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Abstract

In this paper, we study the existence of figure “∞"-type periodic solution for 3-body
problems with strong-force potentials and two fixed centers, and we also give some
remarks in the case with Newtonian weak-force potentials.
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1 Introduction and Main Result

We assume two masses m1 = m2 =
1
2

are fixed at q1 =
(−1

2
, 0

)
and

q2 = −q1 =
(
1
2
, 0

)
, the third mass m3 is affected by m1 and m2 and moving according

to the Newton’s second law and the general gravitational law [1,2], then the position

q(t) for m3 satisfies

m3q̈(t) =
m1m3α(q1 − q)∣∣q1 − q

∣∣α+2 +
m2m3α(q2 − q)∣∣q2 − q

∣∣α+2 (1:1)

Equivalently,

q̈(t) =
α

2

[
q1 − q∣∣q1 − q

∣∣α+2 +
q2 − q∣∣q2 − q

∣∣α+2
]

(1:2)

q̈(t) =
∂U(q)

∂q
(1:3)

Where α > 0,U(q) =
1/2∣∣q − q1

∣∣α +
1/2∣∣q − q2

∣∣α . (1:4)

For the case a = 1, Euler [3-5] studied (1.1)-(1.3), but didn’t use variational methods

to study periodic solutions.

Here we want to use variational minimizing method to look for periodic solution for

m3 which winds around q1 and q2, let
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f (q) =

1∫
0

[
1
2

∣∣q̇∣∣2 + 1/2∣∣q − q1
∣∣α +

1/2∣∣q − q2
∣∣α

]
dt, (1:5)

q ∈ � =

⎧⎪⎪⎨
⎪⎪⎩

q ∈ W1,2(R/Z, R2), q(t) �= q1, q2,

q
(
t +

1
2

)
=

(−1 0
0 1

)
q(t), q(−t) = −q(t),

deg(q − q1) = 1, deg(q − q2) = −1

⎫⎪⎪⎬
⎪⎪⎭ (1:6)

Theorem 1.1 For a ≥ 2, the minimizer of f(q) on � does exist and is non-collision

“∞”-type periodic solution of (1.1)-(1.3).(See Figure 1)

2 The Proof of Theorem 1.1
Using Palais’S symmetrical Principle [6], it’s easy to prove the following variational

Lemma:

Lemma 2.1 The critical point of f(q) in Λ is the noncollision periodic solution wind-

ing around q1 counter-clockwise and q2 clockwise one time during one period.

Lemma 2.2 [7] If x Î W1,2 (ℝ/ℤ, ℝ2) and ∃ t0 Î [0,1], s.t. x(t0) = 0, if a ≥ 2 and a > 0,

then

1∫
0

[
1
2

|ẋ|2 + a
|x|α

]
dt = +∞ (2:1)

It’s easy to see

Figure 1 Figure-eight with 2-centres.
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Lemma 2.3 � is a weakly closed subset of the Hilbert space W1,2(ℝ/ℤ, ℝ2).

Lemma 2.4 f(q) is coercive and weakly lower-semicontinuous on the closure � of Λ.

Proof. By q(-t) = -q(t) and q(t) Î W1,2(ℝ/ℤ, ℝ2), we have
1∫
0
q(t)dt = 0 . By Wirtinger’s

inequality, we know f(q) is coercive. By Sobolev’s embedding Theorem and Fatou’s

Lemma, f is weakly lower-semi-continuous on the weakly closed set � of W1,2.

Lemma 2.5 [8] Let X be a reflexive Banach space,M ⊂ X be weakly closed subset,f :

M ® R be weakly lower semi-continous and coercive (f(x) ® +∞ as ∥x∥ ® +∞), then f

attains its infimum on M.

According to Lemmas 2.1-2.5, we know that f(q) attains its infimum on � and the

minimizer of f(q) on � is collision-free since if let x1 = q - q1, x2 = q - q2, then

f (q) =
1∫
0

[
1
2

∣∣q̇ − q̇1
∣∣2 + 1∣∣q − q1

∣∣α
]

dt =
1∫
0

[
1
2

∣∣q̇ − q̇2
∣∣2 + 1∣∣q − q2

∣∣α
]
dt

=
1∫
0

[
1
2

|ẋ1|2 + 1
|x1|α

]
dt =

1∫
0

[
1
2

|ẋ2|2 + 1
|x2|α

]
dt

(2:2)

So if the minimizer of f(q) on � has collision at some moment, then Gordon’s

Lemma tell us the minimum value is +∞ which is a contradiction.

The most interesting case a = 1 is the case for Newtonian potential, we try to prove

the minimizer is collision-free, but it seems very difficult, here we give some remarks.

Lemma 2.6 [9] If y(0) = 0 and 2k is an even positive integer, then

1∫
0

y2kdx ≤ c

1∫
0

ẏ2kdx, (2:3)

where

c =
1

2k − 1

(
2k
π

sin
( π

2k

))2k

. (2:4)

There is equality only for a certain hyperelliptic curve.

Now we estimate the lower bound of the Lagrangian action f(q) on “∞"-type collisio-

norbits. Since q2 = −q1 =
(
1
2
, 0

)
and q

(
t +

1
2

)
=

(−1 0
0 1

)
q(t), so

1∫
0

dt∣∣q − q1
∣∣ =

1∫
0

dt∣∣q − q2
∣∣ , (2:5)

f (q) =

1∫
0

[
1
2

∣∣q̇∣∣2 + 1/2∣∣q − q1
∣∣ + 1/2∣∣q − q2

∣∣
]

dt

=

1∫
0

[
1
2

∣∣q̇∣∣2 + 1∣∣q − q1
∣∣
]
dt

=

1∫
0

[
1
2

∣∣q̇ − q̇1
∣∣2 + 1∣∣q − q1

∣∣
]
dt

(2:6)
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If q(t) collides with q1 at some moment t0 Î [0,1], without loss of generality, we

assume t0 = 0, then q(0) - q1 = 0, we let x(t) = q(t) - q1, y(t) = |x(t)|, then x(0) = 0,y(0) =

0. By Jensen’s inequality and Hardy-Littlewood-pólya inequality [9], we have

f (q) =
1
2

1∫
0

⎛
⎝|ẋ|2dt +

1∫
0

dt
|x|

⎞
⎠

≥ 1
2

1∫
0

[
d
dt

|x|
]2

dt + 13/2

⎛
⎝ 1∫

0

|x|2dt
⎞
⎠

−1/2

=
1
2

1∫
0

ẏ2dt +

⎛
⎝ 1∫

0

y2dt

⎞
⎠

−1/2

≥ 1
2

(π

2

)2
1∫

0

y2dt+

⎛
⎝ 1∫

0

y2dt

⎞
⎠

−1/2

(2:7)

Let

√∫ 1

0
y2dt = s ≥ 0,ϕ(s) =

π2

8
s2 + s−1 , then ϕ′′(s) =

π2

4
+ 2s−3 > 0 , that is � is

strictly convex.

Let �’(s) = 0, we solve it to get s0 =
(

π2

4

)−1/3

is the critical point for �(s), and

ϕ(s0) =
3
2

(π

2

)2
3 , which is the maximum value for �(s) on s > 0 since � is convex and

�(s) ® +∞ as s ® 0+.

If we can find the test orbit q̃(t) ∈ � such that

f
(
q̃(t)

)
<

3
2

(π

2

)2/3
(2:8)

then the minimizer of f(q) on � is collision-free.
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