbb{R}^N$

$$C_2^{\varepsilon} \exp\left(-\left(1-\varepsilon\right)|z|\right) \le w(z) \le C_1 \exp\left(-|z|\right)$$

and

$$|\nabla w(z)| \leq C_3^{\varepsilon} \exp\left(-(1-\varepsilon)|z|.\right)$$

For $1 \le i \le k$, we define

$$w_{\varepsilon}^{i}(z) = w\left(z - \frac{a^{i}}{\varepsilon}\right)$$
, where $f(a^{i}) = f_{\text{max}}$.

Clearly, $w_{\varepsilon}^{i}(z) \in H^{1}(\mathbb{R}^{N})$. By Lemma 2.6 (ii), there is a unique number $(t_{\varepsilon}^{i})^{-} > 0$ such that $(t_{\varepsilon}^{i})^{-}w_{\varepsilon}^{i} \in M_{\varepsilon}^{-} \subset M_{\varepsilon}$, where $1 \leq i \leq k$.

We need to prove that

$$\lim_{\varepsilon \to 0+} J_{\varepsilon} \left(\left(t_{\varepsilon}^{i} \right)^{-} w_{\varepsilon}^{i} \right) \leq \gamma_{\max} \text{ uniformly in } i.$$

Lemma 4.1 (i) There exists a number $t_0 > 0$ such that for $0 \le t \le t_0$ and any $\varepsilon > 0$, we have that

$$J_{\varepsilon}\left(tw_{\varepsilon}^{i}\right)<\gamma_{\max}$$
 uniformly in i;

(ii) There exist positive numbers t_1 and ε_1 such that for any $t > t_1$ and $\varepsilon < \varepsilon_1$, we have that $J_{\varepsilon}\left(tw_{\varepsilon}^i\right) < 0$ uniformly in i.

Proof. (*i*) Since J_{ε} is continuous in $H^1(\mathbb{R}^N)$, $\{w_{\varepsilon}^i\}$ is uniformly bounded in $H^1(\mathbb{R}^N)$ for any $\varepsilon > 0$, and $\gamma_{\max} > 0$, there is $t_0 > 0$ such that for $0 \le t \le t_0$ and any $\varepsilon > 0$

$$J_{\varepsilon}\left(tw_{\varepsilon}^{i}\right)<\gamma_{\max}.$$

(ii) There is an $r_0 > 0$ such that $f(z) \ge f_{\max}/2$ for $z \in B^N(a^i; r_0)$ uniformly in i. Then there exists $\varepsilon_1 > 0$ such that for $\varepsilon < \varepsilon_1$

$$\begin{split} J_{\varepsilon}\left(tw_{\varepsilon}^{i}\right) &= \frac{t^{2}}{2}\left\|w_{\varepsilon}^{i}\right\|_{H}^{2} - \frac{t^{p}}{p}\int_{\mathbb{R}^{N}}f(\varepsilon z)\left(w_{\varepsilon}^{i}\right)^{p}dz - \frac{t^{q}}{q}\int_{\mathbb{R}^{N}}\Lambda h(\varepsilon z)\left(w_{\varepsilon}^{i}\right)^{q}dz \\ &\leq \frac{t^{2}}{2}\int_{\mathbb{R}^{N}}\left[|\nabla w|^{2}w^{2}\right]dz - \frac{t^{p}}{2p}\int_{\mathbb{R}^{N(0.1)}}f_{\max}w^{p}dz. \end{split}$$

Thus, there is $t_1 > 0$ such that for any $t > t_1$ and $\varepsilon < \varepsilon_1$

$$J_{\varepsilon}(tw_{\varepsilon}^{i}) < 0$$
 uniformly in i.

Lemma 4.2 Under assumptions (f1), (f2), and (h1). If $0 < \Lambda$ (= $\varepsilon^{2(p-q)/(p-2)}$) $< q \Lambda_0/2$, then

$$\lim_{\varepsilon \to 0+} \sup_{t \to 0} J_{\varepsilon} \left(t w_{\varepsilon}^{i} \right) \leq \gamma_{\max} \text{ uniformly in } i.$$

Proof. By Lemma 4.1, we only need to show that

$$\lim_{\varepsilon \to 0+} \sup_{t_0 < t \le t_1} J_{\varepsilon} \left(t w_{\varepsilon}^i \right) \le \gamma_{\max} \text{ uniformly in } i.$$

We know that $\sup_{t \ge 0} I_{\max}(tw) = \gamma_{\max}$. For $t_0 \le t \le t_1$, we get

$$\begin{split} J_{\varepsilon}\left(tw_{\varepsilon}^{i}\right) &= \frac{1}{2}\left\|tw_{\varepsilon}^{i}\right\|_{H}^{2} - \frac{1}{p}\int_{\mathbb{R}^{N}}f(\varepsilon z)\left(tw_{\varepsilon}^{i}\right)^{p}dz - \frac{1}{q}\int_{\mathbb{R}^{N}}\Lambda h(\varepsilon z)\left(tw_{\varepsilon}^{i}\right)^{q}dz \\ &= \frac{t^{2}}{2}\int_{\mathbb{R}^{N}}\left[\left|\nabla w\left(z - \frac{a^{i}}{\varepsilon}\right)\right|^{2} + w\left(z - \frac{a^{i}}{\varepsilon}\right)\right]dz \\ &- \frac{t^{p}}{p}\int_{\mathbb{R}^{N}}f(\varepsilon z)w\left(z - \frac{a^{i}}{\varepsilon}\right)^{p}dz - \frac{t^{q}}{q}\int_{\mathbb{R}^{N}}\Lambda h(\varepsilon z)w\left(z - \frac{a^{i}}{\varepsilon}\right)^{q}dz \\ &= \left\{\frac{t^{2}}{p}\int_{\mathbb{R}^{N}}\left[\left|\nabla w\right|^{2} + w^{2}\right]dz - \frac{t^{p}}{p}\int_{\mathbb{R}^{N}}f_{\max}w^{p}dz\right\} \\ &+ \frac{t^{p}}{p}\int_{\mathbb{R}^{N}}(f_{\max} - f(\varepsilon z))w\left(z - \frac{a^{i}}{\varepsilon}\right)^{p}dz - \frac{t^{q}}{q}\Lambda\int_{\mathbb{R}^{N}}h(\varepsilon z)w\left(z - \frac{a^{i}}{\varepsilon}\right)^{q}dz \\ &\leq \gamma_{\max} + \frac{t^{p}}{p}\int_{\mathbb{R}^{N}}\left(f_{\max} - f(\varepsilon z)\right)w\left(z - \frac{a^{i}}{\varepsilon}\right)^{p}dz - \frac{t^{q}}{q}\Lambda\int_{\mathbb{R}^{N}}h(\varepsilon z)w\left(z - \frac{a^{i}}{\varepsilon}\right)dz. \end{split}$$

Since

$$\int_{\mathbb{R}^N} (f_{\max} - f(\varepsilon z)) w \left(z - \frac{a^i}{\varepsilon}\right)^p dz$$

$$= \int_{\mathbb{R}^N} \left[f_{\max} - f(\varepsilon z + a^i) \right] w^p dz = o(1) \text{ as } \varepsilon \to 0^+ \text{uniformly in } i,$$

and

$$\Lambda \int\limits_{\mathbb{D}N} h(\varepsilon z) w \left(z - \frac{a^i}{\varepsilon}\right)^q dz \leq \varepsilon^{\frac{2(p-q)}{p-2}} \|h\|_\# S^q \|w\|_H^q = o(1) \text{ as } \varepsilon \to 0^+,$$

 $\text{then } \lim_{\varepsilon \to 0+} \sup\nolimits_{t_0 \le t \le t_1} J_{\varepsilon} \left(t w_{\varepsilon}^i \right) \le \gamma_{\max}, \text{ that is, } \lim_{\varepsilon \to 0+} \sup\nolimits_{t \ge 0} J_{\varepsilon} \left(t w_{\varepsilon}^i \right) \le \gamma_{\max} \text{ unisonable}$ formly in i.

Applying the results of Lemmas 2.6, 2.7(ii), and 4.2, we can deduce that

$$0 < d_0 \le \alpha_{\varepsilon}^- \le \gamma_{\max} + o(1)$$
 as $\varepsilon \to 0^+$.

Since $\gamma_{\text{max}} < \gamma_{\infty}$, there exists $\varepsilon_0 > 0$ such that

$$\gamma_{\text{max}} < \gamma_{\infty} - C_0 \Lambda^{\frac{2}{2-q}} \text{ for any } \varepsilon < \varepsilon_0.$$
 (4.1)

Choosing $0 < \rho_0 < 1$ such that

$$\overline{B_{\rho 0}^N(a^i)} \cap \overline{B_{\rho 0}^N(a^j)} = \emptyset \text{ for } i \neq j \text{ and } 1 \leq i, j \leq k,$$

where $\overline{B_{00}^N(a^i)} = \{z \in \mathbb{R}^N | |z - a^i| \le \rho 0\}$ and $f(a^i) = f_{\text{max}}$. Define $\mathbf{K} = \{a^i \mid 1 \le i \le k\}$ and $\mathbf{K}_{\rho_0/2} = \bigcup_{i=1}^k \overline{B^N_{\rho_0/2}(a^i)}$. Suppose $\bigcup_{i=1}^k \overline{B^N_{\rho_0}(a^i)} \subset B^N_{r_0}(0)$ for some $r_0 > 0$.

Let $Q_{\varepsilon}: H^1(\mathbb{R}^N) \setminus \{0\} \to \mathbb{R}^N$ be given by

$$Q_{\varepsilon}(u) = \frac{\int_{\mathbb{R}^N} \chi(\varepsilon z) |u|^p dz}{\int_{\mathbb{R}^N} |u|^p dz},$$

where $\chi: \mathbb{R}^N \to \mathbb{R}^N$, $\chi(z) = z$ for $|z| \le r_0$ and $\chi(z) = r_0 z/|z|$ for $|z| > r_0$.

Lemma 4.3 There exists $0 < \varepsilon^0 \le \varepsilon_0$ such that if $\varepsilon < \varepsilon^0$, then $Q_{\varepsilon}\left(\left(t_{\varepsilon}^i\right)^- w_{\varepsilon}^i\right) \in \mathbf{K}_{\rho_0/2}$ for each $1 \le i \le k$.

Proof. Since

$$Q_{\varepsilon}\left(\left(t_{\varepsilon}^{i}\right)^{-}w_{\varepsilon}^{i}\right) = \frac{\int_{\mathbb{R}^{N}} \chi\left(\varepsilon z\right) \left|w\left(z - \frac{a^{i}}{\varepsilon}\right)\right|^{p} dz}{\int_{\mathbb{R}^{N}} \left|w\left(z - \frac{a^{i}}{\varepsilon}\right)\right|^{p} dz}$$
$$= \frac{\int_{\mathbb{R}^{N}} \chi\left(\varepsilon z + a^{i}\right) |w\left(z\right)|^{p} dz}{\int_{\mathbb{R}^{N}} |w\left(z\right)|^{p} dz}$$
$$\to a^{i} as \varepsilon \to 0^{+},$$

there exists $\varepsilon^0 > 0$ such that

$$Q_{\varepsilon}\left(\left(t_{\varepsilon}^{i}\right)^{-}w_{\varepsilon}^{i}\right)\in\mathbf{K}_{\rho_{0}/2}$$
 for any $\varepsilon<\varepsilon^{0}$ and each $1\leq i\leq k$.

Lemma 4.4 There exists a number $\bar{\delta} > 0$ such that if $u \in \mathbb{N}_{\varepsilon}$ and $I_{\varepsilon}(u) \leq \gamma_{\max} + \bar{\delta}$, then $Q_{\varepsilon}(u) \in \mathbb{K}_{\rho_0/2}$ for any $0 < \varepsilon < \varepsilon^0$.

Proof. On the contrary, there exist the sequences $\{\varepsilon_n\} \subset \mathbb{R}^+$ and $\{u_n\} \subset \mathbb{N}_{\varepsilon_n}$ such that $\varepsilon_n \to 0$, $I_{\varepsilon_n}(u_n) = \gamma_{\max}(>0) + o_n$ (1) as $n \to \infty$ and $Q_{\varepsilon_n}(u_n) \notin \mathbb{K}_{\rho_0/2}$ for all $n \in \mathbb{N}$. It is easy to check that $\{u_n\}$ is bounded in $H^1(\mathbb{R}^N)$. Suppose $u_n \to 0$ strongly in $L^p(\mathbb{R}^N)$. Since

$$||u_n||_H^2 = \int_{\mathbb{R}^N} f(\varepsilon_n z)(u_n)_+^p dz$$
 for each $n \in \mathbb{N}$,

and

$$I_{\varepsilon_n}(u_n) = \frac{1}{2} \|u_n\|_H^2 - \frac{1}{p} \int_{\mathbb{R}^N} f(\varepsilon_n z) (u_n)_+^p dz = \gamma_{\max} + o_n(1),$$

then

$$\gamma_{\max} + o_n(1) = I_{\varepsilon_n}(u_n) = \left(\frac{1}{2} - \frac{1}{p}\right) \int_{\mathbb{R}^N} f(\varepsilon_n z) (u_n)_+^p dz = o_n(1),$$

which is a contradiction. Thus, $u_n \neq 0$ strongly in $L^p(\mathbb{R}^N)$. Applying the concentration-compactness principle (see Lions [17] or Wang [[12], Lemma 2.16]), then there exist a constant $d_0 > 0$ and a sequence $\{\widetilde{z_n}\} \subset \mathbb{R}^N$ such that

$$\int_{B^N(\widetilde{z_n};1)} |u_n(z)|^2 dz \ge d_0 > 0. \tag{4.2}$$

Let $v_n(z) = u_n \ (z + \widetilde{z_n})$, there are a subsequence $\{v_n\}$ and $v \in H^1(\mathbb{R}^N)$ such that $v_n \rightharpoonup v$ weakly in $H^1(\mathbb{R}^N)$. Using the similar computation in Lemma 2.6, there is a sequence $\{s_{\max}^n\} \subset \mathbb{R}^+$ such that $\widetilde{v_n} = s_{\max}^n v_n \in \mathbf{N}_{\max}$ and

$$0 < \gamma_{\max} \le I_{\max}(\widetilde{\nu_n}) \le I_{\varepsilon_n}(s_{\max}^n u_n)$$

$$\le I_{\varepsilon_n}(u_n) = \gamma_{\max} + o_n(1) \text{ as } n \to \infty.$$

We deduce that a convergent subsequence $\{s_{\max}^n\}$ satisfies $s_{\max}^n \to s_0 > 0$. Then there are subsequences $\{\widetilde{v_n}\}$ and $\widetilde{v} \in H^1(\mathbb{R}^N)$ such that $\widetilde{v_n} \to \widetilde{v} (=s_0 v)$ weakly in $H^1(\mathbb{R}^N)$. By (4.2), then $\widetilde{v} \neq 0$. Moreover, we can obtain that $\widetilde{v_n} \to \widetilde{v}$ strongly in $H^1(\mathbb{R}^N)$ and $I_{\max}(\widetilde{v}) = \gamma_{\max}$. Now, we want to show that there exists a subsequence $\{z_n\} = \{\varepsilon_n \widetilde{z_n}\}$ such that $z_n \to z_0 \in K$.

(i) Claim that the sequence $\{z_n\}$ is bounded in \mathbb{R}^N . On the contrary, assume that $|z_n| \to \infty$, then

$$\gamma_{\max} = I_{\max}(\tilde{v}) < I_{\infty}(\tilde{v})
\leq \liminf_{n \to \infty} \left[\frac{1}{2} \|\tilde{v}_{n}\|_{H}^{2} - \frac{1}{p} \int_{\mathbb{R}^{N}} f(\varepsilon_{n}z + z_{n}) (\tilde{v}_{n})_{+}^{p} dz \right]
= \liminf_{n \to \infty} \left[\frac{(s_{\max}^{n})^{2}}{2} \|u_{n}\|_{H}^{2} - \frac{(s_{\max}^{n})^{p}}{p} \int_{\mathbb{R}^{N}} f(\varepsilon_{n}z) (u_{n})_{+}^{p} dz \right]
= \liminf_{n \to \infty} I_{\varepsilon_{n}}(s_{\max}^{n}u_{n}) \leq \liminf_{n \to \infty} I_{\varepsilon_{n}}(u_{n}) = \gamma_{\max},$$

which is a contradiction.

(*ii*) Claim that $z_0 \in \mathbf{K}$. On the contrary, assume that $z_0 \notin \mathbf{K}$, that is, $f(z_0) < f_{\text{max}}$. Then using the above argument to obtain that

$$\gamma_{\max} = I_{\max}(\tilde{v}) < \frac{1}{2} \|\tilde{v}\|_{H}^{2} - \frac{1}{p} \int_{\mathbb{R}^{N}} f(z_{0})(\tilde{v})_{+}^{p} dz$$

$$\leq \liminf_{n \to \infty} \left[\frac{1}{2} \|\tilde{v}_{n}\|_{H}^{2} - \frac{1}{p} \int_{\mathbb{R}^{N}} f(\varepsilon_{n}z + z_{n})(\tilde{v}_{n})_{+}^{p} dz \right]$$

which is a contradiction. Since $v_n \to v \neq 0$ in H^1 (\mathbb{R}^N), we have that

$$Q_{\varepsilon_n}(u_n) = \frac{\int\limits_{\mathbb{R}^N} \chi(\varepsilon_n z) |v_n(z - \widetilde{z_n})|^p dz}{\int\limits_{\mathbb{R}^N} |v_n(z - \widetilde{z_n})|^p dz}$$

$$= \frac{\int\limits_{\mathbb{R}^N} \chi(\varepsilon_n z + \varepsilon_n \widetilde{z_n}) |v_n|^p dz}{\int\limits_{\mathbb{R}^N} |v_n|^p dz} \to z_0 \subset \mathbf{K}_{\rho_0/2} \text{ as } n \to \infty,$$

which is a contradiction.

Hence, there exists a number $\bar{\delta} > 0$ such that if $u \in \mathbb{N}_{\varepsilon}$ and $I_{\varepsilon}(u) \leq \gamma_{\max} + \bar{\delta}$, then $Q_{\varepsilon}(u) \in \mathbb{K}_{\rho_0/2}$ for any $0 < \varepsilon < \varepsilon^0$.

From (4.1), choosing $0 < \delta_0 < \bar{\delta}$ such that

$$\gamma_{\max} + \delta_0 < \gamma_{\infty} - C_0 \Lambda^{\frac{2}{2-q}} \text{ for any } 0 < \varepsilon < \varepsilon^0.$$
 (4.3)

For each $1 \le i \le k$, define

$$O_{\varepsilon}^{i} = \{ u \in \mathbf{M}_{\varepsilon}^{-} | |Q_{\varepsilon}(u) - a^{i}| < \rho_{0} \},$$

$$\partial O_{\varepsilon}^{i} = \{ u \in \mathbf{M}_{\varepsilon}^{-} | |Q_{\varepsilon}(u) - a^{i}| = \rho_{0} \},$$

$$\beta_{\varepsilon}^{i} = \inf_{u \in O_{\varepsilon}^{i}} J_{\varepsilon}(u) \text{ and } \tilde{\beta}_{\varepsilon}^{i} = \inf_{u \in \partial O_{\varepsilon}^{i}} J_{\varepsilon}(u).$$

Lemma 4.5 If $u \in M_{\varepsilon}^-$ and $J_{\varepsilon}(u) \leq \gamma_{\max} + \delta_0/2$, then there exists a number $0 < \bar{\varepsilon} < \varepsilon^0$ such that $Q_{\varepsilon}(u) \in K_{\rho_0/2}$ for any $0 < \varepsilon < \bar{\varepsilon}$.

Proof. We use the similar computation in Lemma 2.6 to get that there is a unique positive number

$$s_{\varepsilon}^{u} = \left(\frac{\|u\|_{H}^{2}}{\int\limits_{\mathbb{R}^{N}} f(\varepsilon z) u_{+}^{p} dz}\right)^{1/(p-2)}$$

such that $s_{\varepsilon}^{u}u \in \mathbf{N}_{\varepsilon}$. We want to show that $s_{\varepsilon}^{u} < c$ for some constant c > 0 (independent of u). First, since $u \in \mathbf{M}_{\varepsilon}^{-} \subset \mathbf{M}_{\varepsilon}$,

$$0 < d_0 \le \alpha_{\varepsilon}^- \le J_{\varepsilon}(u) \le \gamma_{\max} + \delta_0/2$$

and J_{ε} is coercive on \mathbf{M}_{ε} , then $0 < c_2 < \|u\|_H^2 < c_1$ for some constants c_1 and c_2 (independent of u). Next, we claim that $\|u\|_{L^p}^p > c_3 > 0$ for some constant $c_3 > 0$

(independent of u). On the contrary, there exists a sequence $\{u_n\} \subset \mathbf{M}_{\varepsilon}^-$ such that

$$\|u_n\|_{L^p}^p = o_n(1)$$
 as $n \to \infty$.

By (2.3),

$$\frac{2-q}{p-q} < \frac{\int\limits_{\mathbb{R}^N} f(\varepsilon z) (u_n)_+^p dz}{\|u_n\|_H^2} \le \frac{f_{\max} \|u_n\|_{L^p}^p}{c_2} = o_n(1),$$

which is a contradiction. Thus, $s_{\varepsilon}^{u} < c$ for some constant c > 0 (independent of u). Now, we get that

$$\begin{split} \gamma_{\max} + \delta_0/2 &\geq J_{\varepsilon}(u) = \sup_{t \geq 0} J_{\varepsilon}(tu) \geq J_{\varepsilon}(s_{\varepsilon}^u u) \\ &= \frac{1}{2} \left\| s_{\varepsilon}^u u \right\|_H^2 - \frac{1}{p} \int_{\mathbb{R}^N} f(\varepsilon z) (s_{\varepsilon}^u u)_+^p dz - \frac{1}{q} \int_{\mathbb{R}^N} \Lambda h(\varepsilon z) (s_{\varepsilon}^u u)_+^q dz \\ &\geq I_{\varepsilon}(s_{\varepsilon}^u u) - \frac{1}{q} \int_{\mathbb{R}^N} \Lambda h(\varepsilon z) (s_{\varepsilon}^u u)_+^q dz. \end{split}$$

From the above inequality, we deduce that

$$I_{\varepsilon}(s_{\varepsilon}^{u}u) \leq \gamma_{\max} + \delta_{0}/2 + \frac{1}{q} \int_{\mathbb{R}^{N}} \Lambda h(\varepsilon z)(s_{\varepsilon}^{u}u)_{+}^{q}dz$$

$$\leq \gamma_{\max} + \delta_{0}/2 + \Lambda \|h\|_{\#} S^{q} \|s_{\varepsilon}^{u}u\|_{H}^{q}$$

$$< \gamma_{\max} + \delta_{0}/2 + \Lambda c^{q}(c_{1})^{q/2} \|h\|_{\#} S^{q}, \text{ where } \Lambda = \varepsilon^{2(p-q)/(p-2)}.$$

Hence, there exists $0<\bar{\varepsilon}<\varepsilon^0$ such that for $0<\varepsilon<\bar{\varepsilon}$

$$I_{\varepsilon}(s_{\varepsilon}^{u}u) \leq \gamma_{\max} + \delta_{0}$$
, where $s_{\varepsilon}^{u}u \in \mathbb{N}_{\varepsilon}$.

By Lemma 4.4, we obtain

$$Q_{\varepsilon}(s_{\varepsilon}^{u}u) = \frac{\int\limits_{\mathbb{R}^{N}} \chi(\varepsilon z) |s_{\varepsilon}^{u}u(z)|^{p} dz}{\int\limits_{\mathbb{R}^{N}} |s_{\varepsilon}^{u}u(z)|^{p} dz} \in \mathbf{K}_{\rho_{0}/2} \text{ for any } 0 < \varepsilon < \bar{\varepsilon},$$

or $Q_{\varepsilon}(u) \in \mathbf{K}_{\rho_0/2}$ for any $0 < \varepsilon < \bar{\varepsilon}$.

Applying the above lemma, we get that

$$\tilde{\beta}^i_{\varepsilon} \ge \gamma_{\max} + \delta_0/2 \text{ for any } 0 < \varepsilon < \bar{\varepsilon}.$$
 (4.4)

By Lemmas 4.2, 4.3, and Equation (4.3), there exists $0 < \varepsilon^* \le \bar{\varepsilon}$ such that

$$\beta_{\varepsilon}^{i} \leq J_{\varepsilon} \left(\left(t_{\varepsilon}^{i} \right)^{-} w_{\varepsilon}^{i} \right) \leq \gamma_{\max} + \delta_{0}/3 < \gamma_{\infty} - C_{0} \Lambda^{\frac{2}{2-q}} \text{ for any } 0 < \varepsilon < \varepsilon^{*}.$$
 (4.5)

Lemma 4.6 Given $u \in O_{\varepsilon}^{i}$, then there exist an $\eta > 0$ and a differentiable functional $l: B(0; \eta) \subseteq H^{1}(\mathbb{R}^{N}) \to \mathbb{R}^{+}$ such that l(0) = 1, $l(v)(u - v) \in O_{\varepsilon}^{i}$ for any $v \in B(0; \eta)$ and

$$\langle l'(v), \phi \rangle|_{(l,v)=(1,0)} = \frac{\langle \psi'_{\varepsilon}(u), \phi \rangle}{\langle \psi'_{\varepsilon}(u), \psi \rangle} \text{ for any } \phi \in C_c^{\infty}(\mathbb{R}^N), \tag{4.6}$$

where $\psi_{\varepsilon}(u) = \langle J'_{\varepsilon}(u), u \rangle$.

Proof. See Cao and Zhou [7].

Lemma 4.7 For each $1 \le i \le k$, there is a (PS) $_{\varepsilon}^{i}$ -sequence $\{u_n\} \subset O_{\varepsilon}^{i}$ in $H^1(\mathbb{R}^N)$ for J_{ε} . **Proof**. For each $1 \le i \le k$, by (4.4) and (4.5),

$$\beta_{\varepsilon}^{i} < \tilde{\beta}_{\varepsilon}^{i} \text{ for any } 0 < \varepsilon < \varepsilon^{*}.$$
 (4.7)

Then

$$\beta_\varepsilon^i = \inf_{u \in O_\varepsilon^i \cup \partial O_\varepsilon^i} J_\varepsilon(u) \text{ for any } 0 < \varepsilon < \varepsilon^*.$$

Let $\{u_n^i\} \subset O_{\varepsilon}^i \cup \partial O_{\varepsilon}^i$ be a minimizing sequence for β_{ε}^i . Applying Ekeland's variational principle, there exists a subsequence $\{u_n^i\}$ such that $J_{\varepsilon}(u_n^i) = \beta_{\varepsilon}^i + 1/n$ and

$$J_{\varepsilon}(u_n^i) \le J_{\varepsilon}(w) + \|w - u_n^i\|_H / n \text{ for all } w \in O_{\varepsilon}^i \cup \partial O_{\varepsilon}^i.$$

$$\tag{4.8}$$

Using (4.7), we may assume that $u_n^i \in O_{\varepsilon}^i$ for sufficiently large n. By Lemma 4.6, then there exist an $\eta_n^i > 0$ and a differentiable functional $l_n^i : B(0; \eta_n^i) \subset H^1(\mathbb{R}^N) \to \mathbb{R}^+$ such that $l_n^i(0) = 1$, and $l_n^i(v) \left(u_n^i - v\right) \in O_{\varepsilon}^i$ for $v \in B(0; \eta_n^i)$. Let $v_{\sigma} = \sigma v$ with $\|v\|_H = 1$ and $0 < \sigma < \eta_n^i$. Then $v_{\sigma} \in B\left(0, \eta_n^i\right)$ and $w_{\sigma} = l_n^i(v_{\sigma})\left(u_n^i - v_{\sigma}\right) \in O_{\varepsilon}^i$. From (4.8) and by the mean value theorem, we get that as $\sigma \to 0$

$$\frac{\|w_{\sigma} - u_{n}^{i}\|_{H}}{n} \geq J_{\varepsilon}(u_{n}^{i}) - J_{\varepsilon}(w_{\sigma})$$

$$= \langle J'_{\varepsilon}(t_{0}u_{n}^{i} + (1 - t_{0})w_{\sigma}), u_{n}^{i} - w_{\sigma} \rangle \text{ where } t_{0} \in (0, 1)$$

$$= \langle J'_{\varepsilon}(u_{n}^{i}), u_{n}^{i} - w_{\sigma} \rangle + o(\|u_{n}^{i} - w_{\sigma}\|_{H}) (\because J_{\varepsilon} \in C^{1})$$

$$= \sigma l_{n}^{i}(v_{\sigma}) \langle J'_{\varepsilon}(u_{n}^{i}), v \rangle + (1 - l_{n}^{i}(v_{\sigma})) \langle J'_{\varepsilon}(u_{n}^{i}), u_{n}^{i} \rangle + o(\|u_{n}^{i} - w_{\sigma}\|_{H})$$

$$(\because l_{n}^{i}(v_{\sigma}) \rightarrow l_{n}^{i}(0) = 1 \text{ as } \sigma \rightarrow 0)$$

$$= \sigma l_{n}^{i}(\sigma v) \langle J'_{\varepsilon}(u_{n}^{i}), v \rangle + o(\|u_{n}^{i} - w_{\sigma}\|_{H}).$$

Hence,

$$\begin{split} \left| \left\langle I_{\varepsilon}^{i} \left(u_{n}^{i} \right), v \right\rangle \right| &\leq \frac{\left\| w_{\sigma} - u_{n}^{i} \right\|_{H} \left(\frac{1}{n} + \left| o(1) \right| \right)}{\sigma \left| l_{n}^{i} (\sigma v) \right|} \\ &\leq \frac{\left\| u_{n}^{i} \left(l_{n}^{i} (\sigma v) - l_{n}^{i} (0) \right) - \sigma v l_{n}^{i} (\sigma v) \right\|_{H} \left(\frac{1}{n} + \left| o(1) \right| \right)}{\sigma \left| l_{n}^{i} (\sigma v) \right|} \\ &\leq \frac{\left\| u_{n}^{i} \right\|_{H} \left| l_{n}^{i} (\sigma v) - l_{n}^{i} (0) \right| + \sigma \left\| v \right\|_{H} \left| l_{n}^{i} (\sigma v) \right|}{\sigma \left| l_{n}^{i} (\sigma v) \right|} \left(\frac{1}{n} + \left| o(1) \right| \right) \\ &\leq C \left(1 + \left\| \left(l_{n}^{i} \right)' (0) \right\| \right) \left(\frac{1}{n} + \left| o(1) \right| \right). \end{split}$$

Since we can deduce that $\|(I_n^i)'(0)\| \le c$ for all n and i from (4.6), then $J_{\varepsilon}'(u_n^i) = o_n(1)$ strongly in $H^{-1}(\mathbb{R}^N)$ as $n \to \infty$.

Theorem 4.8 Under assumptions (f1), (f₂), and (h1), there exists a positive number λ^* ($\lambda^* = (\varepsilon^*)^{-2}$) such that for $\lambda > \lambda^*$, Equation (E_{λ}) has k + 1 positive solutions in \mathbb{R}^N .

Proof. We know that there is a $(PS)_{\beta_{\varepsilon}^{i}}$ -sequence $\{u_{n}\}\subset \mathbf{M}_{\varepsilon}^{-}$ in $H^{1}(\mathbb{R}^{N})$ for J_{ε} for each $1\leq i\leq k$, and (4.5). Since J_{ε} satisfies the $(PS)_{\beta}$ -condition for $\beta\in\left(-\infty,\gamma_{\infty}-C_{0}\Lambda^{\frac{2}{2-q}}\right)$, then J_{ε} has at least k critical points in $\mathbf{M}_{\varepsilon}^{-}$ for $0<\varepsilon<\varepsilon^{*}$. It follows that Equation (E_{λ})

has k nonnegative solutions in \mathbb{R}^N . Applying the maximum principle and Theorem 3.4, Equation (E_{λ}) has k+1 positive solutions in \mathbb{R}^N .

Acknowledgements

The author was grateful for the referee's helpful suggestions and comments.

Competing interests

The author declares that he has no competing interests.

Received: 13 July 2011 Accepted: 24 February 2012 Published: 24 February 2012

References

- Ambrosetti, A, Brezis, H, Cerami, G: Combined effects of concave and convex nonlinearities in some elliptic problems. J Funct Anal. 122, 519–543 (1994). doi:10.1006/jfan.1994.1078
- Wu, TF: On semilinear elliptic equations involving concave-convex non-linearities and sign-changing weight function. J Math Anal Appl. 318, 253–270 (2006). doi:10.1016/j.jmaa.2005.05.057
- 3. Ambrosetti, A, Garcia Azorero, J, Peral Alonso, I: Multiplicity results for some nonlinear elliptic equations. J Funct Anal. 137, 219–242 (1996). doi:10.1006/jfan.1996.0045
- Brown, KJ, Zhang, Y: The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function. J Diff Equ. 193, 481–499 (2003). doi:10.1016/S0022-0396(03)00121-9
- de Figueiredo, DG, Gossez, JP, Ubilla, P: Local superlinearity and sub-linearity for indefinite semilinear elliptic problems. J Funct Anal. 199, 452–467 (2003). doi:10.1016/S0022-1236(02)00060-5
- Zhu, XP: A perturbation result on positive entire solutions of a semilinear elliptic equation. J Diff Equ. 92, 163–178 (1991). doi:10.1016/0022-0396(91)90045-B
- Hirano, N: Existence of entire positive solutions for nonhomogeneous elliptic equations. Nonlinear Anal. 29, 889–901 (1997). doi:10.1016/S0362-546X(96)00176-9
- Adachi, S, Tanaka, K: Four positive solutions for the semilinear elliptic equation: -Δu + u = a(x)u^ρ + f(x) in

 N Calc Var Partial Diff Equ. 11, 63–95 (2000). doi:10.1007/s005260050003
- 11. Tarantello, G: On nonhomogeneous elliptic involving critical Sobolev exponent. Ann Inst H Poincaré Anal Non Linéaire. 9, 281–304 (1992)
- Wang, HC: Palais-Smale approaches to semilinear elliptic equations in unbounded domains. Electron J Diff Equ Monogragh 142 (2004). 06
- Bahri, A, Li, YY: On a min-max procedure for the existence of a positive solution for certain scalar field equations in

 New Mat Iberoamericana. 6. 1–15 (1990)
- Bahri, A, Lions, PL: On the existence of a positive solution of semilin-ear elliptic equations in unbounded domains. Ann Inst H Poincaré Anal Nonlinéaire. 14, 365–413 (1997)
- Gidas, B, Ni, WM, Nirenberg, L: Symmetry and related properties via the maximum principle. Comm Math Phys. 68, 209–243 (1979). doi:10.1007/BF01221125
- 16. Kwong, MK: Uniqueness of positive solutions of $\Delta u u + u^p = 0$ in \mathbf{Z}^N . Arch Ration Mech Anal. 105, 234–266 (1989)
- 17. Lions, PL: The concentration-compactness principle in the calculus of variations. The locally compact case. I II Ann Inst H Poincaré Anal Non-linéaire 1, 109–145 (1984). 223-283

doi:10.1186/1687-2770-2012-24

Cite this article as: Lin: Multiple positive solutions of semilinear elliptic equations involving concave and convex nonlinearities in \mathbb{R}^N . Boundary Value Problems 2012 2012:24.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ▶ Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com