RESEARCH

Open Access

Lagrangian actions on 3-body problems with two fixed centers

Xiong-rui Wang¹ and Sheng He^{2*}

* Correspondence: njmaths@163. com

²Department of Mathematics, Sichuan University, Sichuan 610064, P. R. China

Full list of author information is available at the end of the article

Abstract

In this paper, we study the existence of figure " ∞ "-type periodic solution for 3-body problems with strong-force potentials and two fixed centers, and we also give some remarks in the case with Newtonian weak-force potentials.

Mathematical Subject Classification 2000: 34C15; 34C25; 70F10.

Keywords: 3-body problems with two fixed centers, " ∞ "-type solutions, Lagrangian actions

1 Introduction and Main Result

We assume two masses $m_1 = m_2 = \frac{1}{2}$ are fixed at $q_1 = \left(\frac{-1}{2}, 0\right)$ and

 $q_2 = -q_1 = \left(\frac{1}{2}, 0\right)$, the third mass m_3 is affected by m_1 and m_2 and moving according to the Newton's second law and the general gravitational law [1,2], then the position q(t) for m_3 satisfies

$$m_{3}\ddot{q}(t) = \frac{m_{1}m_{3}\alpha(q_{1}-q)}{|q_{1}-q|^{\alpha+2}} + \frac{m_{2}m_{3}\alpha(q_{2}-q)}{|q_{2}-q|^{\alpha+2}}$$
(1.1)

Equivalently,

$$\ddot{q}(t) = \frac{\alpha}{2} \left[\frac{q_1 - q}{|q_1 - q|^{\alpha + 2}} + \frac{q_2 - q}{|q_2 - q|^{\alpha + 2}} \right]$$
(1.2)

$$\ddot{q}(t) = \frac{\partial U(q)}{\partial q} \tag{1.3}$$

Where
$$\alpha > 0$$
, $U(q) = \frac{1/2}{|q - q_1|^{\alpha}} + \frac{1/2}{|q - q_2|^{\alpha}}$. (1.4)

For the case $\alpha = 1$, Euler [3-5] studied (1.1)-(1.3), but didn't use variational methods to study periodic solutions.

Here we want to use variational minimizing method to look for periodic solution for m_3 which winds around q_1 and q_2 , let

© 2012 Wang and He; licensee Springer. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

$$f(q) = \int_{0}^{1} \left[\frac{1}{2} \left| \dot{q} \right|^{2} + \frac{1/2}{\left| q - q_{1} \right|^{\alpha}} + \frac{1/2}{\left| q - q_{2} \right|^{\alpha}} \right] dt,$$
(1.5)

$$q \in \Lambda = \begin{cases} q \in W^{1,2}(\mathbb{R}/\mathbb{Z}, \mathbb{R}^2), & q(t) \neq q_1, q_2, \\ q\left(t + \frac{1}{2}\right) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} q(t), & q(-t) = -q(t), \\ \deg(q - q_1) = 1, \ \deg(q - q_2) = -1 \end{cases}$$
(1.6)

Theorem 1.1 For $\alpha \ge 2$, the minimizer of f(q) on $\overline{\Lambda}$ does exist and is non-collision " ∞ "-type periodic solution of (1.1)-(1.3).(See Figure 1)

2 The Proof of Theorem 1.1

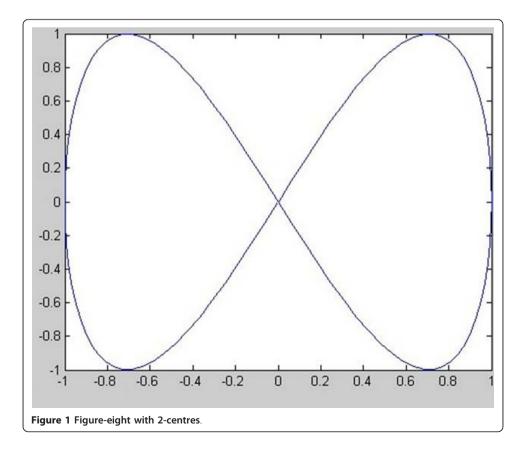
Using Palais'S symmetrical Principle [6], it's easy to prove the following variational Lemma:

Lemma 2.1 The critical point of f(q) in Λ is the noncollision periodic solution winding around q_1 counter-clockwise and q_2 clockwise one time during one period.

Lemma 2.2 [7] If $x \in W^{1,2}(\mathbb{R}/\mathbb{Z}, \mathbb{R}^2)$ and $\exists t_0 \in [0,1]$, *s.t.* $x(t_0) = 0$, if $\alpha \ge 2$ and a > 0, then

$$\int_{0}^{1} \left[\frac{1}{2} |\dot{x}|^{2} + \frac{a}{|x|^{\alpha}} \right] dt = +\infty$$
(2.1)

It's easy to see



Lemma 2.3 $\overline{\Lambda}$ is a weakly closed subset of the Hilbert space $W^{1,2}(\mathbb{R}/\mathbb{Z}, \mathbb{R}^2)$. **Lemma 2.4** f(q) is coercive and weakly lower-semicontinuous on the closure $\overline{\Lambda}$ of Λ .

Proof. By
$$q(-t) = -q(t)$$
 and $q(t) \in W^{1,2}(\mathbb{R}/\mathbb{Z}, \mathbb{R}^2)$, we have $\int_0^1 q(t)dt = 0$. By Wirtinger's

inequality, we know f(q) is coercive. By Sobolev's embedding Theorem and Fatou's Lemma, f is weakly lower-semi-continuous on the weakly closed set $\overline{\Lambda}$ of $W^{1,2}$.

Lemma 2.5 [8] Let *X* be a reflexive Banach space, $M \subseteq X$ be weakly closed subset, $f : M \to R$ be weakly lower semi-continuous and coercive $(f(x) \to +\infty \text{ as } ||x|| \to +\infty)$, then *f* attains its infimum on *M*.

According to *Lemmas* 2.1-2.5, we know that f(q) attains its infimum on $\overline{\Lambda}$ and the minimizer of f(q) on $\overline{\Lambda}$ is collision-free since if let $x_1 = q - q_1$, $x_2 = q - q_2$, then

$$f(q) = \int_{0}^{1} \left[\frac{1}{2} |\dot{q} - \dot{q}_{1}|^{2} + \frac{1}{|q - q_{1}|^{\alpha}} \right] dt = \int_{0}^{1} \left[\frac{1}{2} |\dot{q} - \dot{q}_{2}|^{2} + \frac{1}{|q - q_{2}|^{\alpha}} \right] dt$$

$$= \int_{0}^{1} \left[\frac{1}{2} |\dot{x}_{1}|^{2} + \frac{1}{|x_{1}|^{\alpha}} \right] dt = \int_{0}^{1} \left[\frac{1}{2} |\dot{x}_{2}|^{2} + \frac{1}{|x_{2}|^{\alpha}} \right] dt$$
(2.2)

So if the minimizer of f(q) on $\overline{\Lambda}$ has collision at some moment, then Gordon's Lemma tell us the minimum value is $+\infty$ which is a contradiction.

The most interesting case $\alpha = 1$ is the case for Newtonian potential, we try to prove the minimizer is collision-free, but it seems very difficult, here we give some remarks. **Lemma 2.6** [9] If y(0) = 0 and 2k is an even positive integer, then

$$\int_{0}^{1} \gamma^{2k} dx \le c \int_{0}^{1} \dot{\gamma}^{2k} dx,$$
(2.3)

where

$$c = \frac{1}{2k-1} \left(\frac{2k}{\pi} \sin\left(\frac{\pi}{2k}\right)\right)^{2k}.$$
(2.4)

There is equality only for a certain hyperelliptic curve.

Now we estimate the lower bound of the Lagrangian action f(q) on " ∞ "-type collisio-

norbits. Since $q_2 = -q_1 = \left(\frac{1}{2}, 0\right)$ and $q\left(t + \frac{1}{2}\right) = \left(\begin{array}{c} -1 & 0\\ 0 & 1 \end{array}\right) q(t)$, so

$$\int_{0}^{1} \frac{dt}{|q-q_{1}|} = \int_{0}^{1} \frac{dt}{|q-q_{2}|},$$

$$f(q) = \int_{0}^{1} \left[\frac{1}{2}|\dot{q}|^{2} + \frac{1/2}{|q-q_{1}|} + \frac{1/2}{|q-q_{2}|}\right] dt$$

$$= \int_{0}^{1} \left[\frac{1}{2}|\dot{q}|^{2} + \frac{1}{|q-q_{1}|}\right] dt$$

$$= \int_{0}^{1} \left[\frac{1}{2}|\dot{q} - \dot{q}_{1}|^{2} + \frac{1}{|q-q_{1}|}\right] dt$$
(2.5)
(2.5)

If q(t) collides with q_1 at some moment $t_0 \in [0,1]$, without loss of generality, we assume $t_0 = 0$, then $q(0) - q_1 = 0$, we let $x(t) = q(t) - q_1$, y(t) = |x(t)|, then x(0) = 0, y(0) = 0. By Jensen's inequality and Hardy-Littlewood-pólya inequality [9], we have

$$f(q) = \frac{1}{2} \int_{0}^{1} \left(|\dot{x}|^{2} dt + \int_{0}^{1} \frac{dt}{|x|} \right)$$

$$\geq \frac{1}{2} \int_{0}^{1} \left[\frac{d}{dt} |x| \right]^{2} dt + 1^{3/2} \left(\int_{0}^{1} |x|^{2} dt \right)^{-1/2}$$

$$= \frac{1}{2} \int_{0}^{1} \dot{y}^{2} dt + \left(\int_{0}^{1} y^{2} dt \right)^{-1/2}$$

$$\geq \frac{1}{2} \left(\frac{\pi}{2} \right)^{2} \int_{0}^{1} y^{2} dt + \left(\int_{0}^{1} y^{2} dt \right)^{-1/2}$$
(2.7)

Let
$$\sqrt{\int_0^1 \gamma^2 dt} = s \ge 0, \varphi(s) = \frac{\pi^2}{8}s^2 + s^{-1}$$
, then $\varphi''(s) = \frac{\pi^2}{4} + 2s^{-3} > 0$, that is ϕ is

strictly convex.

Let $\phi'(s) = 0$, we solve it to get $s_0 = \left(\frac{\pi^2}{4}\right)^{-1/3}$ is the critical point for $\phi(s)$, and

 $\varphi(s_0) = \frac{3}{2} \left(\frac{\pi}{2}\right)^{\frac{2}{3}}$, which is the maximum value for $\phi(s)$ on s > 0 since ϕ is convex and $\phi(s) \to +\infty$ as $s \to 0^+$.

If we can find the test orbit $\tilde{q}(t) \in \Lambda$ such that

$$f(\tilde{q}(t)) < \frac{3}{2} \left(\frac{\pi}{2}\right)^{2/3}$$
 (2.8)

then the minimizer of f(q) on $\overline{\Lambda}$ is collision-free.

Acknowledgements

The authors would like to thank the anonymous referees for their valuable suggestions which improve this work. This work was supported by Scientific Research Fund of Sichuan Provincial Education Department (11ZA172).

Author details

¹Department of Mathematics, Yibin University, Yibin, Sichuan 644007, China ²Department of Mathematics, Sichuan University, Sichuan 610064, P. R. China

Authors' contributions

All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 1 October 2011 Accepted: 28 February 2012 Published: 28 February 2012

References

- 1. Gordon, W: A minimizing property of Keplerian orbits. Am J Math. 99, 961–971 (1977). doi:10.2307/2373993
- 2. Siegel, C, Moser, J: Lectures on Celestial Mechanics. Springer, Berlin (1971)
- 3. Euler, M: De motu coproris ad duo centra virium fixa attracti. Nov Commun Acad Sci Imp Petrop. 10, 207–242 (1766)
- 4. Euler, M: De motu coproris ad duo centra virium fixa attracti. Nov Commun Acad Sci Imp Petrop. 11, 152–184 (1767)

- 5. Euler, M: Probleme un corps etant attire en raison reciproque quarree des distances vers deux points fixes donnes trouver les cas ou la courbe decrite par ce corps sera algebrique. Hist Acad R Sci Bell Lett Berlin. 2, 228–249 (1767)
- 6. Palais, R: The principle of symmetric criticality. Commun Math Phys. 69, 19–30 (1979). doi:10.1007/BF01941322
- 7. Gordon, W: Conservative dynamical systems involving strong forces. Trans AMS. 204, 113–135 (1975)
- 8. Ambrosetti, A, Coti Zelati, V: Periodic Solutions for Singular Lagrangian Systems. Springer, Boston (1993)
- 9. Hardy, G, Littlewood, JE, Pólya, G: Inequalities. Cambridge University Press, Cambridge, 2 (1952)

doi:10.1186/1687-2770-2012-28

Cite this article as: Wang and He: Lagrangian actions on 3-body problems with two fixed centers. Boundary Value Problems 2012 2012:28.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com