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Abstract

In this article, we explore the use of a non-perturbation linearization method to solve
the coupled highly nonlinear system of equations due to flow over a vertical surface
subject to a magnetic field. The linearization method is used in combination with an
asymptotic expansion technique. The effects of Dufour, Soret and magnetic filed
parameters are investigated. The velocity, temperature and concentration
distributions as well as the skin-friction, heat and mass transfer coefficients have been
obtained and discussed for various physical parametric values. The accuracy of the
solutions has been tested using a local non-similarity method. The results show that
the non-perturbation technique is an accurate numerical algorithm that converges
rapidly and may serve as a viable alternative to finite difference and finite element
methods for solving nonlinear boundary value problems.
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1 Introduction
Convection driven by density variations caused by two different components which

have different rates of diffusion plays an important role in fluid dynamics since such

flows occur naturally in many physical and engineering processes. Heat and salt in sea

water provide perhaps the best known example of double-diffusive convection, Stern

[1]. Other examples of double diffusive convection are encountered in diverse applica-

tions such as in chemical and petroleum industries, filtration processes, food proces-

sing, geophysics and in the modeling of solar ponds and magma chambers. A review of

the literature in this subject can be found in Nield and Bejan [2].

One of the earliest studies of double diffusive convection was by Nield [3]. Baines

and Gill [4] investigated linear stability boundaries, while Rudraiah et al. [5] used the

nonlinear perturbation theory to investigate the onset of double diffusive convection in

a horizontal porous layer. Poulikakos [6] presented the linear stability analysis of ther-

mosolutal convection using the Darcy-Brinkman model. Bejan and Khair [7] presented

a multiple scale analysis of heat and mass transfer about a vertical plate embedded in a

porous medium. They considered concentration gradients which aid or oppose thermal

gradients. Related studies on double diffusive convection have been undertaken by,

among others, Lai [8], Afify [9], and Makinde and Sibanda [10].
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Investigations by, among others, Eckert and Drake [11] and Mortimer and Eyring

[12] have provided examples of flows such as in the geosciences, where diffusion-

thermo and thermal-diffusion effects are quite significant. Anjalidevi and Devi [13]

showed that diffusion-thermo and thermal-diffusion effects are significant when density

differences exist in the flow regime. In general, Diffusion-thermo and thermal-diffusion

effects have been found to be particularly important for intermediate molecular weight

gases in binary systems that are often encountered in chemical engineering processes.

Theoretical studies of the Soret and Dufour effects on double diffusive convection have

been made by many researchers, among them, Kafoussias and Williams [14], Postel-

nicu [15], Mansour et al. [16], Narayana and Sibanda [17], and Awad et al. [18].

In this article, we investigate convective heat and mass transfer along a vertical flat

plate in the presence of diffusion-thermo, thermal diffusion effects, and an external

magnetic field. The governing momentum, heat and mass transfer equations are, in

general, strongly coupled and highly nonlinear. Apart from numerical methods, a num-

ber of semi-analytical techniques have in recent years been proposed to find approxi-

mate solutions of nonlinear boundary value problems. Some of these techniques, such

as the Adomian decomposition method, the variational iteration method, the homo-

topy analysis method, the homotopy perturbation method, the differential transform

method, etc, are now well known and their strengths and weaknesses well understood.

Some of these weaknesses include, for example, small regions of convergence and the

use of artificially inserted parameters (Liao [19], Geng [20]). The recent spectral homo-

topy analysis method (see Motsa et el. [21,22]) sought to improve the accuracy and

efficiency of the homotopy analysis method while retaining its essence. The use of

spectral methods also provided greater flexibility in the choice of basis functions.

Nonetheless, the challenge to find more accurate, robust and computationally efficient

solution techniques for nonlinear problems in engineering and science still remains.

A recent method that remains to be generalized and whose robustness remains to be

tested in the case of highly nonlinear equations with a strong coupling is the successive

linearization method (Makukula et al. [23,24]). This method has been used in a limited

number of studies by, for example, Awad et al. [25]) and Motsa et al. [26] to solve

fluid flow problems. In this study the coupled set of differential equations that describe

convective heat and mass transfer flow along a vertical flat plate in the presence of dif-

fusion-thermo, thermal diffusion effects and an external magnetic field are solved

using the successive linearization method. A non-similarity technique is used to vali-

date the linearization method.

2 Problem formulation
We consider the problem of double diffusive convection along a vertical plate with an

external magnetic field imposed along the y-axis. The induced magnetic field is

assumed to be negligible. The fluid temperature and solute concentration in the ambi-

ent fluid are T∞, C∞ and those at the surface are Tw and Cw, respectively. The coordi-

nates system and the flow configuration are shown in Figure 1.

Under the usual boundary layer and Boussinesq approximations the governing equa-

tions for a viscous incompressible fluid may be written as (Kafoussias and Williams

[14]);
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∂u
∂x

+
∂v
∂y

= 0, (1)

u
∂u
∂x

+ v
∂u
∂y

= v
∂2u
∂y2

− σB2
0

ρ
u + gβT(T − T∞) + gβC(C − C∞), (2)

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2

+
DmkT
cscp

∂2C
∂y2

, (3)

u
∂C
∂x

+ v
∂C
∂y

= Dm
∂2C
∂y2

+
DmkT
Tm

∂2T
∂y2

, (4)

subject to the boundary conditions

u = 0, v = 0, T = Tw, C = Cw on y = 0, (5)

u = U∞, T = T∞, C = C∞ when y → ∞. (6)

where u and v are the velocity components along the x- and y- axes, respectively T

and C are the fluid temperature and solute concentration across the boundary layer, ν

is the kinematic viscosity, r is the fluid density, s is the electrical conductivity, B0 is

the uniform magnetic field, bT and bC are the coefficients of thermal and solutal

expansions, Dm is the thermal diffusivity, kT is the thermal diffusion ratio, cs is the con-

centration susceptibility, cp is the fluid specific heat capacity, Tm is the mean fluid tem-

perature, U∞ is the free stream velocity and g is the gravitational acceleration.

To satisfy the continuity equation (1), we define the stream function ψ in terms of

the velocity by

u =
∂ψ

∂y
and v = −∂ψ

∂x
,

Figure 1 Physical model and coordinate system.
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and introduce the following dimensionless variables

ξ =
x
	
, η =

(
U∞
νξ

)1/2

y, ψ = (U∞νξ)1/2f (ξ , η), θ(ξ , η) =
T − T∞
Tw − T∞

, φ(ξ , η) =
C − C∞
Cw − C∞

, (7)

where, without loss of generality, we take the constant length ℓ to be unity in the

subsequent analysis. Using equations (7) in (2)-(4), we get the transformed equations

f ′′′ +
1
2
ff ′′ − Haxf ′ + Grxθ + Gcxφ = ξ

(
f ′ ∂f

′

∂ξ
− f ′′ ∂f

∂ξ

)
, (8)

1
Pr

θ ′′ +
1
2
f θ ′ +Dfφ

′′ = ξ

(
f ′ ∂θ

∂ξ
− θ ′ ∂f

∂ξ

)
, (9)

1
Sc

φ′′ +
1
2
fφ′ + Srθ ′′ = ξ

(
f ′ ∂φ

∂ξ
− φ′ ∂f

∂ξ

)
, (10)

with corresponding boundary conditions

f = 0, f ′ = 0, θ = 1, φ = 1, on η = 0,
f ′ = 1, θ = 0, φ = 0, when η → ∞.

}
(11)

The fluid and physical parameters in equations (8)-(10) are the local thermal and

solutal Grashof numbers Grx and Gcx, the local magnetic field parameter Hax, the

Prandtl number Pr, the Dufour number Df, the Soret number Sr, and the Schmidt

number Sc. These parameters are defined in equations (12), (13) below.

Grx =
gβT(Tw − T∞)x

ν2
, Gcx =

gβC(Cw − C∞)x
ν2

, Hax =
σB2

0x

ρU∞
, Pr =

ν

α
, (12)

Df =
DmKT(Cw − C∞)
αCsCp(Tw − T∞)

, Sr =
KTDm(Tw − T∞)
αTm(Cw − C∞)

, Sc =
ν

Dm
. (13)

The parameters of engineering interest in heat and mass transport problems are the

skin friction coefficient Cfx, the Nusselt number Nux and the Sherwood number Shx.

These parameters characterize the surface drag, the wall heat and mass transfer rates,

respectively, and are defined by

Cfx =
μ

ρU2

(
∂u
∂y

)
y=0

=
f ′′(ξ , 0)√

Rex
, (14)

Nux =
−x

Tw − T∞

(
∂T
∂y

)
y=0

= −
√
Rexθ ′(ξ , 0), (15)

and

Shx =
−x

Cw − C∞

(
∂C
∂y

)
y=0

= −
√
Rexφ′(ξ , 0), (16)

where Rex = U∞x/ν.
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3 Method of solution
The main challenge in using the linearization method as described in Makukula et al.

[23,24] is how to generalize the method so as to find solutions of partial differential

equations of the form (8)-(10). It is certainly not clear how the method may be applied

directly to the terms on the right hand side of equations (8)-(10). For this reason,

equations (8)-(10) are first simplified and reduced to sets of ordinary differential equa-

tions by assuming regular perturbation expansions for f, θ, and j in powers of ξ

(which is assumed to be small) as follows

f = fM1(η, ξ) =
M1∑
i=0

ξ ifi(η), θ = θM1(η, ξ) =
M1∑
i=0

ξ iθi(η), φ = φM1(η, ξ) =
M1∑
i=0

ξ iφi(η) (17)

where M1 is the order of the approximate solution. Substituting (17) into equations

(8)-(10) and equating the coefficients of like powers of ξ, we obtain the zeroth order

set of ordinary differential equations

f ′′′
0 +

1
2
f0f ′′

0 − Haxf ′
0 + Grxθ0 + Gcxφ0 = 0, (18)

1
Pr

θ ′′
0 +

1
2
f0θ ′

0 +Dfφ
′′
0 = 0, (19)

1
Sc

φ′′
0 +

1
2
f0φ′

0 + Srθ ′′
0 = 0, (20)

with corresponding boundary conditions

f0 = 0, f ′
0 = 0, θ0 = 1, φ0 = 1, at η = 0

f ′
0 = 1, θ0 = 0, φ0 = 0, as η = ∞.

}
(21)

The O(ξ1) equations are

f ′′′
1 +

1
2
f0f ′′

1 − (Hax + f ′
0)f

′
1 +

3
2
f ′′
0 f1 + Grxθ1 + Gcxφ1 = 0, (22)

1
Pr

θ ′′
1 +

1
2
f0θ ′

1 − f ′
0θ1 +

3
2

θ ′
0f1 +Dfφ

′′
1 = 0, (23)

1
Sc

φ′′
1 +

1
2
f0φ′

1 − f ′
0φ1 +

3
2

φ′
0f1 + Srθ ′′

1 = 0, (24)

with boundary conditions

f1 = 0, f ′
0 = 0, θ1 = 0, φ1 = 0, at η = 0

f ′
1 = 0, θ1 = 0, φ1 = 0, as η = ∞.

}
(25)

Finally, the O(ξ2) equations are

f ′′′
2 +

1
2
f0f

′′
2 − (Hax + 2f ′

0)f
′
2 +

5
2
f ′′
0 f2 + Grxθ2 + Gcxφ2 = f ′

1f
′
1 − 3

2
f1f

′′
1 , (26)

1
Pr

θ ′′
2 +

1
2
f0θ

′
2 − 2f ′

0θ2 +
5
2

θ ′
0f2 +Dfφ

′′
2 = f ′

0θ1 − 3
2
f1θ

′
1, (27)
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1
Sc

φ′′
2 +

1
2
f0φ

′
2 − 2f ′

0φ2 +
5
2

φ′
0f2 + Srθ

′′
2 = f ′

1φ1 − 3
2
f1φ

′
1. (28)

These equations have to be solved subject to boundary conditions

f2 = 0, f ′
2 = 0, θ2 = 0, φ2 = 0, at η = 0

f ′
2 = 0, θ2 = 0, φ2 = 0, as η = ∞.

}
(29)

The coupled system of equations (18)-(20), (22)-(24), and (26)-(28) together with the

associated boundary conditions (21), (25), and (29) may be solved independently pair-

wise one after another. These equations may now be solved using the successive linear-

ization method in the manner described in Makukula et al. [23,24]). We begin by

solving equations (18)-(20) with boundary conditions (21).

The successive linearization method is a non-perturbation method requiring neither

the presence of an embedded perturbation parameter nor the addition of an artificial

parameter. The method is therefore free of the major limitations associated with other

perturbation methods. In the SLM algorithm assumption is made that the functions f0
(h), θ0(h), and j0(h) may be expressed as

f0(η) = Fi(η) +
i−1∑
m=0

Fm(η), θ0(η) = Θi(η) +
i−1∑
m=0

Θm(η), φ(η) = Φi(η) +
i−1∑
m=0

Φm(η), (30)

where Fi, Θi, and Fi (i ≥ 1) are unknown functions and Fm, Θm, and Fm are succes-

sive approximations which are obtained by recursively solving the linear part of the

system that is obtained from substituting equations (30) in (18)-(20). In choosing the

form of the expansions (30), prior knowledge of the general nature of the solutions, as

is often the case with perturbation methods, is not necessary.

Suitable initial guesses F0(h), Θ0(h), and F0(h) which are selected to satisfy the

boundary conditions (21) are

F0(η) = η + e−η − 1, Θ0(η) = e−η, Φ0(η) = e−η, (31)

The subsequent solutions Fi, Θi, and Fi are obtained by iteratively solving the linear-

ized form of the equations that are obtained by substituting equation (30) in the gov-

erning equations (18)-(20). The linearized equations to be solved are

F′′′
i + a1,i−1F

′′
i − HaxF

′
i + a2,i−1Fi + GrxΘi + GcxΦi = r1,i−1, (32)

1
Pr

Θ ′′
i + b1,i−1Θ

′
i + b2,i−1Fi +DfΦ

′′
i = r2,i−1, (33)

1
Sc

Φ ′′
i + c1,i−1Φ

′
i + c2,i−1Fi + SrΘ ′′

i = r3,i−1, (34)

subject to the boundary conditions

Fi(0) = F′
i(0) = F′

i(∞) = Θi(0) = Θi(∞) = Φi(0) = Φi(∞), (35)
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where the coefficients parameters ak, i-1, bk,i-1, ck,i-1, dk,i-1, and rk,i-1 are defined by

a1,i−1 =
1
2

i−1∑
m=0

Fm, a2,i−1 =
1
2

i−1∑
m=0

F′′
m, b1,i−1 =

1
2

i−1∑
m=0

Fm

b2,i−1 =
1
2

i−1∑
m=0

Θ ′
m, c1,i−1 =

1
2

i−1∑
m=0

Fm c2,i−1 =
1
2

i−1∑
m=0

Φ ′
m,

r1,i−1 = Hax
i−1∑
m=0

F′
m − 1

2

i−1∑
m=0

Fm
i−1∑
m=0

F′′
m −

i−1∑
m=0

F′′′
m − Grx

i−1∑
m=0

Θm − Gcx
i−1∑
m=0

Φm,

r2,i−1 = − 1
Pr

i−1∑
m=0

Θ ′′
m − 1

2

i−1∑
m=0

Fm
i−1∑
m=0

Φ ′
m − Df

i−1∑
m=0

Φ ′′
m,

r3,i−1 = − 1
Sc

i−1∑
m=0

Φ ′′
m − 1

2

i−1∑
m=0

Fm
i−1∑
m=0

Φ ′
m − Sr

i−1∑
m=0

Φ ′′
m,

Once each solution Fi, Θi, and Fi (i ≥ 1), has been found from iteratively solving

equations (32)-(34), the approximate solutions for the system (18)-(20) are obtained as

f0(η) ≈
M2∑
i=0

Fi(η), θ0(η) ≈
M2∑
i=0

Θi(η), φ0(η) ≈
M2∑
i=0

Φi(η), (36)

where M2 is the order of the SLM approximations. In this study, we used the Cheby-

shev spectral collocation method to solve equations (32)-(34). The physical region [0,

∞) is first transformed into the spectral domain [-1,1] using the domain truncation

technique in which the problem is solved on the interval [0, L], where L is a scaling

parameter used to invoke the boundary condition at infinity. This is achieved by using

the mapping

η

L
=

ς + 1
2

, −1 ≤ ς ≤ 1, (37)

We discretise the spectral domain [-1,1] using the Gauss-Lobatto collocation points

given by

ςj = cos
π j
N

, j = 0, 1, . . . ,N, (38)

where N is the number of collocation points used. The unknown functions Fi, Θi ,

and Fi are approximated at the collocation points by

Fi(ς) ≈
N∑
k=0

Fi(ςk)Tk(ςj), Θi(ς) ≈
N∑
k=0

Θi(ςk)Tk(ςj) Φi(ς) ≈
N∑
k=0

Φi(ςk)Tk(ςj), j = 0, 1, . . . ,N (39)

where Tk is the kth Chebyshev polynomial defined as

Tk(ς) = cos[kcos−1(ς)]. (40)

The derivatives of the variables at the collocation points are represented as

F(r)i =
N∑
k=0

Dr
kjFi(ςk), Θ

(r)
i =

N∑
k=0

Dr
kjΘi(ςk), Φ

(r)
i =

N∑
k=0

Dr
kjΦi(ςk), j = 0, 1, . . . ,N (41)
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where r is the order of differentiation and D = 2
LD with D being the Chebyshev spec-

tral differentiation matrix whose entries are defined as;
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Djk =
cj(−1)j+1

ckςj − ςk
j �= k; j, k = 0, 1, . . . ,N,

Dkk = − ςk

2(1 − ς2
k )

k = 1, 2, . . . ,N − 1,

D00 =
2N2 + 1

6
= −DNN .

(42)

Substituting equations (37)-(41) into (32)-(34) gives the following linear system of

equations

Ai−1Xi = Ri−1 (43)

subject to the boundary conditions

Fi(ς0) =
N∑
k=0

D0kFi(ςk) = gi(ς0) = Θi(ς0) = Φi(ς0) = Fi(ςN) = gi(ςN) = Θi(ςN) = Φi(ςN) = 0. (44)

Here Ai-1 is a 3(N + 1) × 3(N + 1) square matrix, while Xi and Ri-1 are 3(N + 1) × 1

column vectors defined by

Ai−1 =

⎡
⎣A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎦ , Xi =

⎡
⎣ F̃i

Θ̃i

Φ̃i

⎤
⎦ , Ri−1 =

⎡
⎣ r1,i−1

r2,i−1

r3,i−1

⎤
⎦ (45)

where

F̃i = [Fi(ς0), Fi(ς1), . . . , Fi(ςN−1), Fi(ςN)]T , (46)

Θ̃i = [Θi(ς0),Θi(ς1), . . . ,Θi(ςN−1),Θi(ςN)]T , (47)

Φ̃i = [Φi(ς0),Φi(ς1), . . . ,Φi(ςN−1),Φi(ςN)]T , (48)

r1,i−1 = [r1,i−1(ς0), r1,i−1(ς1), . . . , r1,i−1(ςN−1), r1,i−1(ςN)]T (49)

r2,i−1 = [r2,i−1(ς0), r2,i−1(ς1), . . . , r2,i−1(ςN−1), r2,i−1(ςN)]T (50)

r3,i−1 = [r3,i−1(ς0), r3,i−1(ς1), . . . , r3,i−1(ςN−1), r3,i−1(ςN)]T (51)

and

A11 = D3 + a1,i−1D2 − HaxD + [a3,i−1], A12 = [Grx], A13 = [Gcx],

A21 = [b2,i−1], A22 = Pr−1D2 + b1,i−1D, A23 = DfD2 A31 = [c2,i−1],

A32 = SrD2, A33 = Sc−1D2 + c1,i−1D,

(52)

where [·] is a diagonal matrix of size (N + 1) × (N + 1) and ak,i-1, bk,i-1, ck,i-1 are diag-

onal matrices of size (N + 1) × (N + 1) and T is the transpose. After modifying the

matrix system (43) to incorporate the boundary conditions (44), the solution is

obtained as

Xi = A−1
i−1Ri−1 (53)
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Equation (53) gives a solution of (18)-(20) for f0, θ0 and j0. The procedure is

repeated to obtain the O(ξ1) and O(ξ2) solutions using equations (22)-(24) and (26)-

(28), respectively.

4 Results and discussion
In generating the results in this article, we determined through numerical experimenta-

tion that L = 15, N = 40, and M2 = 5 gave sufficient accuracy for the linearization

method. The value of the Prandtl number used is Pr = 0.71 which physically corre-

sponds to air. The Schmidt number used Sc = 0.22 is for hydrogen at approximately

25° and one atmospheric pressure (see Afify [27]). In concert with previous related stu-

dies, the Dufour and Soret numbers are chosen in such a way that their product is

constant, provided the mean temperature Tm is also kept constant.

To determine the accuracy and validate the linearization method, equations (8)-(10)

were further solved using a local non-similarity method (LNSM) developed by Sparrow

and Yu [28] and Sparrow et al. [29]. Previous studies have consistently used the Matlab

bvp4c solver to evaluate the accuracy of the successive linearization method. However,

as with other BVP solvers, the accuracy and convergence of the bvp4c algorithm

depends on a good initial guess and works better for systems involving few equations

(Shampine et al. [30]).

Tables 1, 2, and 3 show, firstly the effects of various parameters on the skin-friction

and the local heat and mass transfer coefficients at different values of ξ and, second,

give a sense of the accuracy and convergence rate of the linearization method. The

results from the two methods are in excellent agreement with the second order SLM

series giving accuracy of up to five significant figures.

Table 1 shows the effect of increasing the magmatic field parameter Hax on the local

skin friction, heat and mass transfer coefficients. We observe that increasing the mag-

netic field parameter reduces the local skin friction as well as the heat and mass trans-

fer coefficients. In Table 2, we present the effect of the Soret parameter on f“(0), -θ’(0),

Table 1 The effect of the magnetic field parameter Hax on f“(0), θ’ (0) and j’(0) when
Grx = 0.5, Gcx = 2, Df = 0.2, and Sr = 0.3

ξ = 0.005 ξ = 0.01

SLM results LNS Method SLM results LNS Method

Profile Hax M2 = 2 M2 = 3 M2 = 2 M2 = 3

0.0 3.045324 3.045324 3.045324 3.045324 3.045324 3.045324

0.5 2.299370 2.299370 2.299370 2.299370 2.299370 2.299370

f“(0) 1.0 1.940291 1.940291 1.940291 1.940291 1.940291 1.940291

2.0 1.532041 1.532041 1.532041 1.532041 1.532041 1.532041

2.5 1.404033 1.404033 1.404033 1.404033 1.404033 1.404033

0.0 0.513493 0.513493 0.513493 0.513493 0.513493 0.513493

0.5 0.435640 0.435640 0.435640 0.435640 0.435640 0.435640

-θ’(0) 1.0 0.392869 0.392869 0.392869 0.392869 0.392869 0.392869

2.0 0.335307 0.335307 0.335307 0.335307 0.335307 0.335307

2.5 0.314405 0.314405 0.314405 0.314405 0.314405 0.314405

0.0 0.289548 0.289548 0.289548 0.289548 0.289548 0.289548

0.5 0.231673 0.231673 0.231673 0.231673 0.231673 0.231673

-j’(0) 1.0 0.202778 0.202778 0.202778 0.202778 0.202778 0.202778

2.0 0.169217 0.169217 0.169217 0.169217 0.169217 0.169217

2.5 0.157771 0.157771 0.157771 0.157771 0.157771 0.157771
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and -j’(0) which are, respectively, proportional to the local skin friction coefficient, the

local Nusselt number and Sherwood number. We observe that f“(0) and -θ’(0) increase

with increases in Sr, while -j’(0) decreases as Sr increases. These results are confirmed

in Table 3. Here the Nusselt number increases as the Soret number increases, while

the opposite trend occurs as the Dufour number increases. The recent study by El-

Kabeir [31] shows that these results may be modified by injection, suction or the pre-

sence of a chemical reaction.

The influence of the various fluid and physical parameters on the fluid properties is

given qualitatively in Figures 2, 3, 4, 5, 6 and 7. Figures 2 and 3 illustrate the effect of

the magnetic filed parameter on the velocity f’(h), temperature θ and concentration j
profiles within the boundary layer. We observe that, as expected, strengthening the

magnetic field slows down the fluid motion due to an increasing drag force which acts

against the flow if the magnetic field is applied in the normal direction. We also

observe that the magnetic field parameter enhances the temperature and concentration

profiles. The effect of broadening both the temperature and concentration distributions

is to reduce the wall temperature and concentration gradients thereby reducing the

heat and mass transfer rates at the wall.

Table 2 The effect of the Soret parameter Sr on f“(0), θ’(0) and j’(0) when Grx = 0.5, Gcx
= 2, and Hax = 1

ξ = 0.005 ξ = 0.01

SLM results LNS Method SLM results LNS Method

Profile Sr M2 = 2 M2 = 3 M2 = 2 M2 = 3

0.1 1.933303 1.933303 1.933302 1.933303 1.933303 1.933302

0.4 1.946426 1.946426 1.946426 1.946426 1.946426 1.946426

f“(0) 0.6 1.959632 1.959632 1.959632 1.959632 1.959632 1.959632

1.5 2.023004 2.023004 2.023004 2.023004 2.023004 2.023004

2.0 2.059313 2.059313 2.059313 2.059313 2.059313 2.059313

0.1 0.368159 0.368159 0.368159 0.368159 0.368159 0.368159

0.4 0.396905 0.396905 0.396905 0.396905 0.396905 0.396905

-θ’(0) 0.6 0.402187 0.402187 0.402187 0.402187 0.402187 0.402187

1.5 0.416430 0.416430 0.416430 0.416430 0.416430 0.416430

2.0 0.422788 0.422788 0.422788 0.422788 0.422788 0.422788

0.1 0.213565 0.213565 0.213565 0.213565 0.213565 0.213565

0.4 0.197708 0.197708 0.197708 0.197708 0.197708 0.197708

-j’(0) 0.6 0.187601 0.187601 0.187601 0.187601 0.187601 0.187601

1.5 0.141063 0.141063 0.141063 0.141063 0.141063 0.141063

2.0 0.114262 0.114262 0.114262 0.114262 0.114262 0.114262

Table 3 Soret and Dufour effects of the skin friction coefficient Cf, Nusselt number Nu
and Sherwood number Sh when Grx = 0.5, Gcx = 2, Sc = 0.22, and Hax = 0.5

Sr Df Cf Nu Sh

0.1 0.60 1.933303 0.368159 0.213565

0.2 0.30 1.935047 0.386060 0.207941

0.4 0.15 1.946426 0.396905 0.197708

0.6 0.10 1.959632 0.402187 0.187601

1.5 0.04 2.023004 0.416430 0.141063

2.0 0.03 2.059313 0.422788 0.114262
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Figure 2 Effect of the magmatic field parameter Hax on f’(h) when Grx = 0.5, Gcx= 0.1, Df = 0.2, Sr
= 0.3, and ξ = 0.01.
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Figure 3 Effect of the magmatic field parameter Hax on θ(h) when Grx = 0.5, Gcx = 0.1, Df = 0.2, Sr
= 0.3, and ξ = 0.01.

Sibanda et al. Boundary Value Problems 2012, 2012:25
http://www.boundaryvalueproblems.com/content/2012/1/25

Page 11 of 15



0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

φ
(η

)

 

 

Ha
x
 = 0

Ha
x
 = 0.03

Ha
x
 = 0.06

Ha
x
 = 0.1

Figure 4 Effect of the magmatic field parameter Hax on j(h) when Grx = 0.5, Gcx = 0.1, Df = 0.2, Sr
= 0.3, and ξ = 0.01.
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Figure 5 shows the effect of increasing the Soret parameter (reducing the Dufour

parameter) on the fluid velocity f’(h). The fluid velocity is found to increase with the

Soret parameter.

The effect of Soret parameter on the temperature within the thermal boundary layer

and the solute concentration is shown in Figures 6 and 7, respectively. An increase in

the Soret effect reduces the temperature within the thermal boundary layer leading to

an increase in the temperature gradient at the wall and an increase in heat transfer

rate at the wall. On the other hand, increasing the Soret effect increases the concentra-

tion distribution which reduces the concentration gradient at the wall. These results

are similar to the earlier findings by El-Kaberir [31] and Alam and Rahman [32],

although the latter studies were subject to injection/suction.

5 Conclusions
In this article, we have investigated MHD and cross-diffusion effects on double-diffu-

sive convection from a vertical flat plate in a viscous incompressible fluid. Numerical

approximations for the governing equations were found using a combination of a regu-

lar perturbation expansion and the successive linearization method. The solutions were

validated by using a local similarity, non-similarity method. We determined the effects

of various parameters on the fluid properties as well as on the skin-friction coefficient,

the heat and the mass transfer rates. We have shown that the magnetic field parameter

enhances the temperature and concentration distributions within the boundary layer.

The effect of thermo-diffusion is to reduce the temperature and enhance the velocity

and the concentration profiles. The diffusion-thermo effect enhances the velocity and

temperature profiles while reducing the concentration distribution. The skin-friction,

heat and mass transfer coefficients decrease with an increase in the magnetic field

strength. The skin-friction and heat transfer coefficients increase whereas the mass

transfer coefficient decreases with increasing Soret numbers.

Acknowledgements
The authors would like to thank the referees for helpful comments and suggestions. This study was supported by the
National Research Foundation (NRF). AAK was supported by the government of Sudan.

Authors’ contributions
The problem was formulated following discussions by all three authors. Numerical simulations were carried out by
AAK and FGA while the discussion was authored principally by PS. All authors read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 18 October 2011 Accepted: 24 February 2012 Published: 24 February 2012

References
1. Stern, ME: The ‘salt fountain’ and thermohaline convection. Tellus. 12, 172–175 (1960). doi:10.1111/j.2153-3490.1960.

tb01295.x
2. Nield, DA, Bejan, A: Convection in Porous Media. Springer Verlag, New York (1999)
3. Nield, DA: Onset of thermohaline convection in a porous medium. Water Resour Res. 4, 553–560 (1968). doi:10.1029/

WR004i003p00553
4. Baines, PG, Gill, AE: On thermohaline convection with linear gradients. J Fluid Mech. 37, 289–306 (1969). doi:10.1017/

S0022112069000553
5. Rudraiah, N, Srimani, PK, Friedrich, R: Finite amplitude convection in a two component fluid saturated porous layer. Int J

Heat Mass Transfer. 25, 715–722 (1982). doi:10.1016/0017-9310(82)90177-6
6. Poulikakos, D: Double diffusive convection in a horizontally sparsely packed porous layer. Int Commun Heat Mass

Transfer. 13, 587–598 (1986). doi:10.1016/0735-1933(86)90035-7
7. Bejan, A, Khair, KR: Heat and mass transfer by natural convection in porous medium. Int J Heat Mass Transfer. 28,

909–918 (1985). doi:10.1016/0017-9310(85)90272-8

Sibanda et al. Boundary Value Problems 2012, 2012:25
http://www.boundaryvalueproblems.com/content/2012/1/25

Page 14 of 15



8. Lai, FC: Coupled heat and mass transfer by natural convection from a horizontal line source in saturated porous
medium. Int Commun Heat Mass Transfer. 17, 489–499 (1990). doi:10.1016/0735-1933(90)90067-T

9. Afify, AA: MHD free convective flow and mass transfer over a stretching sheet with chemical reaction. Heat Mass
Transfer. 40, 495–500 (2004)

10. Makinde, OD, Sibanda, P: MHD mixed-convective flow and heat and mass transfer past a vertical plate in a porous
medium with constant wall suction. J Heat Transfer. 130, 1–8 (2008)

11. Eckert, ERG, Drake, RM: Analysis of heat and mass transfer. McGraw-Hill, New York (1972)
12. Mortimer, RG, Eyring, H: Elementary transition state theory of the Soret and Dufour effects. Proc Natl Acad Sci. 77,

1728–1731 (1980). doi:10.1073/pnas.77.4.1728
13. Anjalidevi, SP, Devi, RU: Soret and Dufour effects on MHD slip flow with thermal radiation over a porous rotating infnite

disk. Commun Nonlinear Sci. 16, 1917–930 (2011). doi:10.1016/j.cnsns.2010.08.020
14. Kafoussias, NG, Williams, EW: Thermal-diffusion and diffusion thermo effects on mixed free-forced convective and mass

transfer boundary layer flow with temperature dependent viscosity. Int J Eng Sci. 33, 1369–1384 (1995). doi:10.1016/
0020-7225(94)00132-4

15. Postelnicu, A: Influence of a magnetic field on heat and mass transfer by natural convection from vertical surfaces in
porous media considering Soret and Dufour effects. Int J Heat Mass Transfer. 47, 1467–1472 (2004). doi:10.1016/j.
ijheatmasstransfer.2003.09.017

16. Mansour, MA, El-Anssary, NF, Aly, AM: Effects of chemical reaction and thermal stratification on MHD free convective
heat and mass transfer over a vertical stretching surface embedded in a porous media considering Soret and Dufour
numbers. Chem Eng J. 145, 340–345 (2008). doi:10.1016/j.cej.2008.08.016

17. Lakshmi-Narayana, PA, Sibanda, P: Soret and Dufour effects on free convection along a vertical wavy surface in a fluid
saturated Darcy porous medium. Int J Heat Mass Transfer. 53, 3030–3034 (2010). doi:10.1016/j.
ijheatmasstransfer.2010.03.025

18. Awad, FG, Sibanda, P, Motsa, SS: On the linear stability analysis of a Maxwell fluid with double-diffusive convection.
Appl Math Model. 34, 3509–3517 (2010). doi:10.1016/j.apm.2010.02.038

19. Liao, SJ: Beyond Perturbation: Introduction to the Homotopy Analysis Method. CRC Press, Boca Raton (2003)
20. Geng, F: Modified variational iteration method for second order initial value problems. Appl Appl Math. 1, 73–81 (2010)
21. Motsa, SS, Sibanda, P, Shateyi, S: A new spectral-homotopy analysis method for solving a nonlinear second order BVP.

Commun Nonlinear Sci Numer Simulat. 15, 2293–2302 (2010). doi:10.1016/j.cnsns.2009.09.019
22. Motsa, SS, Sibanda, P, Awad, FG, Shateyi, S: A new spectral-homotopy analysis method for the MJD Jeffery-Hamel

problem. Comput. Fluids. 39, 1219–1225 (2010). doi:10.1016/j.compfluid.2010.03.004
23. Makukula, ZG, Sibanda, P, Motsa, SS: A note on the solution of the Von Karman equations using series and chebyshev

spectral methods. pp. 17. Boundary Value Problems2010, (2010) Article ID 471793
24. Makukula, ZG, Sibanda, P, Motsa, SS: A novel numerical technique for two-dimensional laminar flow between two

moving porous walls. Math Problems Eng 2010, 15 (2010). Article ID 528956
25. Awad, FG, Sibanda, P, Motsa, SS, Makinde, OD: Convection from an inverted cone in a porous medium with cross-

diffusion effects. Comput Math Appl. 61, 1431–1441 (2011). doi:10.1016/j.camwa.2011.01.015
26. Motsa, SS, Sibanda, P, Shateyi, S: On a new quasi-linearization method for systems of nonlinear boundary value

problems. Math Methods Appl Sci. 34, 1406–1413 (2011). doi:10.1002/mma.1449
27. Afify, AA: Similarity solution MHD: Effects of thermal and diffusion thermo on free convective heat and mass transfer

over a stretching surface considering suction or injection. Commun. Nonlinear Sci Numer Simulat. 14, 2202–2214
(2009). doi:10.1016/j.cnsns.2008.07.001

28. Sparrow, EM, Yu, HS: Local non-similarity thermal boundary layer solutions. J Heat Transfer. 93, 328–334 (1971).
doi:10.1115/1.3449827

29. Sparrow, EM, Quack, H, Boerner, CJ: Local non-similarity boundary layer solutions. AIAA. 8, 1936–1942 (1970).
doi:10.2514/3.6029

30. Shampine, LF, Ketzscher, R, Forth, SA: Using AD to solve BVPs in Matlab. ACM Trans Math Softw. 31(1):79–94 (2005).
doi:10.1145/1055531.1055535

31. El-Kabeir, SMM: Soret and Dufour effects on heat and mass transfer by mixed convection over a vertical surface
saturated porous medium with temperature dependent viscosity. Int J Numer Meth Fluids. (2011)

32. Alam, MS, Rahman, MM: Dufour and Soret effects on mixed convection flow past a vertical porous flat plate with
variable suction. Nonlinear Anal: Model Control. 11, 3–12 (2006)

doi:10.1186/1687-2770-2012-25
Cite this article as: Sibanda et al.: On cross-diffusion effects on flow over a vertical surface using a linearization
method. Boundary Value Problems 2012 2012:25.

Sibanda et al. Boundary Value Problems 2012, 2012:25
http://www.boundaryvalueproblems.com/content/2012/1/25

Page 15 of 15

http://www.ncbi.nlm.nih.gov/pubmed/16592791?dopt=Abstract

	Abstract
	1 Introduction
	2 Problem formulation
	3 Method of solution
	4 Results and discussion
	5 Conclusions
	Acknowledgements
	Authors' contributions
	Competing interests
	References

