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Abstract

The existence of at least three weak solutions is established for a class of quasilinear
elliptic systems involving the p(x)-Laplace operator with Neumann boundary condition.
The technical approach is mainly based on a three critical points theorem due to Ricceri.
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1 Introduction
In this article, we consider the problem of the type⎧⎪⎪⎨

⎪⎪⎩
−�p(x)u + ep(x)|u|p(x)−2u = λFu(x, u, v) + μGu(x, u, v), x ∈ �,
−�q(x)v + ep(x)|v|q(x)−2v = λFv(x, u, v) + μGv(x, u, v), x ∈ �,
∂u
∂v

=
∂v
∂v

= 0 x ∈ ∂�,
(1)

where Ω ⊂ RN(N ≥ 2) is a bounded domain with boundary of class C1. ν is the outer

unit normal to ∂Ω, l, μ ≥ 0 are real numbers. p(x), q(x) ∈ C0
(
�̄

)
with

N < p− := infx∈�̄p(x) ≤ p+ := supx∈�̄p(x),, N <q- ≤ q+, F : Ω × R × R ® R is a function

such that F(·, s, t) is measurable in Ω for all (s, t) Î R × R and F(x, ·, ·) is C1 in R × R

for a.e. x Î Ω, Fs denotes the partial derivative of F with respect to s. We assume G(x,

s,t) and ep(x),eq(x) satisfy the following conditions:

(G) G : Ω × R × R ® R is a Carathéodory function, sup{|s|≤θ,|t|≤ϑ} |G(·,s,t)| Î L1(Ω)

for all θ, ϑ > 0;

(E) ep(x),eq(x) Î L∞(Ω) and ess infΩ ep(x), ess infΩ eq(x) > 0, we denote ∥ep∥1 = ∫Ω
ep(x)dx and ∥eq∥1 = ∫Ωeq(x)dx.

It is well known that the operator -Δp(x) = -div(|∇u|p(x)-2∇u) is called p(x)-Laplacian and

the corresponding problem is called a variable exponent elliptic systems. The study of dif-

ferential equations and variational problems with nonstandard p(x)-growth conditions has

been attracting attention of many authors in the last two decades. It arises from nonlinear

elasticity theory, electro-rheological fluids, etc. see [1,2], many results have been obtained

on this kind of problems, for example [3-9]. For the special case, p(x) ≡ p(a constant), (1.1)

becomes the well known p-Laplacian problem. There have been many papers on this class

of problems, see [10-19] and the reference therein.
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Recently, many papers have appeared in which the technical approach adopted is

based on the three critical points theorem obtained by Ricceri [16]. We cite papers

[20-23], where the authors established the existence of at least three weak solutions to

the problems with Dirichlet or Neumann boundary value conditions. Li and Tang in

[24] obtained the existence of at least three weak solutions to problem (1) when p(x) ≡

p with Dirichlet boundary value conditions. El Manouni and Kbiri Alaoui [25] obtained

the existence of at least three solutions of system (1) when p(x) ≡ p in Ω by the three

critical points theorem obtained by Ricceri [26].

The main purpose of the present paper is to prove the existence of at least three

solutions of problem (1). We study problem (1) by using the three critical points theo-

rem by Ricceri [26] too. On the basis of [27], we state an equivalent formulation of the

three critical points theorem in [26] as follows.

Theorem 1. Let X be a reflexive real Banach space, F : X ® R a continuously Gâte-

aux differentiable and sequentially weakly lower semicontinuous C1 functional, bounded

on each bounded subset of X, whose Gâteaux derivative admits a continuous inverse on

X*; Ψ : X ® R a C1 functional with compact Gâteaux derivative. Assume that

(i) lim∥u∥®∞(F(u) + l Ψ(u)) = ∞ for all l > 0; and there are r Î R and u0, u1 Î X

such that:

(ii) F(u0) <r < F(u1);

(iii) infu∈�−1((−∞,r])�(u) >

(
�(u1) − r

)
�(u0) + (r − �(u0))�(u1)

�(u1) − �(u0)
..

Then there exists a non-empty open set Λ ⊆ [0, ∞) and a positive real number r with

the following property: for each l Î Λ and every C1 functional J : X ® R with compact

Gâteaux derivative, there exists s > 0 such that for each μ Î [0, s], the equation

�′(u) + λ� ′(u) + μJ′(u) = 0 (2)

has at least three solutions in X whose norms are less than r.
The paper is organized as follows. In section 2, we recall some facts that will be

needed in the paper. In section 3, we establish our main result.

2 Notations and preliminaries
In order to deal with p(x)-Laplacian problem, we need some theories on spaces Lp(x)

(Ω), W1,p(x)(Ω) and properties of p(x)-Laplacian which we will use later (see

[1,5,28,29]).

We denote

Lp(x)(�) =

⎧⎨
⎩u|u is a measurable real - valued function on �,

∫
�

∣∣u(x)∣∣p(x)dx < ∞
⎫⎬
⎭ .

We can introduce a norm on Lp(x)(Ω) by

|u|p(x) = inf

⎧⎨
⎩λ > 0|

∫
�

∣∣∣∣u(x)λ

∣∣∣∣
p(x)

dx ≤ 1

⎫⎬
⎭ .
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and (Lp(x)(Ω), | · |p(x)) becomes a Banach space, and we call it variable exponent

Lebesgue space.

The space W1,p(x)(Ω) is defined by

W1,p(x)(�) =
{
u ∈ Lp(x)(�)| |∇u| ∈ Lp(x)(�)

}
,

and it can be equipped with the norm

‖u‖p(x) = |u|p(x) + |∇u|p(x), ∀u ∈ W1,p(x)(�),

and we call it variable exponent Sobolev space. From [5], we know that spaces Lp(x)

(Ω) and W1,p(x)(Ω) are separable, reflexive and uniform convex Banach spaces.

When ep(x) satisfy (E), we define

Lp(x)ep(x)
(�) =

⎧⎨
⎩u|u is a measurable real - valued function,

∫
�

ep(x)
∣∣u(x)∣∣p(x)dx < ∞

⎫⎬
⎭ ,

with the norm

|u|(p(x),ep(x)) = inf

⎧⎨
⎩λ > 0|

∫
�

ep(x)

∣∣∣∣u(x)λ

∣∣∣∣
p(x)

dx ≤ 1

⎫⎬
⎭ ,

then Lp(x)ep(x)
(�) is a Banach space. For any u Î W1,p(x)(Ω), define

‖u‖ep = inf

⎧⎨
⎩λ > 0|

∫
�

∣∣∣∣∇u(x)
λ

∣∣∣∣
p(x)

+ ep(x)

∣∣∣∣u(x)λ

∣∣∣∣
p(x)

dx ≤ 1

⎫⎬
⎭ .

Then it is easy to see that ‖u‖ep is a norm on W1,p(x)(Ω) equivalent to ∥u∥p(x). In the

following, we will use ‖·‖ep to instead of ∥ · ∥p(x) on W1,p(x)(Ω). Similarly, we use ‖·‖ep to
instead of ∥ · ∥q(x) on W1,q(x)(Ω).

Proposition 1. (see [1,5]) The conjugate space of Lp(x)(Ω) is Lp
0(x)(�), where

1
p(x) +

1
p0(x) = 1. For any u Î Lp(x)(Ω) and v ∈ Lp

0(x)(�), we have

∫
�

|uv| dx ≤
(

1
p− +

1(
p0

)−

)
|u|p(x)|v|p0(x) ≤ 2|u|p(x)|v|p0(x).

Proposition 2. (see [1,5])If we denote r(u) = ∫Ω |u|p(x)dx, ∀u Î Lp(x)(Ω), then

(i) |u|p(x) < 1(= 1; > 1) ⇔ r (u) < 1(= 1; > 1);

(ii) |u|p(x) > 1 ⇒ |u|p−

p(x) ≤ ρ(u) ≤ |u|p+p(x) ; |u|p(x) < 1 ⇒ |u|p+p(x) ≤ ρ(u) ≤ |u|p−

p(x) ;

(iii) |u|p(x) ® 0(∞) ⇔ r (u) ® 0(∞).

From Proposition 2, the following inequalities hold:

‖u‖p−
ep ≤

∫
�

∣∣∇u(x)
∣∣p(x) + ep(x)

∣∣u(x)∣∣p(x)dx ≤ ‖u‖p+ep , if ‖u‖ep ≥ 1; (3)

‖u‖p+ep ≤
∫
�

∣∣∇u(x)
∣∣p(x) + ep(x)

∣∣u(x)∣∣p(x)dx ≤ ‖u‖p−ep , if ‖u‖ep ≤ 1. (4)
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Proposition 3.If Ω ⊂ RN is a bounded domain, then the imbedding

W1,p(x)(�) ↪→ C0(�̄)is compact whenever N <p-.

Proof. It is well know that W1,p(x)(�) ↪→ W1,p−
(�̄) is a continuous embedding, and

the embedding W1,p−(�) ↪→ C0(�̄) is compact when N <p- and Ω is bounded. So we

obtain the embedding W1,p(x)(�) ↪→ C0(�̄) is compact whenever N <p-.

From now on, we denote X by W1,p(x)(Ω) × W1,q(x)(Ω) with the norm

‖z‖ = ‖u‖ep + ‖v‖ep for any z = (u, v) ∈ X.

Then X is a separable and reflexive Banach spaces. Naturally, we denote X* by the

space (W1,p(x))*(Ω) × (W1,q(x))*(Ω), the dual space of X.

From Proposition 3, we know that when p-,q- >N, the embedding

x ↪→ C0(�̄) × C0(�̄) is compact, there exist a positive constant c such that

‖z‖∞ = ‖u‖∞ + ‖v‖∞ = sup
x∈�̄

∣∣u(x)∣∣ + sup
x∈�̄

∣∣v(x)∣∣ ≤ c ‖z‖ . (5)

3 Existence of three solutions
We define F, Ψ, J : X ® R by

�(z) =
∫
�

1
p(x)

(∣∣∇u(x)
∣∣p(x) + ep(x)

∣∣u(x)∣∣p(x))dx
+

∫
�

1
q(x)

(∣∣∇v(x)
∣∣q(x) + ep(x)

∣∣v(x)∣∣q(x)) dx,
(6)

�(z) = −
∫
�

F(x, u, v)dx, (7)

J(z) =
∫
�

G(x, u, v)dx. (8)

Then for any (ζ,h) Î X,

(
�′(z), (ζ , η)

)
=

∫
�

|∇u|p(x)−2∇u∇ζ + ep(x)|u|p(x)−2uζdx

+
∫
�

|∇v|q(x)−2∇v∇η + eq(x)|v|q(x)−2vηdx ∀z ∈ X,

(
� ′(z), (ζ , η)

)
=

∫
�

Fu(x, u, v)ζdx−
∫
�

Fv(x, u, v)ηdx, ∀z ∈ X.

(
J′(z), (ζ , η)

)
=

∫
�

Gu(x, u, v)ζdx−
∫
�

Gv(x, u, v)ηdx, ∀z ∈ X.

We say that z = (u, v) Î X is a weak solution of problem (1) if for any (ζ, h) Î X(
� ′(z), (ζ , η)

)
+ λ

(
� ′(z), (ζ , η)

)
+ μ(J′(z), (ζ , η)) = 0.

Thus, we deduce that z Î X is a weak solution of (1) if z is a solution of (2). It fol-

lows that we can seek for weak solutions of (1) by applying Theorem 1.

We first give the following result.
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Lemma 1. If F is defined in (6), then (F’)-1 : X* ® X exists and it is continuous.

Proof. First, we show that F’ is uniformly monotone. In fact, for any ζ, h Î RN, we

have the following inequality (see [30]):

(|ζ |p−2ζ − |η|p−2η
)
(ζ − η) ≥ 1

2p
|ζ − η| , p ≥ 2.

Thus, we deduce that

(
�′(z1) − �′(z2), z1 − z2

) ≥ min
{

1
2p+

,
1
2q+

}(
min

{
‖u1 − u2‖p

+

ep , ‖u1 − u2‖p
−
ep

}
+min

{
‖v1 − v2‖q

+

eq , ‖v1 − v2‖q
−
eq

})
,

for any z1 = (u1, v1), z2 = (u2, v2) Î X, i.e.,F’ is uniformly monotone.

From (3), (4), we can see that for any z Î X, we have that

(
�′(z), z

)
‖z‖ ≥

min
{
‖u‖p+ep , |u||p

−
ep

}
+ min

{
‖v‖p+ep , ‖v‖p

−
ep

}
‖u‖ep + ‖v‖ep

.

That’s meaning F’ is coercive on X.

By a standard argument, we know that F’ is hemicontinuous. Therefore, the conclu-

sion follows immediately by applying Theorem 26.A [31].

To obtain our main result, we assume the following conditions on F(x,s,t):

(A1) There exist d(x) Î L1(Ω) and 0 <ς <p-, 0 <τ <q- such that

F(x, s, t) ≤ d(x)
(
1 + |s|ζ + |t|τ )

for a.e.x Î Ω and (s,t) Î R × R;

(A2) F(x,0,0) = 0 for a.e.x Î Ω;

(A3) There exist s1,t1 Î R with |s1|, |t1| ≥ 1 such that

meas(�) sup
(x,|s|,|t|)∈�×[0,ckp]×[0,ckq]

F(x, s, t) ≤
(‖ep‖1

p+ + ‖eq‖1
q+

) ∫
�
F(x, s1, s1)dx

‖ep‖1
p− |s1|p+ + ‖eq‖1

q− |t1|q+
, (9)

where c is given in (5) and

kp = max

⎧⎪⎨
⎪⎩

(∥∥ep∥∥1 + p+
∥∥eq∥∥1
q+

) 1
p+

,

(∥∥ep∥∥1 + p+
∥∥eq∥∥1
q+

) 1
p−

⎫⎪⎬
⎪⎭ ,

kq = max

⎧⎪⎨
⎪⎩

(
q+

∥∥ep∥∥1
p+

+
∥∥eq∥∥1

) 1
q+

,

(
q+

∥∥ep∥∥1

p+
+

∥∥eq∥∥1
) 1

q−
⎫⎪⎬
⎪⎭ .

(A3)’ F(x,s,t) > 0 for any x Î Ω and |s| or |t| large enough, and there exist M, N > 0

such that

F(x, s, t) ≤ 0, x ∈ �, |s| ≤ M, |t| ≤ N;

Then we have the following main theorem.
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Theorem 2. Assume (A1),(A2),(A3)(or (A3)’),(G) and (E) hold. Then there exist an

open interval Λ ⊆ [0, ∞) and a positive real number r with the following property: for

each l Î Λ, there exists s > 0 such that for each μ Î [0, s], problem (1) has at least

three weak solutions whose norms are less than r.
Proof. By the definitions of F, Ψ, J, we know that Ψ’ is compact, F is weakly lower

semi-continuous and bounded on each bounded subset of X. From lemma 1 we can

see that (F’)-1 is well defined, from condition (G), J is well defined and continuously

Gâteaux differentiable on X, with compact derivative. Then we can use Theorem 1 to

obtain the result. Now we show that the hypotheses of Theorem 1 are fulfilled.

Thanks to (A1), for each l ≥ 0, one has that

lim
‖z‖→∞

�(z) + λ�(z) = +∞,

and so the assumption (i) of Theorem 1 holds.

Now we consider in two cases:

Case (i): (A3) holds, i.e., there exist 1 ≤ |s1|, |t1| such that (9) hold.

Now we set z0 = (0,0), z1 = (s1, s1) and denote r = ‖ep‖1
p+ + ‖eq‖1

q+ > 0, then it is easy to

see that

�(z1) > r > 0 = �(z0).

Thus, (ii) of Theorem 1 is satisfied.

At last, by (A2) we know Ψ(z0) = 0, then(
�(z1) − r

)
�(z0) + (r − �(z0))�(z1)

�(z1) − �(z0)

= r
�(z1)
�(z1)

≤ −r

∫
�
F(x, s1, s1)dx

|s1|p+
p−

∥∥ep∥∥1 + |t1|q+
q−

∥∥eq∥∥1 .
(10)

On the other way, when F(z) ≤ r, we have

min
{
‖u‖p+ep , ‖u‖p

−
ep

}
≤ rp+,min

{
‖v‖p+eq , ‖v‖p

−
eq

}
≤ rq+.

We deduce that

‖u‖ep ≤ max
{
(rp+)

1
p+ , (rp+)

1
p−

}

and

‖v‖eq ≤ max
{
(rq+)

1
q+ , (rq+)

1
q−

}

For r = ‖ep‖1
p+ + ‖eq‖1

q+
, then we have

‖u‖ep ≤ kp, ‖v‖eq ≤ kq.

By (5), we obtain

‖u‖∞ ≤ ckp, ‖v‖∞ ≤ ckq.
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Thus, from (7), we have

− inf
z∈�−1((−∞,r])

�(z) = sup
z∈�−1((−∞,r])

−�(z)

≤
∫
�

sup
(|u|,|v|)∈[0,ckp]×[0,ckq]

F(x, u, v)dx

≤ meas(�) sup
(x,|u|,|v|)∈�×[0,ckp]×[0,ckq]

F(x, u, v)

(11)

From (9)-(11) and the definition of r, we can see (iii) of Theorem 1 is hold.

Case (ii): (A3)’ holds. Then there exist |s2|,|t2| > 1 such that F(x,s2,t2) > 0 for any x Î

Ω and |s2|p−∥∥ep∥∥1 ≥ 1, |t2|q−∥∥eq∥∥1 ≥ 1. Set a = min{c,M}, b = min{c, N} then we have∫
�

sup
(|s|,|t|)∈[0,a]×[0,b]

F(x, s, t)dx ≤ 0 <

∫
�

F(x, s2, t2)dx. (12)

We denote z2 = (s2,t2) and r = min
{

1
p+

( a
c

)p+ , 1
q+

(
b
c

)q+
}
. Then it is easy to see that

�(z2) > r > �(z0).

So, (ii) of Theorem 1 is satisfied.

When F(z) ≤ r, similar to the above arguments, we obtain that

‖u‖∞ ≤ a, ‖v‖∞ ≤ b. (13)

At last, we see that(
�(z2) − r

)
�(z0) + (r − �(z0))�(z2)

�(z2) − �(z0)

= r
�(z2)
�(z2)

≤ −r

∫
�
F(x, s2, t2)dx

|s2|p+
p−

∥∥ep∥∥1 +
|t2|q+
q−

∥∥eq∥∥1 < 0.
(14)

From (7) and (12), we have

− inf
z∈�−1((−∞,r])

�(z) = sup
z∈�−1((−∞,r])

−�(z)

≤
∫
�

sup
(|u|,|v|)∈[0,a]×[0,b]

F(x, u, v)dx ≤ 0.
(15)

From (14) and (15), we can see (iii) of Theorem 1 is still hold.

Then all the hypotheses of Theorem 1 are fulfilled. By Theorem 1, we know that

there exist an open interval Λ ⊆ [0, ∞) and a positive constant r such that for any l Î
Λ, there exists s > 0 and for each μ Î [0,s], problem (1) has at least three weak solu-

tions whose norms are less than r.
By Theorem 2, we have the following result.

Corollary 1. Let f, g : Ω × R ® R be Carathéodory functions, sup|ζ|≤s |g(·, ζ)| Î L1(Ω)

for all s > 0, and define F(x, t) =
∫ t
0 f (x, y)dyfor any (x,t) Î Ω × R, e(x) Î L∞(Ω) and ess

infΩe(x) > 0. Assume the following conditions hold.
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(B1) There exist d(x) Î L1(Ω) and 0 <ς <p- such that

F(x, t) ≤ d(x)
(
1 + |t|ς )

for a.e.x Î Ω and t Î R;

(B2) There exists t3 Î R with |t3| ≥ 1 such that

meas(�) sup
(x,|s|)∈�×[0,ck]

F(x, s) ≤ p−

p+

∫
�
F(x, t3)dx

|t3|p+
, (16)

where c is given in (5) and

k = max
{
(‖e‖1)

1
p+ , (‖e‖1)

1
p−

}
;

or

(B2)’ F(x,t) > 0 for any x Î Ω and |t| large enough, and there exist M > 0 such that

F(x, t) ≤ 0, x ∈ �, |t| ≤ M.

Then there exist an open interval Λ ⊆ [0, ∞) and a positive constant r such that for

any l Î Λ, there exists s > 0 and for each μ Î [0, s], the problem{−�p(x)u + e(x)|u|p(x)−2u = λf (x, u) + μg(x, u), x ∈ �,
u = 0 x ∈ ∂�,

(17)

has at least three weak solutions whose norms are less than r.
Remark 1. if p(x) = p in Ω, μ = 0, problem (17) was considered in [21]. If we take f

(x,t) = |t|g(x)-2t - t with γ (x) ∈ C0(�̄) satisfies 2 <g- ≤ g+ <p-, μ = 0, Corollary 1

becomes a version of Theorem 2 in [23]. Hence our Corollary 1 unifies and generalizes

Theorem 2 in [21] and Theorem 2 in [23] and our Theorem 2 generalizes the main

results of [21-25] to the system (1).

At last, we give two examples.

Example 1. Let Ω = B(0,1) be the unit ball of RN with N ≥ 2, set p(x) = N + e|x|,q(x)

= N + 1 + ln(1 + x2), ep(x) = (1 + x2) = eq(x), G(x,u,v) = x2(u2 + v2) and

F(x, u, v) =
{
ex

2
(eu + uv − 1), x ∈ �, u ≤ M, v ∈ R,

ex
2 (
ueM + uv + 1

2u
2 − Mu − (M − 1)eM + 1

2M
2
)
, x ∈ �, u ≤ M, v ∈ R,

(18)

where M is a positive constant, i.e., we consider the following problem⎧⎪⎪⎨
⎪⎪⎩

−�p(x)u + (1 + x2)|u|p(x)−2u = λf (x, u, v) + μ2x2u, x ∈ �,
−�q(x)v + (1 + x2)|v|q(x)−2v = λu + μ2x2v, x ∈ �,
∂u
∂v

=
∂v
∂v

= 0 x ∈ ∂�.
(19)

where

f (x, u, v) = Fu(x, u, v) =
{
ex

2
(eu + v), x ∈ �, u ≤ M, v ∈ R,

ex
2
(eM + v + u − M), x ∈ �, u ≤ M, v ∈ R,

(20)

We can see that p+ = N + e, p− = N + 1, q+ = N + 1 + ln 2, q− = N + 1, ‖e‖1 = 4
3, and it

is easy to see that for any t1 > 1, there exists s1 > 1 such that
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es1 + s1t1 − 1
sp
+

1
p− + tq

+

1
q−

≥ e
(
eckp + c2kpkq − 1

)
1
p+ +

1
q+

, (21)

were kp =
(
4
3 + 4(N+1+ln +2)

3(N+e)

) 1
N+1 , kq =

(
4
3 +

4(N + e)
3(N + 1 + ln 2)

) 1
N+1 are positive con-

stants and c is given by (5). Then when M ≥ s1, F(x,u,v) defined in (18) satisfies (A1)-

(A3) of Theorem 2, and G(x,u,v),e(x) satisfy

(G) and (E) respectively, by Theorem 2, there exist an open interval Λ ⊆ [0, ∞) and a

positive constant r such that for any l Î Λ, there exists s > 0 and for each μ Î [0,s],
system (19) has at least three weak solutions whose norms are less than r.
Example 2. Assume Ω,p(x),q(x),ep(x),eq(x),G(x,u,v) are the same as in example 1, and

suppose N ≥ 8. Let

F(x, u, v) = (1 + 2x2)
(
u4v2 + v4u2 − 2u2v2

)
, x ∈ �, u, v ∈ R. (22)

Obviously, F(x,u,v) satisfies (A1) and (A2). By simple computation, we can see that

F(x, u, v) > 0, when |u| >
√
2 or |v| >

√
2

and

F(x, u, v) < 0, when |u| < 1 and |v| < 1,

i.e., (A3)’ hold for F(x,u,v) defined in (22).

Thus, there exist an open interval Λ ⊆ [0, ∞) and a positive constant r such that for

any l Î Λ, there exists s > 0 and for each μ Î [0, s], the system⎧⎪⎪⎨
⎪⎪⎩

−�p(x)u + (1 + x2)|u|p(x)−2u = λ4u3v2 + 2v4u − 4uv2 + μ2x2u, x ∈ �,
−�p(x)v + (1 + x2)|v|q(x)−2v = λ4u3v2 + 2u4v − 4vu2 + μ2x2v, x ∈ �,
∂u
∂v

=
∂v
∂v

= 0 x ∈ ∂�.
(23)

has at least three weak solutions whose norms are less than r.
Remark 2. We remark that the methods used in this paper are also applicable for

the cases of the other boundary value conditions, for example, Dirichlet boundary

value conditions.
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