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Abstract
In this article, we investigate the effect of the coefficient f(2) of the sub-critical
nonlinearity. For sufficiently large 4 > 0, there are at least k + 1 positive solutions of
the semilinear elliptic equations

—Av+ = f(P 1 + h(z) ! in RY;

ve HY(RY),

where 1 < g <2 <p<2*=2N/IN-2) for N> 3.
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1 Introduction
For N>3,1<q<2<p<2*=2N/(N - 2), we consider the semilinear elliptic equa-

tions

—Av+ v = f(2)P ! + h(2) ! in RY;
{u e H'(RN), (E2)

where A > 0.

Let f'and / satisfy the following conditions:

(f1) fis a positive continuous function in R™ and lim, _, . flz) = f. > 0.
(f2) there exist k points a', a*,..., a* in RN such that

£(@") = finax = maxf(z) for 1 <i <k

and fo. <fmax-

(h1) and h 2 0.

helLP=d4@®RN)NL>®RN)
Semilinear elliptic problems involving concave-convex nonlinearities in a bounded

domain

—Au = ch(z)|u]"%u + [ul%uin Q;
1 (Ec)
u e Hy(),
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have been studied by Ambrosetti et al. [1] (# =1, and 1 <q < 2 <p < 2* = 2N/(N- 2))
and Wu [2]h € C(2) and changes sign, 1 <q < 2 <p < 2%). They proved that this equa-
tion has at least two positive solutions for sufficiently small ¢ > 0. More general results
of Equation (E.) were done by Ambrosetti et al. [3], Brown and Zhang [4], and de Fig-
ueiredo et al. [5].

In this article, we consider the existence and multiplicity of positive solutions of
Equation (E;) in R™. For the case ¢ = A = 1 and fiz) = 1 for all z e R, suppose that /
is nonnegative, small, and exponential decay, Zhu [6] showed that Equation (E;) admits
at least two positive solutions in R™. Without the condition of exponential decay, Cao
and Zhou [7] and Hirano [8] proved that Equation (E;) admits at least two positive
solutions in R™. For the case ¢ = A = 1, by using the idea of category and Bahri-Li’s
minimax argument, Adachi and Tanaka [9] asserted that Equation (E;) admits at least
four positive solutions in R, where flz) K 1, iz) 2 1 - C exp((-(2 + 9) |z|) for some C,
d > 0, and sufficiently small ||h| -1 > 0. Similarly, in Hsu and Lin [10], they have stu-
died that there are at least four positive solutions of the general case -Au + u = i)™
+ Ah(z) v in RN for sufficiently small A > 0.

By the change of variables

1 2
e=2 2and u(z) = &P~ 2y(ez),

Equation (E)) is transformed to

2(p—a)
—Au+u=f(edu +e P2 h(ez)ut!in RY; (Ee)
u e H'(RN),
Associated with Equation (E,), we consider the C'-functional J,, for u ¢ H' (RY),
. , | 2(p—q)
Je(u) = ) lull? — ) ff(sz)u’jdz— q /g p—2 h(ez)uldz,
RN RN

2 2 2
where 14l = fN (1Auf® + |ul?) dz is the norm in H* (RM) and u, = max{y, 0} > 0. We
R

know that the nonnegative weak solutions of Equation (E,) are equivalent to the criti-
cal points of /.. This article is organized as follows. First of all, we use the argument of
Tarantello [11] to divide the Nehari manifold M, into the two parts M} and M;. Next,
we prove that the existence of a positive ground state solution ug € M} of Equation
(E,). Finally, in Section 4, we show that the condition (f2) affects the number of posi-
tive solutions of Equation (E,), that is, there are at least k critical points U1, ..., U € M
of J, such that J, (u;) = gI((PS) — value) for 1 < i < k.

Let
S= sup |lullp,
ueH'(RN)
llullpr=1
then

lullpy < Sllully for any u € H'(RN)\{0}. (1.1)
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For the semilinear elliptic equations

—Au+u=f(ez)u’~! in RY;
u e HY(RN),

we define the energy functional L (u) = ||””H / flex)] dz and
Ye = ulerg; I.(u),
where N, = {u e H' (RN)\ | u, 0 and (I_(u), u) = 0}. Note that

(i) if f= f., we define Ioo (1) = IIuIIH f foottid: and
RN
7oo = Jf ()
where N, = {u e H" (R™)\ {0} | u+ X 0 and (I (u), u) =

(i) if = frnae We define Tmax(tt) = ||”||H f fmaxtédz

Ymax = Inf Imax(u),
€N max

where Ny = (€ H (RM)\ {0} | u, B0 and (I, (), u) = O}.
Lemma 1.1

-2
Vmax = pzp (fnaxS") 22 > 0,

Proof. It is similar to Theorems 4.12 and 4.13 in Wang [[12], p. 31].
Our main results are as follows.

(D) Let A = 2?7 D/®2) Under assumptions (f1) and (k1) if
2—4q qa—p

0<A<Ao- (p_z)<2f“’>ﬂ—2[(p—q)sz]P—2 Ihlz",

where ||/||s is the norm in then Equation (E,) admits at least a positive

p
LP = a4 (RrNY
ground state solution. (See Theorem 3.4)
(II) Under assumptions (f1) - (2) and (k1), if A is sufficiently large, then Equation
(E;) admits at least k + 1 positive solutions. (See Theorem 4.8)

2 The Nehari manifold
First of all, we define the Palais-Smale (denoted by (PS)) sequences and (PS)-conditions
in H'(RM) for some functional J.

Definition 2.1 (i) For B € R, a sequence {u,} is a (PS)g-sequence in H'RN) for J if ]
(u,) = B + 0,(1) and J'(u,) = 0,(1) strongly in H (RM) as n — oo, where H' (RN) is the
dual space ole(RN);

Page 3 of 17
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(ii) ] satisfies the (PS)g-condition in H'(RN) if every (PS)p-sequence in HRN) for ]
contains a convergent subsequence.
Next, since J, is not bounded from below in H' (RY), we consider the Nehari mani-

fold
M, = {u e H'(RN)\{0} |u, # 0 and (J/'.(u), u) =0}, (2.1)

where
2(p—q)
o), u) = llullf — /f(ez)uﬁdz—/g P=2 h(ez)uldz.
RN RN

Note that M, contains all nonnegative solutions of Equation (E,). From the lemma
below, we have that J,. is bounded from below on M,.

Lemma 2.2 The energy functional ], is coercive and bounded from below on M,.

Proof. For u € M,, by (2.1), the Holder inequality <p1 = p P q,pz = Z) and the
Sobolev embedding theorem (1.1), we get

L L 2(p—q)
]Eu=< - )||u||2—< - )fe p—2 h(ez)uldz
W= (5=, )=, - (c2)
|RN
1l R 2(p—q)
Ully | p— 2—q _P=4d_p-2 q
> p ) lully q € 1l4S

Hence, we have that J, is coercive and bounded from below on M,.
Define

Ve (u) = U, (), u).

Then for u € M,, we get

2(p—q)

(W (w), u) = 2 [lullf — pff(sz)uﬁdz — q/ e P=2 nez)uldz
RY RY (2.2)
2(p—q)

~(p-a) & P72 hetde— (p - 2) lul
RN

- =)l - (- ) [ fleild 23)

[RN

We apply the method in Tarantello [11], let
M; = {u e M, [(¥', (1), u) > 0;

M = {u e Mg |(¥'.(u),u) = 0);
M; = {ueM, [(¥' (u),u) <0}

Page 4 of 17
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Lemma 2.3 Under assumptions (f1) and (hl), if 0 < A (= 2/ P2y A then
M? =¢.

Proof. See Hsu and Lin [[10], Lemma 5].

Lemma 2.4 Suppose that u is a local minimizer for J, on M, and u ¢ M°. Then
J.(u) = Oin H* (RN).

Proof. See Brown and Zhang [[4], Theorem 2.3].

Lemma 2.5 We have the following inequalities.

() .{I h(ez)uldz > Ofor each u e M3;
R

. p—q 1/(2—q) .
(@) lully < (p_2A||h||#S‘7> for each u € M};
. 2 — q 1/(17_2) _
() Nully > [(P Py Sf’i| for each u € M;

@) Ifo < A (: sz(P_")/(p_z)) < qlz\o’ then J(u) > 0 for each u € M.

Proof. (i) It can be proved by using (2.2).
(ii) For any ueM;CM, by (2.2), we apply the Holder inequality
p

(p1 = p— q,P?_ = Z) to obtain that

0<@—ny/AMuwwz—@—zmm@
IRN

< (P — Q) ANRIS lullf, — (0 — 2) lullf -

(iii) For any u € M, by (2.3), we have that

lulfy < 5 70 [ penide < 570 hulf
RN
(iv) For any u € M_ C M, by (iii), we get that
Y Y g

Je(u) = (; - ;) lull; — (; - ;) / Ah(ez)uldz
e

nm%[p—z 2q P4 ]
> lullz; - NI,
p 2 H q *

q 2—q
1[ 2—¢q ]p—z p—z[ 2—¢q ]p—Z_P_qA”h“#Sq
q

~ p (P - q)fmaxsp 2 (P - q)fmaxsp
2-4 q-p
i 2 — _
Thus, lfO<A< Z(p_2)<f q)p 2[(p—q)82]1’_2 ||h||;l’ we get that J.(u) >

do > 0 for some constant dy = do(e, p, ¢ S, |l # 5 finax)-
For ue H' (R™)\ {0} and u, K 0, let

1/(p-2)
(2—q) lulf

= g S fleantde
[RN

Page 5 of 17
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Lemma 2.6 For each u € H' (RM)\ {0} and u, ® 0, we have that

@) if / ; h(ez)uldz = 0, then there exists a unique positive number t~ = t~(u) > isuch
that t‘u[Re M, and J(t u) = sup; - o J.(tuw);

(i) if 0 < A (= 20 D'®2) ¢ Ay and /N h(ez)uldz > O, then there exist unique posi-
tive numbers t* =t*(u) <t <t~ =t~ (u)sich that t'u e M}, t7u € M_and

Je(tu) = Oiggzjg (tu),  Je(t"u) = supJo(tu).

>t

Proof. See Hsu and Lin [[10], Lemma 7].
Applying Lemma 2.3 (MY = for 0 < A < Ag), we write My = M UM_, where

M}:ueMmrwmwﬁ—@—m/ﬂmﬂﬁ>o,
|RN

[

M, = fueM|(2—q)llullf; — (p - c/)/f(sz)u’idz <0
[RN

Define

o = ulertlvf Je(u), o = ulerflvf;'k(u); o, = MIEI;Aﬁ Je (u).

Lemma 2.7 (i) If0 < A ( = 0wy A then ap < al <0
(i) If 0 < A <qN\o/2, then o > do > Ofor some constant dy = dy (&, p, ¢, S, 1]l fonax)-
Proof. (i) Let u € M}, by (2.2), we get

(0 —2)llull < (p—q) / Ah(ez)uldz.
RN

Then
Je(u) = (; - ’1]) lullfy — (cl] - ;)/Ah(sz)u‘idz
RN
11y (1 1 p—2} )
b [(2 p) (q p) p—q )Ml
o @=ak-2), -
= 204 lull;; < O.

By the definitions of ¢, and o, we deduce that o, < o} < 0.

(i) See the proof of Lemma 2.5 (iv).

Applying Ekeland’s variational principle and using the same argument in Cao and
Zhou [7] or Tarantello [11], we have the following lemma.

Lemma 2.8 (i) There exists a (PS)q,-sequence {u,} in M, for J;

(ii) There exists a (PS)a:-sequence {u,} in Mifor J;

(ii) There exists a (PS)q--sequence {u,} in M_for J..
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3 Existence of a ground state solution

In order to prove the existence of positive solutions, we claim that J, satisfies the (PS)s-
2

condition in H'(RY) for Be|—00 Yoo — COA2 —4q |, where A = 2@ 9?2 and C, is

defined in the following lemma.
Lemma 3.1 Assume that h satisfies (hl) and 0 < A ( = 0Dy A If{u,} is a
(PS)g-sequence in H'(RN) for J, with u,, —~ u weakly in H" (RN), then J.(u) = Oin H*

2
, where

RN) and
( )ﬂn ]e(u)Z_COAz_q Z_Co

2 q
Co=Q2—D[(p— DInILST]2 =9/ | 2pa(p —2)2 — 1

and
p 2 2p
Co=| (=22 =P =2 |/ 209[fmax(p — )]P ~ 2 5P~ 2

Proof. Since {u,} is a (PS)g-sequence in H'(RM) for J, with u,, ~ u weakly in H* (RY),
it is easy to check that J.(u) = 0 in H*(R") and u > 0. Then we have (J(u),u) = 0,

that is, / f(e2)ubdz = |lull}, — / Ah(ez)uldz. Hence, by the Young inequality
RN RN

2 2
(pl:qandpzzz—q)

Je(u) = (; - ;) lullf; — (; - ;)/Ah(az)uqdz
By

p—2 2 P—4q q

> lully — Al 87 [lul]

2 T pg e

2

p— — 2 J— —
> P2 2 hul — p=2qlluli <P qA”h”#Sq)z—q2 q

p pq 2 p—2 2

p

. r-2e-qP?
= 2 2p

2pq[fmax(p — @)]P ~28P =2

Lemma 3.2 Assume that f and h satisfy (fl) and (h1). If 0 < A ( = £2@ PPy ¢ A,
2

then ], satisfies the (PS)g-condition in H'(RN) for B e | —00, Yoo — CoA 2—-q |
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Proof. Let {u,} be a (PS)g-sequence in H'(RM) for J, such that J.(u,) = B + 0,(1) and
J.(uy) = 0, (1) in H*(RY). Then

dplluy 1,
Bl +cn+ lnlli = ]E(un) - (]s(“n)r (un))
p p
L - 2(p—q)
[RN
p—2 2 P—q q q
> 2 llunlizy o AllhllgST lunllfy

where ¢, = 0,(1), d,, = 0,(1) as n — . It follows that {,} is bounded in H*(RY).
Hence, there exist a subsequence {u,} and a nonnegative u € H' (RM) such that
J.(u) =0 in H'®Y, u, ~u weakly in H (B, u, ~ wae inRY, u, ~u strongly in

L; . (RN) for any 1 < s < 2*. Using the Brézis-Lieb lemma to get (3.1) and (3.2) below.

[ feR — wide - [ ez e~ [ feztaz 0,1 G3.1)
RN RN RN

[h(sz)(un —u)ldz = /h(sz)(un)‘idz - / h(ez)uldz + 0,(1). (3.2)
RN RN RN

Next, claim that
/h(sz)lun —ul%dz — 0asn — oo. (3.3)
[RN
p

For any o > 0, there exists r > 0 such that . By the Holder

_/iBN(O;T)]c h(ez)P —ddz < o

inequality and the Sobolev embedding theorem, we get

< / h(ez) lup — ul%dz

/h(ez)lun —ul|%dz

o BN (o)
+ / h(ez)u, — ul%dz
(BN (01)]°
qalp
< Il f ity — ulde
N(0ir)
p—q
p p
+ 84 / h(ez)P —ddz iy — ull];
BN ()"
< Co +oy(1).

(. {uy} is bounded in H'(RY) and u, — u in L} (RY))
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Applying (f1) and u, — u in L] (RN), we get that

/ f(e2) (un — u)ldz = / foo(tn — u)idz + 0n(1). (3.4)
RN RN

Let p,, = u, - u. Suppose p,, » 0 strongly in H' (RN, By (3.1)-(3.4), we deduce that

[pall7; = lunll = el + 0a(1)
2(p—q)
= / f(e2) (up)P dz — / e P=2 n(ez)(u,)lde
RN RN
2(p—q)
- / flez)uldz + / e P2 n(ez)uldz + 04(1)
BN

RN

- / £(2) (n — )z + 0,(1) = f Fro(pn)ddz + 0a(1).
RN RN

Then

1 1
o) = Il =, [ ot
RN

1 1 2
- (2 — p) ||p,,||H+on(1) > 0.

By Theorem 4.3 in Wang [12], there exists a sequence {s,} € R" such thats, =1 +
0,(1), {s,, p} € No, and I.(s,, p,.) = L.(p,) + 0,(1). It follows that

Yoo < Ioo($nPn) = oo (pn) + 0n(1)
=Je(un) —Je(u) + 04(1)
=B —Je(u) +04(1) < Yoo,

which is a contradiction. Hence, u,, — u strongly in HY(RN),
Remark 3.3 By Lemma 1.1, we obtain

2
L 2—q(2—q\,H—
C0: qq<p_3)p 2Vrnax<yrnax<yoor
4 2
an or 0 < A < A,.
yoo—CoAz_q>0f 0

By Lemma 2.8 (i), there is a (PS),,-sequence {u,} in M, for J,.. Then we prove that
Equation (E,) admits a positive ground state solution g in RN,

Theorem 3.4 Under assumptions (f1), (hl), if 0 < A ( = POV OD) A then there
exists at least one positive ground state solution ug of Equation (E,) in RN, Moreover,

we have that Uy € M}and
2

3.5
Je(uo) = ap =af > —CoA2— 4, (3.5)
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Proof. By Lemma 2.8 (i), there is a minimizing sequence {u,} © M, for J, such that
2
o, <0< ym—COAZ_q’ by
Lemma 3.2, there exist a subsequence {u,} and uy € H' (RY) such that u, — u,
strongly in H' (R"). It is easy to see that 1y 2 0 is a solution of Equation (E,) in R
and J.(uo) = o, Next, we claim that up € M]. On the contrary, assume that
Uy € M; (M2 = ¢ for 0 < A(= e2(=D/(P=2)) < Ay).
We get that

/Ah(az)(uo):’dz > 0.

RN

Jo(u,) = o, + 0,(1) and J.(uy) = 0,(1) in H* (RN). Since

Otherwise,
0= / Ah(ez)(uo)ldz = /Ah(sz)(un)‘idz+on(1)
RN RN

= lually —/f(az)(u,,)’jdz+o,,(1).
IRN

It follows that
11 5
(o2 +0n(1)=]s(un)= 5 - p ”un”H"’On(l)r
which contradicts to o, < 0. By Lemma 2.6 (ii), there exist positive numbers
t* < <t =1such that t'up € M}, t7up € M, and
]s(t+u0) < ]s(t_uo) = ]s(uo) = U,
which is a contradiction. Hence, up € M} and
2
—CoA2 ~ 4 < J.(ug) = @ = .
By Lemma 2.4 and the maximum principle, then # is a positive solution of Equation

(E.) in RN,

4 Existence of k + 1 solutions

From now, we assume that f and / satisfy (f1)-(f2) and (k1). Let w € H' (RN) be the
unique, radially symmetric, and positive ground state solution of Equation (E0) in R
for f = fihax- Recall the facts (or see Bahri and Li [13], Bahri and Lions [14], Gidas et al.
[15], and Kwong [16]).

(i) w e L=(RN) N C?(RN) for some 0 <6 < 1 and ‘leiinoo w(z) = 0,

(éf) for any & > 0, there exist positive numbers C;, C1, C5, and C§ such that for all z € RN
Cyexp (— (1 —¢) Iz]) = w(z) < Crexp (— [zl)

and
|Vw(z)| < Ciexp (—(1 —¢) Izl .)

For 1 < i < k, we define

wi(z) =w <z — f) , where f(a') = fmax.
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Clearly, wi (z) € H' (RV). By Lemma 2.6 (ii), there is a unique number (££)” > 0 such
that (ti)_wi eM; CM, wherel <i<k
We need to prove that
lir{)l A ((t;)fwlg) < Ymax uniformly in i.
e—0+
Lemma 4.1 (i) There exists a number ty > 0 such that for 0 < t <ty and any ¢ > 0, we
have that
A (twi) < Ymax uniformly in i;
(ii) There exist positive numbers t| and &, such that for any t > t; and ¢ < &1, we have that
Je (twi) < 0 uniformly in i.
Proof. (i) Since J, is continuous in H' ([RN) , {w'} is uniformly bounded in H' (RY)
for any ¢ > 0, and Yy > O, there is £y > 0 such that for 0 < ¢ < ¢, and any ¢ > 0
Je (twi) < Ymax-

(ii) There is an ry > 0 such that f (z) = fi,a/2 for z € BN (d; ro) uniformly in i. Then
there exists ¢; > 0 such that for ¢ < ¢;

Je (twl) = t22 [l Hil — t:[R[f(ez)(wi)ﬂdz— Z[R[ Ah(ez)(wi)qdz
il

< i/[\Vw\zwz]dzf 2 / FrnaxW’dz.
B o
Thus, there is ¢; >0 such that for any ¢ > ¢; and ¢ < &
Je (twi) < 0 uniformly in i.
Lemma 4.2 Under assumptions (f1), (2), and (h1). If 0 < A ( = 2P/ (-2)) <q No/2,
then

lim supJ. (tw}) < Vmax uniformly in i.
e—>0+ 50

Proof. By Lemma 4.1, we only need to show that

lim sup J. () < Ymax uniformly in i.
£ 0+ i<y

We know that sup; 0 nax (EW) = Yimax- FOI Zp < £ < £, we get

Je (twi) = ; H w' HZ - ; /f(ez)(twi)pdz - 111 /Ah(sz)(twi)qdz
[RN

<5 [Ie)

2+w(z7 f)]dz

_ t: /‘f(sz)w(zi f)"dZi t; sz(sz)w(z— Zi)qdz
RN o

: ’tp/ (vt s )iz~ t;/ fmaxw”dzl

o O e LY LE
RN J

= Vmax + tjﬂé{ (fmax — f(e2))w (Z— i)pdz— IEA[R[ h(ez)w (z— i) dz.

Page 11 of 17
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Since

/ (fmax — f(£2))w <z - ii>pdz
o

= / [fmax — f(ez + ai)] wPdz = 0(1) as ¢ — O*uniformly in i,

RN

and

a\? 2(p—4)
A/ h(ez)w (z— 8) dz<e P2 ||h],ST |wl], = o(1) as & — 0,
RN
then lim,_o.sup, -, Je (tw)) < Ymax> that is, lim,_o.sup,.ofe (W)) < Ymax uni-
formly in i.
Applying the results of Lemmas 2.6, 2.7(ii), and 4.2, we can deduce that

0<dy <o <VYmax+o0(l)ase— 0"

Since Ymax < Yer there exists gy > 0 such that

2

Ymax < Yoo — CoA 274 for any € < &. (4.1)

Choosing 0 <py < 1 such that
B, (a)) NBY,(d) =@ fori#jand 1 <ij <k,

where Bg]o(ai) ={ze RN||z—d/| < pO} and fla’) = finax. Define K = {a’ | 1 < i < &}
and K, 2 = UleB’;g/z(ai). Suppose U?lef;{) (a') C BY(0) for some ry > 0.
Let Q, : H' (RM) \ {0} — R be given by

Jrv x (e2)|ulPdz

Qs(u) = f[RN Iul”dz

where y : RN — RN, ¥ (2) = z for |z| < 1o and y (2) = roz/|z| for |z| >r.

Lemma 4.3 There exists 0 <¢® < o such that if ¢ < &°, then Q. ((t;)_w;) € Ky ofor
each 1 <i<k

Proof. Since

p

rtao(e= )

i\ [P
fRN w <Z —_ Z )
_ S x(e2+ aw (z)|Pdz
Jrn lw (2)[Pdz

— a' as e — 0%,

Q. (1) wl)

dz

there exists £ > 0 such that

Q. ((ti)_wi> €K,,» foranye < ¢’ andeach 1 <i <F.

&
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Lemma 4.4 There exists a number § > osuch that if u € N, and I.(u) < Ymax + 6
then Qg (u) € Kyyjofor any 0 <& < £°.

Proof. On the contrary, there exist the sequences {¢,} € R" and {u,} C N, such that
en = 0,1, (Un) = Ymax(> 0) + 0, (1) as 1 — « and Qq, (un) ¢ Kpy2 for all n e N. It is

easy to check that {u,} is bounded in H' (RM). Suppose u,, — 0 strongly in L” (RN).
Since
lunll?, = /f(snz)(un)ﬁdz for each n € I,
RN
and

1 1
Ien(un) = ) ”un”12q - p /f(EnZ)(un)ﬁdZ = VYmax t On(l)/
[RN

then

Ymax + 0n(1) =L, (uy) = (; — ;) /f(anz)(un)’jdz =0,(1),
|RN

which is a contradiction. Thus, u, + 0 strongly in L” (R™). Applying the concentra-
tion-compactness principle (see Lions [17] or Wang [[12], Lemma 2.16]), then there
exist a constant dy > 0 and a sequence {z;} c RN such that

|un(2)|dz = do > 0. (4.2)

BN(zi;1)
Let v,(z) = uy, (z + Zy), there are a subsequence {v,} and v e H' (RN such that v, — v
weakly in H' (RM). Using the similar computation in Lemma 2.6, there is a sequence

{S?nax} C R* such that 7, = 5" _ vy € Npax and

0 < ¥max =< Imax (1}:1) = Ian (Syrlnaxu")

< I, (un) = Ymax + 0n(1) as n — oo.

We deduce that a convergent subsequence {sf‘nax} satisfies sp .. — sop > 0. Then there
are subsequences {7} and 7 € H' (RV) such that 7, — (= sov) weakly in H' (RY). By
(4.2), then 7 #0. Moreover, we can obtain that 7, — ¥ strongly in H' (R") and
Imax(V) = Ymax- Now, we want to show that there exists a subsequence {z,} = {¢,2,,}
such that z, - zo € K.

(i) Claim that the sequence {z,} is bounded in R". On the contrary, assume that |z,|
— oo, then

Ymax = Imax(ﬁ) < Ioo(f/)

I R ~
< llr{gclgf ) 0n Nl — » /f(snz+zn)(vn)ﬁdz
IRN

2
S?nax) 2
5 ”un”H -

. . S]"/lnax)p
= lim inf ) /f(snz) (un)’dz
RN

= liminfI,, (s} un) < liminfl,, (4,) = Ymax
n—oo n—oo



Lin Boundary Value Problems 2012, 2012:24
http://www.boundaryvalueproblems.com/content/2012/1/24

which is a contradiction.
(i) Claim that zy € K. On the contrary, assume that zy ¢ K, that is, f{zg) <fiax- Then
using the above argument to obtain that

B 1. 1 -
o= Is0) < , 71, = ) [ flea) @
|RN

. 1 1 -
< lim inf 5 0wl — ) /f(anz+zn)(vn)’jdz
RN

= ymax/

which is a contradiction. Since v, — v = 0 in H' (RY), we have that

I x(en2)|vn(z — )P dz

Qs (un) = X
S/
|RN

[ x(enz + &nzn) lvnlPdz
[RN

|vn(z — 2| de

f vy [Pde — 29 C K2 asn — oo,
RN
which is a contradiction.
Hence, there exists a number § > o such that if # € N, and I, (u) < ymax + 6, then
Q:(u) € K,z for any 0 <e < &°.
From (4.1), choosing 0 < §, < § such that

2

Ymax + 80 < Yoo — CoA 271 forany 0 < & < &°. (4.3)

For each 1 < i < k, define

O} = fu e M; | |Q.(u) — d'| < po},
0% = {u e M; ||Q.(u) — d'| = po},
"= inf J,(u B! = inf J,(u
Bl = nt Jo() and B = inf Jo(w)
Lemma 4.5 If u€ M_and ], (#) < Vmax + 00/2, then there exists a number
0 < & < %uch that Q. (u) € Kpyyjofor any 0 < ¢ < &

Proof. We use the similar computation in Lemma 2.6 to get that there is a unique

positive number

1/(p—2)
N

[ f(ez)uldz
RN
such that siu € N,. We want to show that s¥ < ¢ for some constant ¢ > 0 (indepen-
dent of u). First, since u € M, C M,
0 <do <o, <Je(u) < ¥Ymax +80/2,

and J, is coercive on M,, then 0 < ¢, < ||ull? < ¢ for some constants ¢; and ¢,

(independent of u). Next, we claim that ||u||’z,, > ¢3 > 0 for some constant ¢3 > 0
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(independent of ). On the contrary, there exists a sequence {u,} C M such that

||u,,||€,, =o0,(1) as n - oo.

By (2.3),
J f(e2)(un)idz p
2—q < RN , Sfmax ”un“Lﬂ =0n(1)/
p—q llunlly &)

which is a contradiction. Thus, si < ¢ for some constant ¢ > 0 (independent of u).

Now, we get that
Ymax + 80/2 > Jo(u) = sup Js (tu) > Jo(sku)
>0
T wpde— ' [ Ah(ez)(su)ld
= sl = [ feasttae— [ anGea)(stutas
RN RN
1
> I (shu) — /Ah(sz) (stu)Tdz.
CI[RN
From the above inequality, we deduce that
1
L (s¥u) < Ymax + 80/2 + / Ah(ez)(stu)ldz
q[RN
< Vamax + 80/2 + Alllly 7 [stul],
< Ymax +80/2 + AT(c1)?||h]|, S7, where A = g2(P~D/(P=2),
Hence, there exists 0 < § < g0 such that for0 < ¢ < &
I (5su) < Ymax + 80, where sju € N,.
By Lemma 4.4, we obtain
J x(e2)[stu(z)| dz
N
Qe (stu) = "
J

RN

€ K,,» forany 0 < ¢ < &,
su@)fde

or Qg (u) e Kyyjp forany 0 < ¢ < &.
Applying the above lemma, we get that

B! > Ymax + 80/2 forany 0 < & < &. (4.4)

By Lemmas 4.2, 4.3, and Equation (4.3), there exists 0 < ¢* < & such that

2
Bl <J. ((t;)7w2> < Ymax +80/3 < Yoo — CoA 29 forany 0 < & < &*. (4.5)

Lemma 4.6 Given u € Ol, then there exist an 1 > 0 and a differentiable functional | :
B(0; n) © H'(RY) —» R such that 1(0) = 1, I(v)(u — v) € Oifor any v e B(O;n) and

(W'e(u). @)

oo (PN
W (), ) for any ¢ € C°(R™), (4.6)

{I'(v), #)(1v)=(1,0) =

where Yo (u) = (J.(u), u).
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Proof. See Cao and Zhou [7].
Lemma 4.7 For each 1 < i < k, there is a (PS)gi-sequence {u,} C Olin H'(RY) for J..
Proof. For each 1 < i < k, by (4.4) and (4.5),

Bl < Bl forany 0 < ¢ < &*. (4.7)
Then

= inf J.(u)foranyO < ¢ < &*.

e ue0LUIO; () Y

Let { u;l} C O! U 90: be a minimizing sequence for gi. Applying Ekeland’s variational

principle, there exists a subsequence {u!} such that J;(u!) = 8! + 1/n and
Je(ul) < Je(w) + Jw - u;HH/n for all w € O UJOL. (4.8)

Using (4.7), we may assume that u}, € Ol for sufficiently large 7. By Lemma 4.6, then
there exist an !, > 0 and a differentiable functional I : B(0; n’) ¢ H'(R") — R* such
that i (0) = 1, and I (v) (&, — v) € Ol for v € B(0; 5). Let vy = ov with [|v[; = 1 and
0 <o <ni. Then v, € B(0,n}) and w, = I (v,) (4, — v5) € O.. From (4.8) and by the

mean value theorem, we get that as ¢ — 0

Jwo =l

> Je (up) — Je (wo)

= (' (to, + (1 — to)wy ), ul, — w,) where to € (0, 1)

= (e (uh), uy, — we) +o(||uly — wo || ,) (- Je € CY)

= ol (v) e (), ) + (1= B, (v0)) e (1), 11,) + o[, — o)
(- Lve)—1(0)=1aso — 0)

= ol (ov) e (uy), ) + o[y, —wa | ;).
Hence,
_ o = G+ o))
o |l£l(av)|

|, (1 (ov) — 1(0)) — outi(aw) |, (1 + [0(1)])
o |li(ov)|

|||, |E(ov) = ,(0)| + o il | (ov)]| (1
< R yo(l)\)
n

- o [t ov)
@y©]) ()=o)

() (0) H < c for all # and i from (4.6), then J, (u},) = 0,(1)

§C(1+‘

Since we can deduce that ‘

strongly in H' (RN) as n — oo,
Theorem 4.8 Under assumptions (f1), (f3), and (h1), there exists a positive number A*
A* = (¢*)) such that for A > A*, Equation (E;) has k + 1 positive solutions in RY,
Proof. We know that there is a (PS) pi-sequence {u,} C M in HI(RN) for J. for each

2
1 < i<k and (4.5). Since J, satisfies the (PS)g-condition for 8 € (—oo, Yoo — CoA 271 ),

then J, has at least k critical points in M, for 0 <¢ < &*. It follows that Equation (Ej)
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has k nonnegative solutions in R, Applying the maximum principle and Theorem 3.4,

Equation (E;) has k + 1 positive solutions in R™.
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