Chen Boundary Value Problems 2012, 2012:32 @ Boundary Value PrOblemS

http://www.boundaryvalueproblems.com/content/2012/1/32 a SpringerOpen Journal

RESEARCH Open Access

Unique solvability of compressible micropolar
viscous fluids

Mingtao Chen

Correspondence: mtchen@sdu.edu.
cn

School of Mathematics and
Statistics, Shandong University at
Weihai, Weihai 264209, PR China

@ Springer

Abstract

In this article, we consider the compressible micropolar viscous flow in a bounded or
unbounded domain Q € R>. We prove the existence of unique local strong solutions
for large initial data satisfying some compatibility conditions. The key point here is
that the initial density need not be positive and may vanish in an open set.

1 Introduction

Compressible micropolar viscous fluids study the viscous compressible fluids with ran-
domly oriented (or spherical) particles suspended in the medium, when the deforma-
tion of fluid particles is ignored. The theory can help us consider some physical
phenomena which cannot be treated by the compressible viscous baratropic flows, due
to the effect of microparticles. The microstructure of the polar fluids is mechanically
significant. The governing system of equations of compressible micropolar viscous
fluids expresses the balance of mass, momentum, and moment of momentum see
[1,2], that is,

pr +div(pu) =0,
(pu), +div(pu @ u) + Vp(p) = (1 + ¢)Au+ (u + X — ¢)Vdivu + 2¢ Totw, (1)
(pw), + div(pu @ w) + 4w = W' Aw + (1’ + N )Vdivw + 2¢ rotu.

Here the density p = p(¢, x), the velocity u = [l %), i’ x), u®(t x)], the microro-
tational velocity w = [w'(t, x), w(t, x), w’(t, x)], and the pressure p(p) = ap’(a > 0, y >
1) are functions of the time ¢ € (0, 7T) and the spatial coordinate x € Q, where Q is
either a bounded open subset in R® with smooth boundary or a usual unbounded
domain such as the whole space R, the half space R3 and an exterior domain with
smooth boundary. g4, A, ¢/, A’, and { are positive constants, which describe the viscosity
of the fluids, satisfying the additional condition: y# + A - { > 0.

We prescribe the initial boundary value conditions:

(0, u,w)(0,x) = (po, to, wo) in £2, 2)
(u,w)=(0,0) on (0,T)x 382, (3)
(o, u,w)(t,x) = (0,0,0), as |x] - oo, (t,x) € (0,T) x £2. (4)
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There are lots of literature on the well-posedness and ill-posedness of the incompres-
sible micropolar viscous fluid, i.e., the system (1) with p = Constant. Yamaguchi [3]
considered the global strong solution in a bounded domain with small initial data.
Lukaszewicz [4] showed the existence theorem for the incompressible micropolar vis-
cous fluid with sufficiently regular initial data. And with the effect of Magnetic fields,
the system of magneto-micropolar fluid, in [5], Yuan gave the local smooth solution
without the smallness of the initial data; and also gave the blow-up criterion for the
smooth solutions. Amirat and Hamdache [6] considered the global weak solutions with
finite energy and establish the long-time behavior of the solution. And Amirat et al. [7]
also proved the global in time weak solution with finite energy of an initial-boundary
value problem and long-time behavior of such solution with the effect of magnetic
field. We also refer the reader to [8] for local strong solution in bounded domain of R3
and references therein.

For the compressible case, in the absence of vacuum, there also have been lots
of studies on the full viscous compressible micropolar fluids (which include also
the conservation law of energy) since Eringen [1]. The one-dimensional problem
studied by Mujakovi¢ [9-12], and Drazi¢ and Mujakovi¢ [13] and references
therein. For the multidimensional case, we refer the readers to [2,14-17] and refer-
ences therein. If the vacuum occur initially, Chen [18,19] studied the global strong
solutions of compressible micropolar viscous fluids in 1-D. Recently, Amirat and
Hamdache [20] studied the micropolar fluids with the effect of magnetic field,
they prove the global weak solution in a bounded domain in R® with initial
vacuum.

Classical compressible viscous flows, i.e., w = 0 and { = 0 in (1), have been studied by
many authors. In [21], Matsumura and Nishida considered the global smooth solutions
under the condition that initial data close to a non-vacuum equilibrium. For the arbi-
trary initial data, the major breakthrough is due to Lions [22], where he established
global existence of weak solutions for the whole space, periodic domain or bounded
domains with Dirichlet boundary conditions if y > 9/5. The restriction on y was
improved to y > 3/2 by Feireis] etal. in [23].

In [24], Choe and Kim established local in time strong solution of isentropic com-
pressible fluids with initial density p, may vanish in an open subset. After that, Cho
and Kim [25] studied the local existence of strong solutions of viscous polytropic fluids
with vacuum. Cho et al. [26] considered the unique solvability of the initial boundary
value problems for compressible viscous fluids that the initial density need not be
bounded away from zero.

Hoff and Serre [27] presented an example which showed the failure of continuous
dependence of weak solution, so it should be noticed that contrary to the case of
strong solutions, weak solutions with vacuum need not depend continuously on their
initial data.

Before stating the main result, we introduce the notions used throughout this article.
We denote

/fdx=9/fdx.
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For 1 < r < oo, we denote the standard homogeneous and inhomogeneous Sobolev
spaces as follows:

LI'=1'(R2), D" = {ueLl (£2):|Vu|L < oo},
Wk,r =L ND Hk = Wk,2 DF = Dk2
D} ={ueL®:|Vul» < oo, and(3)or(4)holds},

H} =L>ND},  |ulpw = |VFu

L

In spirit of [26], our aim of this article is to establish the local strong solution of (1)-
(4). Assume the initial data (po, wo, uo) satisfying the regularity

po € H' N W' and (wo, up) € Dy N D?, (5)
where 3 <¢q < 0, and the compatibilities

— (i + &) Aug — (i + % — £)Vdivug — 2¢rotwo + Vp(po) = py g1, (6)
and

—w Awg — (N + ) Vdivwg + 4¢wy — 2¢Totug = ,oé/zgz, (7)

for some (g1, &) € 12

Now, we state our main result in this article:

Theorem 1 Assume the data (po, uo, wo) satisfy the regularity conditions (5) and the
compatibility conditions (6) and (7).

Then there exists a time T« (0, T) and a unique strong solutions (p, u, w) to the
initial boundary value problem (1)-(4) such that

p € C([0, T.]; H' n W), p, € C([0, T]; L N L%);
(1, w) € C([0, T,]; D5 N D*) N L*(0, Ty; D*%0);
(ur, w;) € L*([0, T.]; DY) and (/pur, /pw;) € L°(0, Ty; L?),

where qo = min{6, g}.

The article is organized as follow. In Section 2, we prove the global existence and regular-
ity of the unique strong solutions to a linearized problem of the nonlinear problem (1)-(4).
The result is used in Section 3 to construct approximate solutions to the original nonlinear
problem. In Section 3, we derive some uniform bounds of the higher derivatives indepen-
dent of the lower bound of the density. Moreover, we prove the convergence and obtain
the local existence of strong solutions. In Section 4, we finish the proof of Theorem 1.

Remark 1 In this article, we use the following fact frequently later:

/ rotw - udx = f rotu - wdx,
2 2
under the boundary condition of (3) or (4).
2 Global existence for the linearized equations
In this section, we consider the following linearized system:

o +div(pv) =0,
(pw), + div(pv @ w) + 4w = p'Aw + (1’ + N')Vdivw + 2¢ rotw, (8)
(pu), +div(pv @ u) + Vp(p) = (1 + ¢)Au+ (n + X — ¢)Vdivu + 2 Totw,
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where v is a known vector fields. If the initial density p, is bounded away from zero,
then we can apply standard arguments to prove the global existence of a unique strong
solution to the initial boundary value problem (2)-(4) and (8), since the system can be
uncoupled into a linear transport equation and two linear parabolic equations.

In this section, we prove the following existence result for the general case of nonne-
gative initial densities.

Theorem 2 Assume that the data (po, ug, Wo) satisfies the regularity conditions:

0<poeH NWY, (uy,w) € DN D?, )
for some 3 <q < o and the compatibility conditions:

—i Awy — (' + N)divwg + 2¢ rotvg + 4cwp = ,oé/zgl, (10
and

—(u+¢)Aug — (1 + N — ¢)Vdivug — 2¢10twg + Vp(po) = pé/zgz, (11)
for some (g1, g,) € L>. If in addition, v satisfies the regularity conditions:

veL™(0,T; Dy ND*)NL*(0, T; D**) and v, € L?(0, T; D),

where qo = min{6, q}. Then there exists a unique strong solution (p, u, w) to the initial
boundary value problems (2)-(4) and (8) such that

p € C([0, T]; H' N W),  p, € L*®°(0, T; L2 N L),
(u,w) € C([0, T]; D{ N D*) N L2(0, T; D*4), (12)
(ut, wt) € LZ(O, T,D(l)), (qut, Jpwt) € LOO(O, T, Lz)

Here, we emphasize that we focus on the bounded open domain Q with smooth
boundary condition. As for the unbounded domain, we can deal the same problem
with the standard domain expansion technique that derived in [22]. We also refer the
reader to [26]. The key of this technique is that the a priori estimates do not depend
on the size of the domain. So, we here emphasize that the a priori estimates deduced
in this section are independent of the size of the domain.

2.1 Existence of theorem 2
We begin with an existence result for the case of positive initial densities.

Lemma 1 Let Q be a bounded domain in R® with smooth boundary, and let (po, o,
wy) be a given data satisfying the regularity condition (9)-(11). Assume further that
v, € L2(0,T; D)), v, € L2(0, T; D}), po € H> and p, > & in Q for some constant § > 0.
Then there exists a unique strong solution (p, u, w) to the initial boundary value pro-
blems (2), (3) and (8) such that

p € C([0, T|; H?), (u,w) € C([0, T]; D§ N D?)NL*(0, T; D3),
pe € C([0, TI; HY),  (u, wy) € L2(0, T; D) N C([0, T]; L?), (13)
andp > 0on [0,T] x £2.

Page 4 of 26
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Proof Due to the classical embedding result, that v € C([0, T];H*). Hence the exis-
tence and regularity of a unique solution of the linearized continuity Equation (8);
have been well-known. Moreover, the unique solution p can be expressed by:

p(t,x) = po(U(O,t,x)) exp —/divv(s, U(s, t,x))ds |, (14)
0

where U(t, s, x) is the solution to

0]
8tU(t' ssx)=v(t, U(tsx)), 0<t<T,
U(s, s, x) = x, 0<s<TuxefR.

We refer the readers to [28,29] for a detailed proof. As a consequence of (14) and
Sobolev inequality, we have

T

o(t, x) > 8 exp —/‘Vv(s)|Lmds >0, (15)
0

for (t,x) € [0, T] x 2. Hence the linearized moment of momentum Equation (8), can

be written as a linear parabolic system
we+v-Vw+4p tew— p7 ' Aw — p7H (' + V) Vdivw — 2p " L ¢roty = 0.

The existence and regularity of the unique solution w can be proved by applying
classical methods, for instance, the method of continuity (see [29]). Similarly, the line-
arized momentum Equation (8); also as a linear parabolic system

U +v-Vu—p Y+ )Au—p H(+ € —¢)Vdivu — 2p L erotw = —p ' Vp(p),

and can be solved using the same method.

Now we prove the existence of strong solutions. Then thanks to Lemma 1, there
exists a unique strong solution (p, u, w) satisfying the regularity (13). To remove the
additional hypotheses in Lemma 1, we will derive some uniform estimates independent
of 8, Vl2(0,7:03), and | polpe.

First, we consider the solution p of the linearized continuity Equation (8);. Since (8);
is a linear transport equation, so we need to prove the estimates. Multiply (8); by p"*
(r = 2 or qo) and integrating (by parts) over 2, we obtain:

d
o [ Pax=c [ vioras
Then, using Sobolev inequality, we get
d T T
de lolyr < ClIVUlya ol - (16)

Differentiating (8); with respect to x; then multiplying the resultant equation by
9,p|19,p]"2, i = 1, 2, 3 and then integrating over 2, we have

d
dt/wimfdxs C/uwuvmwmvm’*l |V2v|)dx.

Page 5 of 26
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By virtue of Sobolev inequality, we get:

d
4, 2Pt = CIVVlmapiaolplinowia. (17)

Using (16) and (17) together with Gronwall’s inequality, one yields:
T
OileT’p(t”Hl“W“’O < |polpAwiao exp C/ | V()| 1 praeds | < C. (18)
0
Since p, = -v -Vp - p div v, p = p(p) and p(0) = 0, we can easily get

OSUPT(|,01|L20L40 + ip(t)iHlmwl,qo + ipt(t)hzmmo) =C
<t=<

Then, we consider the solution w of the linearized Equation (8),. Rewrite (8),, with
the help of (8);, as:

pwe + pv-Vw + 4iw = ' Aw + (1" + N )Vdivw + 2¢ rotw. (19)

Multiplying this equation by w, and integrating (by parts) over (2, we have
d / / ')\/
fplwtlzdx+ dtf (I; [Vw|? + H ; |divw|2 +2§|w|2) dx
= —/ (pv - Vww, + 2¢ rotvw, )dx (20)
d
= —/(pv-wat+2§r0tv,w)dx+ dt/2§rotvwdx.

Then, using Young’s inequality, we obtain:

1 ) d w > MWHEN 9 3
2/,olwtl dx+dt/(2|Vw| o, {dlvw{ +2¢|w|? ) dx

21
2 2 2 2 d D
< [ (pWWI*IVw|” + ¢ |V ]~ + ¢ |lw|7)dx + dt 2¢rotvwdx.
Integrating the above inequality over (0, ), we get:
t
/ |\/,ow,|i2 ds + |Vw|fz +2¢ |w|%2
0
t t
< C+C/|wlfz d5+//p|v|2|Vw|2dxds+2{/|rotv| lw| dx (22)
0 0

t
<C+ C/ (Iwlf + IVw|R)ds + ¢ VoI + ¢ [wif .
0
Thus, we have
t t
2 2 2 2 2
|Vow |7, ds + [Vwl?, + [wlf, < C | (IVwlf, + [wlf,)ds + C.
0 0
Therefore, in view of Gronwall’s inequality, we have:

T
/ |\/pwt|izd5 + sup (|Vwl, + lwlf,) < C. (23)
0 0<t<T
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To derive higher regularity estimates, we differentiate (19) with respect to ¢ and
obtain:

PWy + PV - th + 4§wt — M/Awt — (/,L, + )\’)Vdith
= —pwy — pv - Vw — pvy - Vw + 2¢ oty

Multiplying the above equation by w,, and integrating over (, we have:

1d

2
5 di |Vowe|, +4¢ [wilf + 1 [Vl

4 (24)
5/(p ] [Vl wi| + il o] V] wi] + p v V] [wi] +2¢ [Vvq | dx = Y " T;.)
i=1

Now, we estimate each term on the right-hand side of (24)

I

1/2
/p [V [Vw,| |w,| dx < IpILL V] oo | /W0 | | Vg2

IA

2 2 2 .
Clpli Wit~ [V owe|7, + & |Vl ;

I = / Lol (o] IVw] w| dx < [ | el [ V]2 [wel s
1—
< Clvlpe 1ol T2 |pt|qua [Vw| 2| Vw2

2 2 2(1—« 2 2 .
< Clvl 102 1o 20 IVl + & Vi |2 ;

1/2
I - / p Il IVl el dx < 19122 Wole | Vwlyz |,

1/2 1/2 1/2
|,0|L£o [Vl [Vl |«/Pwt|L£ |x/:0wt Lé

3/4 1/2 1/2
< Clpl2 1V url 2 (Vw2 | pwe| 2 1w},

3 4 4 2 2.
= C|;0|LOC |VW|L2 |x/pwt|,42 + C|Vvt|L2 +& |th|L2 ’

IA

Ii=2¢ / Vol el dx < & IVwlf + €

Choosing &= ¢'/6, substitute the above estimates into (24), we can get
d 2 P 2, + 20 il < O(1 + [V 2 ’ (25)
dt |«/Pwt|Lz + D) [Vw|> + 28 lwelpx < (1+] velis + |x/;0wt|Lz)-

Integrating over (z, t) for some fixed 7 € (0, T), we deduce that
T
|7, + / (IVwil? +2¢ [w2)d's < C+ClJpwi(z)|}, for ©<t<T.(26)
T

To estimate | /pw; () iz, due to(19), we see

f,o lw,|>dx < 4/ polv2 | Vw|?dx + / p! |—M’Aw — (W +\)Vdivw — 2¢rotv + 4§w}2dx,
and thus we have

lim sup |\/pwt(r)|i2 < C(1 + C1(po, uo, wo)),
>0
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where Ci(po, o, wp) is defined by
C1(po, to, wo) = /,oo_l | =1/ Awg — (1" + N)Vdivwo — 2¢Totwg + 4§w0|2dx.

Therefore, letting 7 — 0 in (26), we conclude that

T
sup |/ow(1)]7, + / (IVw |2, + [wl?,)dt < C(1 + Ci(po, uo, wo)). (27)
0

0=<t<T

To obtain further estimates, observe that since for each ¢ e [0, T],

w =w(t) € D} N D? is a solution of the elliptic system:
wAw+ (1 + N )Vdivw — 4w = Fy,
where Fy = —pw; — pv-w + 2¢rotv € L2 N L%. And then

|lw|p2r < Cl—pw, — pv - w + 2Z10tv|;r + Clw|pir, T =2, qo. (28)

Therefore, using the previous estimates, we can deduce from (28) that

T

sup w(t)[2, + / |w(1)[ 4 dt < C(1 +Ci (po, o, wo))- (29)
0<t<T
0

Now, we consider the solution « of the linearized Equation (8)s;. Rewrite (8); as
pur+ pv-Vu+ Vp(p) = (1 +¢)Au+ (n + h — ¢)Vdivu + 2¢ rotw. (30)

Multiplying this equation by u, and integrating over (2, we have
d A —
/plutlzdx+ / (M+§|Vu|2+ i g}divu|2—p(p)—2§rot wu)dx
dt 2 2
= / (pv - Vuu; — p(p),div u — 2¢ rot wyu)dx.

Then, using Young’s inequality, we obtain:

1 2, d R+l oo KM= 2
2/,olut| dx+dt/< ) [Vul® + ) ]dlvu| —p(p) — 2¢rotwu | dx

1
< / (iZ;OIVIZIVuI2 +|p(p),| IVl + ¢ lw | + cIVu|2> dx.

Integrating the above inequality over (0, £) using Young’s inequality, we get
t t
2 2 2
/ | Vo[, ds+ | Vull, <C |1+ / |Vul?, ds
0 0
Therefore, in view of Gronwall’s inequality, we have
T
2 2
/|qut]L2 de+ sup |u(r)|,, < C. (31)
0<t<T 0
0
To derive higher regularity estimates, differentiate (30) with respect to ¢ and obtain:

PUy + PV - Vu[ + Vp(p)t — (M + é’)Aut — (pL +N— ;)Vdivut
= —piUy — PV - VU — pvp - U + 2 TOtWY,.
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Multiplying the above equation by u,, integrating (by parts) over Q, and using (8);,
we obtain:

1d .2
2dt/,o|ut|2dx+/((u+§)|Vut|2+(M+>\—§)|dlvut| )dx
< [ o iVuduide s [ iod i 19ulluddes [ i 1930l ds )
5
+/ Ip(p),| |Vut|dx+2§/|wt|IVutIdx=ZHi.
i=1

Using Sobolev inequality, interpolation inequality and Young’s inequality, we obtain:

1/2
In, - / o 101 Vit [ d < 112 lolp | ] s |V

2 2 2.
< Clplp= Wli~ [Vou| > + € [Vl ;

I

/|Pt| Wl IVl [uel dx < [Vl | ol s [ Ve il s

A

1—
< g~ |,0t|i‘2 |,0t|qua [Vl Vel

2 2 2(1-«a 2 2 .
ClvZ o2 oty ™ [VulZ, + & [Vul?,;

IA

113

1/2
/p [vel [Vl [u] dx < IpILc/,o gl 6 |Vl 2 |/ oe | 5

1/2 1/2
< Clp 2 1V w1Vl |Vou] ) [Voulp,

3/4 1/2 1/2
< Clolk 1Vl IVulya [oue| 2 1Vl

2
< Clpli~ IVuls [V oulp, + CIVul + & [Vulf ;
2
I, = / |p(p)[| |V dx < C |p(,o)t|L2 +e |VUt|iz;

IIs = 2¢ / wel |V dx < ¢ lwelf + ¢ [Vl

Substituting the above estimates into (32), we can easily show that:
d 2+ V2 < C(1 + |V 2 (33)
o Vel + 1Vl < CO+ 1Vl + [ ow).

Now, for fixed 7 € (0, 7). Since the right-hand side of (33) is integrable in (0, 7), we
deduce that

t

|\//out(t)|i2 + / |Vu,l?,ds < C+C |\//out(t)|i2 fort<t<T. (34)

T

To estimate |\/p”l(t)|iz from (8);, we see that
|Vou (o)} < 4/ p|U|2|Vu|2dx/ P = (1 + N Au = (1 + % — £)Adiv u — 2¢ 1ot w+ Vp(p)| dx
and thus

lim sup |Vou ()12 < C(1 +Ca(po, o, wo))
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where Cy(po, o, wp) is defined by
Ca(po, to, wo) = /,oo_l |— (1 + M) Aug — (u + % — ¢)Vdivug — 2¢rotwy + Vp(,oo)|2dx.

Therefore, letting 7 — 0 in (34), we conclude that

T
sup }\/,oul}iz + / |Vu, |2, dt < C(1 + Ca(po, o, wo)). (35)

0=<t<T
0

To obtain further estimates, observe that for each t € [0, T], u =u(t) € DYND?is a

solution of the following elliptic system:

—(u+NAu—(u+N—=¢)Vdivu = F,

where F) = —pu; — pv- Vu + 2¢rotw — Vp(p) € L? N L%. It follows from the elliptic
regularity theory, we get

ulp2r < C|—puy — pv - Vu + 2¢rotw — Vp(p)

ot C|u|D1,r, r=2, qo. (36)

Therefore, using the previous estimates, we get from (36) that
T
sup |u(t)|]232 + / }u(t)};% dt < C(1 + Ca(po, o, wo)). (37)
0<t<T
0

Since the estimates we have derived, we prove the existence result. First, we consider
for the case of bounded domain. Using standard regularization techniques, we choose
p‘s = p‘s(-) and ¢°, 0 <6 < 1, so that

p°(+) € C?[0, 00),p* — p in C'[0, o0)
¥ € L*(0, T; D, N D*) N L*(0, T; D*), v} € L*(0, T; D}),
(1Y) = (v,1,) in L™°(0, T; D} N D*) N L?(0, T; D*%) x L*(0, T; DY).

Then, for each 6 € (0, 1), let p3 = po + 8 and let (ud, w) € D} N D? is the solution to
the boundary value problem:

—(+ E)Au — (+ n — ¢)Vdivid — 2¢rotud = —Vp* (pd) + (03) 31,
W Awd — (' + W) Vdivid + 4zud = (08) g,
(), w)) =0, on 9%.

It follows from the elliptic regularity regult that (ud, wd) — (uo, wo) in D N D? as d
— 0. Hence, if we denote by (p(;, u°, w°) the solution of (8) with the initial data
(,03, ug,wg) and (p, v) replaced by (p‘s, 1), it satisfies the estimates (35), (37), (31), (23),
(18), (27), (29), where Cy(pg, uo, wo) =

fore, we conclude that a subsequence of solutions (p°, u°, w’) converges to a limit (p,

2 2
31|Lz < G, Ca(po, uo, wo) = |82|Lz < C. There-

u, w) in a weak sense. Then it can easy to show that (p, u, w) is a weak solution to the
original problem (8). Moreover, due to the lower semi-continuity of various norms, we
have the following regularity estimates for (p, u, w):

€ss Ssup <|P|H1mwwo +|pel2npa0 + |(“r w)lDész + |(«/P”tr x/Pwt)|Lz>

0<t<T

T (38)
2
+/ (\(u, )| + | (s wl)lDé) dt<C.

0
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2.2 Continuity and uniqueness

Now, turn our attention to the continuity of the solution (p, u, w). The continuity of p
can be proved by a standard argument from the theory of hyperbolic equations. Since
p satisfies the regularity (38), it follows from a result of DiPerna and Lions [30] and
classical embedding results that (See [31]):

p € C([0, T; L> nL%) n C([0, T]; H' N W% — weak).

To show the strong continuity in {1 0 Wl4o, observe from (17), (18) and i = 1, 2, 3,

t
|30 (1)] 1, < [3ip(0)]}, + C / |VU($)] 1 pre S
0

Zr < |3ip(0)

on the strong conver-gence for the space L” (See [32]) that

. T
and thus lim %UP |3i/’(t) 1~ Hence it follows from a well-known criterion
t—0*

lim [3;p(¢) — 8ip(0), = 0.

Therefore, the continuity of Vp in L'(r = 2, qo) follows from the result and the obser-
vation that for each fixed ¢, € [0, ¢], the function p = p(t, x) = p(%t + tp, x) is a unique
strong solution to the similar initial value problem:

pr+div(pp) =0, and 5(0) = p(to),

where U = 0(t, x) = £v(Z£t + Lo, x).

To show the continuity of w, we first observe that
w,v e C([0,T); D§) N C(|0, T]; D* — weak).
We now prove the continuity of pw, in L*> Forae.te (0, T) and ¢ € H} the from
(19), we have

(pwe, )12 = (—pv- Vw — 4¢w+ ' Vw + (' + N )Vdivw + 2¢ rotw, ¢) 12
= (—pv-Vw — 4¢w + 2¢roty, )2 — u' (Vw, V)2 — (1’ + N (divw, dive);2,

and thus
d . .
d& (owe, @)1z = ((—pv - Vw — 4Zw + 2¢10t),, @) 12—’ (Vwy, V)2 — (' +X ) (divavy, dive) 2. (39)

Using the regularity (38) of (p, w), we show that the right-hand side of (39) is
bounded above by A1 ()¢ H) for some positive function A(¢) € L*(0, T). Hence it fol-
lows, from the well-known result (see [31]) that (pw,) e L*0, T; H"') and

(;it (pwi, )12 = ((pwt)t,go) for all ¢ € H} where (-, -) denotes the dual pairing of H' and

H}. Then since pw; € L?(0, T; H}), it follows from a standard embedding result pw, €
C([0, T1; L?). Therefore, we conclude that for each [0, T], w = w(t,x) e DAND?is a

solution of the elliptic system:

—u' Aw — (' + \)Vdivw = G — pv - Vuw,

Page 11 of 26
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where G, = -pw,-4{w e C([0, T]; L?). Now we turn to show that w e C([0, T]; D?).
In view of the elliptic regularity estimate (36), we obtain

|W(t) - LU(S)|DZ = C|W(t) - W(S)|D‘1‘+C|G1 (t) - Gl(s)|LZ+C|pv . VW(t) —pv- VLU(S)|L2. (40)
Using the estimate (36), we obtain:

Clpv - Vw(t) — pv - Vu(s)|

< Cl(p(t) = p())u(2) - V(1) + Clo(s) (v(t) = v(s)) - Vw()]
+ Clo@E(s) - (Vu(t) — V()

< Clo(t) = p(3)| e [v() | [VW(B)] 15 + Clo(s)| o [(E) = 0(5)| | V()5
+ C|p(s)‘Lm|v(s)]L6 Vw(t) — Vw(s)ys

< Clo(t) = p(s)| = [VV() |2 [ V()17 [V20(8)] 22 (41)
+ Clp(s) | | V¥(0) = Vi) | [Vw(®)[ 1 |V2w(0)] 1
+ Clp()] 1 | V¥(5) 2 [V(t) = Vaw(s) |12 [ V2uw(t) — V2u(s) ;2

< C(|p(t) = p(s)| ~ + [ V(1) = VV(s)| 2 + |Vw(t) — Vu(s)|2)
+ ;|w(t) —w(s)| -
Substituting this into (40), we conclude that
lw(t) — w(s)|D2 — 0 as t—s.
The continuity of pu, in L? is similar as the proof of pw,. From (30), for a.e. t € (0,

T), and all v € H}, we have

(pue, ¥)2 = (—pu- Vu+ (i + X)Au+ (i + » — ¢)Vdivu + 2¢rotw — Vp(p), ¥)12
= (—pu - Vu+ 2010w, )2 — ((1 + )V, Vi )e — ((w + X — ¢)Vdivu — p(p), divyy)p

and thus

d
(pulr 1p)L2 = (—(,ou - Vu + 2{rot w)lr 1p)L2 - ((M + C)VUI, Vlp)L2

dt (42)
= ((n+X=2)divu, — p(p)e, div ¥r)pa.

Using the regularity (38) of (p, u, w), we show the right-hand side of (42) is bounded
above by A2(8)|[¥|p: for some positive function A,(t) € L*(0, T). Hence by the similar
argument of pw,, we see that (pu,) e L*0, T: H"), and then pu, € C([0, T]; L?). There-
fore, we conclude that for each t € [0, T], u = u(t) € D} N D? is a solution of the elliptic

system:
—(nw+N)Au— (u+x—2¢)Vdivu =G, — p, - Vi,

where G, = -pu, - Vp(p) + 2 rot w e C([0, T1; L.
Now, we will show that u € C([0, T]; D?). In view of the elliptic regularity estimate
(36), we have

[u(t) — u(s)|,, < Clu(t) — u(s)|,, +C|Ga(t) — Ga(s)],, +C|ov - Vu(t) — pv- Vu(s)|,,.  (43)
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To estimate the third term in the right-hand side of (43), using the estimate (38),
similarly as (41), we get:
Clpv- Vu(t) — pv- Vu(s)|, < C(|p(t) = p(s)|, + | VU(t) — Vi(s)| 2 + [Vu(t) — Vu(s)|,.)

+ ;|u(t) - u(s)|Dz.

Substituting this into (43), we conclude the continuity of # in D*. This completes the
proof of the continuity.

Finally, we prove the uniqueness of solutions satisfying the regularity (38). Let (p;,
uy, wy) and (pa, Uy, Wwo) be two strong solutions to the problem (8) and (2)-(4). Denote

p=p1—p2, U=U3—Uy W=w—w.

Then, it follows from (8); that

d - . -
dt/|,0|2dx§/]dlvv]|p|2dx.

Since Vv € L?(0, T; W) and 5(0) = 0, we conclude from Gronwall’s inequality that
|pli2 =0, ie, py = py in (0, T) x Q. Next, we choose a cut-off function ¢ € C®(R3)
such that

L if x| <1,
o) = {o, if x| > 2.

Define ¢p(x) = ¢(x/R) for x € R From (8), and using the uniqueness of p, we

deduce that

P10 + p1u - Vi + 4w = p' Aw + (u' + N\ )Vdiviw.

Then multiplying the above equation by ¢Zw, integrating over (0, T) x , and letting
R — oo, we easily get

t
1 - v ’ ’ fo= - 1 -
) /pllwlz(t)dx+//(u |Viv|? + (n +)\){dlvw|2 +4§|w|2)dxds= ) /pllwlz(O)dx.
0
Hence, we deduce that |\/,01LT)‘L2 =0, |[wl;2 =0 and |Vw|;2 =0 in (0, T), due to
w(0) = 0. Therefore, we conclude that i = 0 in (0, 7) x Q.
Similarly, from the uniqueness of p, and (8);, we get

p1ug + p1vVi = (n+ C)Au+ (n + N — ¢)Vdivi

Then multiplying it by @3 integrating over (0, T) x , and letting R — oo, we obtain
t
1 _ _ . 1 -
[ eaods [ [ (Gos vaR e - o)ldival’) duds = [ o)
0

Due to #(0) = 0, we get |¢p1ﬁ|L2 =0,|Vi|;2 =0in (0, 7). Then iz = 0 in (0, T) x Q.
This completes the proof of the Theorem 2.

3 A local existence result for positive densities

In this section, we assume also that Q is a bounded domain in R* with smooth bound-
ary and prove a local (in time) existence result on strong solutions with positive densi-
ties to the original nonlinear problem (1)-(4).
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Proposition 1 Assume that p = ap” (a > 0, y > 1), and the data (po, uo, wo) satisfies
the regularity conditions:

po € H' N W™, (ug,wp) € Dy ND?,

for some q with 3 <q < o« and compatibilities (6)-(7). Assume further that py > 0 in Q
for some constant 6 > 0. Then there exist a time T-€ (0, T) and a unique strong solu-
tion (p, u, w) to the nonlinear problem (1)-(3) such that

p € C([0, T|; H' N W), (u,w) € C([0, T]; Dy N D*) N L*(0, Ty; D*%),
o € C([0, T.]; L* N L%), (ug, wy) € L*(0, Ts; DY),
(v pus, /pw) € L®(0, T,; L?),

where g0 = min(6, q). Furthermore, we have the following estimates:

ess sup (000 gy + 100 o * [0 () |y + | (Vo0 /0 2)

0<t<T,
[ (44)
[ (1000 s + G0y ) e <

0

The constant C and the local time T- in (44) are independent of o.

To prove the proposition, we first construct approximate solutions, inductively, as
follows:

- first define #° = 0, and

- assume that %! was defined for k > 1, let (0%, %, w¥) be the unique solution to the
following initial boundary value problem:

of + U1 v pk 4 pkdivi1 = o, (45)
ol + pkukt vk« acwk = W AWR + (1 + V) Vdivik + 2¢rotuk !, (46)
pFuk + pkuk=t VR 4 Vit = o+ 2)AUR + (e + h = 2)Vdivi + 2¢Totu, (47)
plico =po, o =uo, wWloo=wo, u|se=ulle=0, (48)

ok(t,x) = 0, u*(t,x) = 0, wk(t,x) — 0 as|x| — oo, (t,x) € (0,T) x 2.  (49)

The existence of a global strong solution (pk, u*, wX) with the regularity (12) to the
linearized problem (45)-(49) was proved in the previous section.

From now on, we derive uniform bounds on the approximate solutions and then
prove the convergence of the approximate solutions to a strong solutions of the origi-

nal nonlinear problem.

3.1 Uniform bounds

Let K > 1 be a fixed large integer, and let us introduce an auxiliary function @g(t),
defined by:

2
Pk (t) = max sup (1 + ‘pk(s)
L

1=<k=K <5<t

S R
e +|(y pfufs o) pRwf)

E ‘wk(s)‘; + ’(uk(s),wk(s))‘;> :
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Then we estimate each term of @y in terms of some integrals of @y, apply argu-
ments of Gronwall-type and thus prove that @y is locally bounded. First, notice that

‘pk(t)‘m + ‘pk(t)‘m < CPk(t), foralll <gq <oo.

Then, we estimate |(uk, wk)|Hz by ®p.

« Estimate |wk| e

Observe that for any ¢ € [0, T], w* = w*(t) € D} N D? is a solution of the elliptic sys-
tem:

—u AW — (1 + W) Vdivi* = —pfwk — pk kTt vk — acuk + 2¢rotuk L

Hence we deduce from the elliptic regularity result that

|V2w2|LZ < C< pkwi’ + ‘pkuk_l SVt o+ ‘wk + )Vuk_1 + ‘Vwk’ )
12 L2 12 L2 L2
I k -1 MRS e -1 I
<C||p" \/pkwf +‘p ‘ ‘Vu ‘ }Vw‘ Vu' +‘Vu‘ ‘ +‘Vw ‘
L 12 L 2 12 H 12 2

1

scolts ||
2 H!

Thus we conclude
k 5/2

« Estimate |uk| 2
Similar as the estimate of |w*|,,. We see that for any t € [0, T], u* = u*(t) € D) N D?

is a solution of the elliptic system:
(e + g)Auk +(n+n— g)Vdivuk = —puf — puf= vk — vpk 4 20 rotw®.

Hence, we have

‘Vzuk
2
k, k ke, k-1 k & k k
SC(’pule+‘pu -Vu L2+‘Vp L2+‘Vw Lz+)Vu L2>
e 2| ek r 1 k K" o ke k k
<Cl|p pull +p ’u Vu + ‘p ‘ ‘Vp + ‘Vw + ‘Vu
L o = Ls 3 L 2 2 12
12 12 12 y—1
<C ‘ k’ \/kuk +‘ k’ ’Vuk’1 vuk ‘Vuk +‘ k‘ ‘V ko va? +‘Vuk
- ('0 o VA TP L2 I w1 e Y [Vl 1
1
< cop s ||
2 H!
Thus we conclude
5/2
vt < cort? (51)
H! K

« Estimate ’wk
Dy

Multiplying (46) by wf, and integrating over 0, using Young’s inequality we obtain:

1 2 d ! 2w+
2[pk‘wf dx + /(M Vwk‘ +'u;

de 2
< ;lt / 2¢rot'wkdx + / (p‘ukfl‘z‘Vwk‘z +2¢ ‘Vu’f’l‘ ‘wk‘ dx.

divwk‘ +2¢ ‘wkr) dx
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Integrating the above inequality we get

! 2
kg
/{\/,0 g 2
0
t
2 2
§C‘Vuk_1‘ +/<‘pk‘ ‘uk_l
2 L L

0

2 2
ds + ’Vwk’ Lt ‘wk
L

(52)

2 2 2
k +n‘Vuf_1‘ +C‘wk‘ )ds
13 12 12

To estimate the right-hand side of (52), we first observe that

1/2

0¥, < CPy %6 < C\Vuk*1|iz < Cdy, together with the estimate [u*|,, we

conclude that:
! 2
2
=
LZ
0

+ Estimate ‘\/ plwk

t
2 2
ds + ‘Vwk‘Lz + ‘wk‘Lz = C/ ¢[Aéd5+ n ‘Vu’ffl

0

(53)

2’

12

Differentiating (46) with respect to ¢, we obtain
pfwk + pfukt vk — acwk — W AW — (1 + V)V divu
= 2¢rotul ™t — pkwk — k=t vk — pRykt vk,

Multiplying this by w* and integrating over (3, we obtain:
d 2
/,ok ‘w’f dx+/(4§
<2§/ ’Vuk 1 dx+/2,ok‘uk’l‘ ‘w’f
2
+ pk ‘uk_l‘ ‘Vuk_l‘ ‘Vwk‘ ‘wf + pk‘uk_l‘ ‘Vzwk‘ ‘wf
6
dx > 1L,
i=1

Using Sobolev inequality and Young'’s inequality (with ¢) repeatedly, we have:

1 =z;/‘wf‘1‘ wh

2 2 2
wk +,u/‘Vw’f + k1)dx

k Je
w; Vw;

+pF ‘u’f’l‘ ‘Vwk‘ ‘wf‘

(54)

2
+ pk‘ukfl‘ ‘Vwk‘ ‘Vw?

O 1|
-2 ‘Vut ‘Lz *2¢ ‘wt 2’

1/2
11l = 2/ [ K dx < 2‘pk ‘ kw
1/2
< 2‘,0 ‘ ‘ kol kw? kw’f Vw’f
16 L?
3/4 1/2 W32 2
gz‘pk’ ’Vuk’ll ‘\/,okw’[z th <C®9/2+5‘Vw’f ;
L> 12 2 12
1/2
1115 =f *IHVW’*Hwﬁ‘dxs ,ok‘ k| |Vt
Lo 13 12
1/2 B
e
3/4 L[1/2
‘p ‘ Vuk- \/pkwt th ,
2 L

Vw ‘ +8‘th

<C’p ‘ ‘\/pkwt +n‘Vuk 1‘L2

<CoX? 1 (th

12

12’

+n‘Vuk !
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1114=/pk‘uk*1‘ ‘Vukleka‘ dx

k
w;

ke

vt f

k 1
<
= ‘p ‘L“‘u L5 13 3l tlrs
12 12
Vuk’l‘ ‘Vwk‘

H!

3/2 L[ 12 .

< C‘pk‘ ‘Vuk’1 Vuw,
LOO

‘Vw

L2 L2 H!

3

12
2

2
S C‘pk‘L ‘Vuk—l Vwk

Vuk_l‘ ‘Vwk
Hl

+& ‘Vw}f
Hl

L? L? L2

+8 }2
< Co? +8‘wa ;

12
IIs = / ok

2
ukq‘ ‘Vzwk‘ ‘W?
S ‘pk‘L"o ‘uk71

dx

2 k

VZ wk wt

4

Lo L2

Le

2 2
< C‘pk‘L ’Vuk_l Vzwk‘Lz +& ‘wa

2
LZ

L2
8 k2

§c¢,<+s‘wt K
L

[ o o] o< o

P

‘Vuk—l

2
Vwk‘ ‘Vwi‘
H! L2

2
L> L2

IA

2
8 k
CPp +¢ ‘le "

Substituting all these estimates into (54) and choosing ¢ 1 > 0 small enough, we
obtain that:

d k
dt/'o

Integrating over (z, ) for fixed 7 > 0, we have
2 M/ ) 2
+ _ |Vwi| )ds
L 2

k 2 \ k
/,o dx+/(2g“’w[2 )
T
t
<C | (o7 - ‘Vuk’l‘z ds + k’wk
= 2 n t 2 1Y t
T

To estimate fpk|w;;|2(‘[)dx as T — 0, we multiplying (46) by wi‘, integrate over (2,

2 e I
dx+¢ ‘wt + ‘Vw[

2 2 2
k y+8 [ € k—1
w, o b <Co, " + (2 + n) ‘Vut ‘L2 . (55)

k
wy

(56)
2
(7)dx.

we have:
2
/pk‘w’f‘ dx=— / o vk dx + / (W AW + (1 +\)Vdiv® + 2¢rot! — 4{wk)wf‘dx.
Using Young’s inequality, together with the compatibility condition (7), we have

1
li k‘ %
le}l(l) 2 P

2 2 2
dx < C(/ pk‘uk_l‘ ‘Vwk‘ dx
+ / o (W AW + (' + V) Vdiv + 2¢rotf ! — 4§wk)2dx> <C.
Substituting the above estimate into (56), we conclude that

L t
2
/pk’wf‘ dx = —/pkuk’1~Vquwtdx§ C(1+f®y*8ds)+<§ +n)f‘Vuf*1
0 0

2

ds. (57)

12
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« Estimate ‘uk ’ D!

Multiplying (47) by u and integrating over (, we obtain:

Tl k]? d/ m+Eg ]? 2
2/,0 dx+d[ > ’Vu + dx

r—

uy N ;‘divuk
_d (¢ divid* + 2¢ rotuw*)dx ket P [t
=4 P + 2¢rotu"w + | p|u u X+

o Vuk‘dx+2§/’waVuh‘dx

Using (45), we have
phul=t vk 4 yphdivit! = 0.

Integrating (58) over (0, £), using (59) and Young’s inequality, we have
t
1 k
2//p
0
2 2
< C+C/‘wk’ dx + §/‘Vuk
// dxds+//} IVpHVu}dxds

+//yp dxd5+2§//’wi‘
0 0

= C+C¢K+ZIV,-.

i=1

k
U

2 2
dxds + pg ‘Vuk
2 12

dx+C / (0") dx

k } \v4 uk

(4

V| dxds

Vuk—l } ‘Vuk

(59)

(60)

To estimate the right-hand side of (60), with the help of Sobolev inequality and

Young’s inequality (with &), we have:

v, =[(pk)2dx=/pk(0)2dx+/ aas (/pk(s)zdx>d5
0
< C+2/t/(a2y(pk)2y_l ‘Vpk‘ ‘u’H‘ valy(ph)’ ‘Vuk’l‘)dxds

Kl | k1 2y=1

u k

v ds

12

<C+c/¢p ar

0

2y=1 4
scec [

0

|

+
L3 12 LS ‘ P Loe ‘ p

o l1-«a

k

o k

L2 L0 L2 12

t
Vit ‘ ds<C+C/ 2’”'Uzds.

0

t t
2 2 2
1V, =//ph‘uk’1’ ‘Vuk’ dxdsf/’pk‘m ‘ukfl
0

L6
0
t
I 1|2
< C[ ‘p ‘ ‘Vu
Loo 2
0

2y—1

k‘ k

+
e 1P

2

L3

t
k‘ ‘Vuk‘ ds < C/ <D,3/2ds.
12 H

0

L
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k ds

LZ

t
IV3=//’uk
0
t
2
< C/ ‘Vuk‘
LZ
0
t
IV, = / / y ’pk HVuk*IH Vuk’ dxds
0
t
kY k-1
e oo
0

t
VpkHVuk’dxdssfluk‘ ‘Vpk
L6 L3
0

t
1—a 1/2
Lo ds < C/¢I¥+ ds;

0

k ¢

0 k

y—1
"] e

L

LZ

t

k‘des < C/(P}é*lds;

L2
0

t le e t k| \ k|?
IV5=2§//‘wt Vu ‘dxdsfs/‘wt des+C/‘Vu des
0 0 0
t t
W2
58/ thzds+C/<Dde.
0 0

Substitute all the above estimates into (60), we obtain:

t 2 t ) t
/‘\/pkuie d5+f‘vuk‘lz ds < C+C[¢;:nax{2y+1/2,9/2}ds+8 (61)
0 L 0 ’ 0
« Estimate ‘\/ pKu’f
12
Differentiating (47) with respect to t, we obtain:
0 un + plyk1 Vuf + fo —(m+9) Auf —(u+N—=20) Vdivuig 62)
= —ptu - pf =1 vk — /okui"_1 Vit + 2§rotwf.
Multiplying the equation by u¥, and integrating over Q, we get
2 2
;jt/pk ui‘ dx+(,u+§)/ ‘Vuf dx+(u+k—§)f ‘divuiz dx
52/p’k1“Vut utdx+/ leVuleVu‘ufdx
+/ k uk—l‘ ‘Vzuk ut dx+/ k uk—l} ‘Vuk‘ ut 63)

k

+/pk‘uf_1‘ ‘Vu
/‘ 4
+ Vp

Using Sobolev inequality and Young’s inequality we have

vy = 2/,0’%’“1 ‘Vuf . \/pku’f

uk’ll ’divuf‘ dx+/p/ (,ok> o ’divuf’l‘ ‘divu’f

8
de=>"Vi.
i=1

12
de = 2|t ‘\""*‘!(\Wf\

k
U

13

]V |, k-1 p 2

52‘9 ‘ ‘V ; \/pkut \/p’*ut

L L2 L6

3/4 W12
<2 ‘pk‘ ‘Vuk’l ke \/pkuk Vuk

t

L 2 Lz

3 4 2 2
§C‘pk‘ ‘Vuk_l‘ \/pkui‘ +8‘Vu’f

) 12 " 12

2
9/2
<co,) +g‘w§“ K
L
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Vs =/pk‘uk’l‘ ‘Vuk’l‘ ‘Vuk‘ ul| dx
<ot | o |gykt] |wut
LDO L() Lﬁ L3 L3
1/2 1/2 1/2 1/2
AN R A B L W A
Lo 2 2 2 H! H!
2 2 2
< C‘pk‘ ‘Vuk_l Vuk_l‘ ‘Vuk_l‘ Vit Vuk‘ ‘e ‘Vuf
Lo 2 12 jag 12 &g 2
2
< 45?”8 +e ‘Vui‘ ;
12
2 2
Vs = pk’ukfl‘ ‘vzuk’ ’uf‘dxf ‘pk’ ’ukq V2| [uf
Lo L6 12 L6
k k-1|? |2,k k
f‘p‘ ‘Vu’ Vu‘ ‘Vut
L 2 2 2
2 4 2 2
S‘pk‘ ‘Vuk_l Vzuk’ +8‘Vui‘
Loo 12 12 2
2
< q)iwg +e ‘Vuf ;
LZ
2 2
Vi= [ pF ukfl‘ ‘Vuk‘ ‘Vu’f dx < ‘pk‘ ‘uk’I Vuk‘ ‘Vu’f
L L6 LS 2
2 2 4 2 2
< ‘pk‘ ‘Vuk’l} ‘Vuk‘ ‘Vu’f‘ < C‘pk‘ ‘Vuk’l‘ ‘Vuk’ +8’Vuf
L0 2 H 2 Lo 2 H 2
2
< @;’”8 iy ‘Vu’f ;
L2
k|1 | [y [ k|2 et k ey
Vs = [ p*lu Vu| |lu|dx < |p Uy Vu prug
L3
12 1/2 1/2
S LR
Lo 12 12
L L
1/2
3/a 1/2
<o o, ot o
LLX) LZ LZ LZ LZ
2
3 4 2 2
< ’pk‘ ‘Vuk‘ \/,okuf +€ ’Vuf +n ’Vuk_l
Lo 2 2 12 12
2 2
9/2 _
§C(DK/ +€’Vuf +n’Vuk .
2 2
k| |k k|2 k|?
Vs = 2;/‘wt ‘Vu[ dx <¢ ‘w[ o +¢ ‘Vu[ L
k| | k1] | gic & A L P I k| 72
V; = ‘Vp Hu’ Hdlvut‘dxf‘p ‘ ‘V,o U Vu;|L
Lo L3 L6
2y—1) 2 2 2 ) 2
SC’pk’ ’V,ok‘ ’Vuk_l‘ +8‘Vuf SC@KV+8‘VM}: ;
L L3 12 2 2
Y k| gio k=1 ] ik k k=1 k
Vg = /p (p ),0 ’dlvu ‘ ’dlvut‘dxf C‘p ’Lw‘Vu ‘LZ’Vut o
2y 2 2 2
< C‘pk‘ ‘Vuk_l‘ +£‘Vuf < CcoZt! +£‘Vuf .
150 12 12 12

Substituting the above estimates into (63), and choosing & small enough, we have

d k| k|? k
dt/p dx+/‘Vu[

2 2
2748 -
uk drx < Co*° + ¢ |wh +n‘Vu’f "o
12 12
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For a fixed 7 € (0, 7), integrating the above inequality over (z, £), we have:

t
2
/pk dx+//’Vufdx§/pk

2
ok @

as T — 0, we multiply (47) by u¥, and integrate over Q.
12

t t

2(r)dx+c/<p,§7*8+/(;

T

uf uf w

; +n ’Vuf’l ’;) ds. (64)

To estimate

Then we have

/pk 2dJCEZ/p"

Hence, with the help of compatibility condition (6), we get:

1] k|2 1 I I I 1|2
" ‘ ‘Vu‘ +p0” |7(;;,+{)Au — (u+ N —¢) Vdivu® — 2¢rotw” + Vp©| dx.

k
L

2
<C.

12

Vo @

lim sup
=0

Considering this and letting 7 — 0 in (64), we finally have:
t t t

2
/pk dx+//’Vuf‘ dxdssC/(1+q§,2<V+8)ds+/<{
0 )

0
Thanks to the estimate (65), (61), (57), (53), we get:

t
2 2 2
leyk \/k Je e k ke
‘\/p U; prw; . + ‘Vw ‘Ll + ‘Vu ‘LZ +/ (‘Vut
0
t

< C/ (1 +@12<V+8> ds + (i +2r}>/‘vu’:1‘; ds.
0 0

I3
wy

k
Uy

zz +17 ‘Vuf’l‘jz> ds. (65)

2
+ ‘Vw’f
12

2
) ds
12

2
+
L2

If n is sufficient small such that i +2n < zg, then from the recursive relation of

122, it follows from that

t L
2 39
k 2y+8
[lvafas<c(iege 2o f (1e o) as
0

0
Thus we have

‘\/pku';

v

2 2
\/phwf Vwk‘ +‘Vuk + ‘Vwi‘
12 1

2
+
2

2
+
12

t
2
+/ <‘Vuf
LZ
0

t
2
Lz) ds < C/ (1+07)ds.  (66)
0

Finally, we recall from (18) that

t

k < Cexp C/’Vuk_l

(67)

‘p H'NWdo H'Nw! 40

0
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for all k, 1 < k < K. To estimate ‘Vuk‘ww for 1 < k < K, we invoke the elliptic regu-
40

larity result (36) and the estimate (51). If 3 <gy < 6, then we have

‘Vuk‘ sC(‘pkuk‘ +‘/okuk_1 Vi +‘Vwk +|Vpk +‘ uk >
Wldo Lio Lio Ldo Ldo Ldo
0
(2-61)/2 ! 1-6,
<C ‘pk‘ \/pku’f Vi +‘pk’ ’Vuk’l‘ ‘ u*
L 12 L L Lo L6d0/(6=d0)
+ Vpk‘ + ‘Vuk‘ )
Ldo H!
B 0,/(1+6,)
(2-61)/(1+61) 26, 2
k k k y—1 k
§C(‘p ‘Lm \/pkut +‘Vut L2+(DK ‘Vp \
2 Lo
0, 1-6,
+ @ [Vl | val| o)
L2 wldo
y+5/2 k 2 2/6,+1 1 k
<C(P T+ |Vuy| +@7T )+ |V ,
12 2 wldo
for some 6,, 6, € (0, 1). Thus, we conclude that
% max{y +5/2,2/6,+1} ]2
Vu < C(®y +| V| ). (68)
wldo 12
Similarly, from (28) and the estimate (50), we can deduce that,
‘Vwk’ <C (‘pkwf + ’pkuk_1 vt ‘ + ’Vuk_l + ‘Vwk )
Wwhdo Lo Lo Lio Lo Ldo
(2-65) b 1-6
<C ‘pk‘ ’ \/pkwi‘ vk Cy }pk‘ ‘uk’l k vut| o+ ‘Vwk
J&S 12 12 L L6 L640/(6—40) 12 H!
(2-65)/(1+63) 203/(1+63) 2 0 1-6
<C ‘pk‘ T \/pkw}f +‘wa +<1>I%’Vwk’4 ’Vwk’ ) + o)
Lo 2 12 12 Wldo

2 1
2/6,+1

+ @K/ LA ‘Vwk‘ p

12 2 Wldo

for some 65, 8, € (0, 1). Thus, we deduce that

2
) . (69)
L2

Thanks to the estimates (68), (69), (67), and (66), we can easily show that there exists
a small time 77 € (0, T) depending only on the parameters C such that the following
uniform estimate:

K )( K k) \/ ok \/ K k) )
su +(\u,w U, w
Ostngl <)p L2nL% < L 12

T (70)

+/ (‘(uk wk) ;qo + ‘(u’f wf) Dé) dt < C.

0

<C (cp,i/z +|vul

vk < 2*¥0r 1 | vk
Wido K ¢

k

¢ +

D{ND?

H'Nwld0

for all kK > 1.

3.2 Convergence
We show that the approximate solutions converge to a solution to the original pro-
blem (1)-(4) in a strong sense. To prove this, we define:

§k+1 _ pk+1 _ pk, l?lk71 _ ukfl _ llk, ﬁ)k+1 _ wk+1 _ wk.
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Then it follows from (45)-(47), we have

A+ div(p™u') + div(p'i') = 0, (71)

pk+1wie+1 + pk+1uk X Vb_l}k+1 + 4§ﬁ)k+1 _ /L/AL_U;Hl _ (/’L/ N ) lev—k+1

= 3 (—uf =t k) — plit vt + 2ol

pk+1 ~k+1 + pk+luk . Vl_lk+1 + Vﬁk+l _ (M + ;) Al_lk+1 _ (M i é.) vdivak+l

(73)
= pi! (—u’f —uk. Vuk) - VuF + 2 ot

Multiplying (72) by j#+1, integrating over (, using (45) and Young’s inequality we

have
d k+1
dt/ p

ﬂ)k+1

2
dx

de + 4;/ ‘ﬁ}k”

2
dx+,u,'/ ‘Vﬁ)’k”

S e R [ e
And thus we have
st |\/pk+1ﬁ/k+1 ; +4g ’L’uk*l P ’Vfuk*l ;
L A R
+clpt| | e ‘vak‘zz we | z

Multiplying (73) by gk+1, integrating over , using (45) and Young’s inequality, we

obtain
d 2 2
dt/pk+1 ﬁk*'l dx+(/4+§)/‘Vﬁk*1 dx
5/ Bt u?‘ 7]+ | g fu Hvu} el Hvuk | 4 |5 [wakt |+ 2¢ [t | vk ).
And thus
2 2
k+1ﬂk+l + I ’Vﬁkﬂ .
' )
y—1
< C}Vut ’VU ’ ‘Vu + pk + ’pk+l )(‘pk+1 ’pk+1 +;. ’wk+1 )
L 13/2 12 12

On the other hand, observing that (71), we can easily prove that
1 e L*°(0, Ty; L*/?). Hence, multiplying (71) by sgn(ﬁk+1)|p’“1|l/2 and integrating
over (), we have

d
dt

3/2

13/2

~k+1 12

‘—k+1

SCVU ‘ ‘15k+1

G, e
Hl

13/2 132"

3/2
Multiplying the above inequality by ‘ pk"l ,on both side, we have

—k+1

)|o

‘—k+l

2
<C Vuk‘ + ‘pk‘
LOO

2
iy ‘Vﬁk‘ . (76)
H! 12

dt 132 32
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Similarly, we get:

2 |2
+8‘Vu
LZ

LZ
2
LZ

2
12

~k+1

0 (77)

2 2
§C‘Vuk‘ +‘pk‘ +‘Vpk
12 L® L

2
L3)

d ~k+1
dt ‘p
Combining (74)-(77), we obtain:
‘(1
k+1L'Uk+1 \/ k+lﬂk+1
dt (’ P P
+ ‘vwk+l 2

< C‘\/p"ﬂk

2
+ ‘ﬁk+1 + ‘ﬁk+1

2
12 132

2
+
LZ

2

2 ‘Vﬂle+1 ! (78)

+
12

2
+F§(t) (‘ﬁkH
12

+ ‘
L2 L2

2
+ ‘ 15k+1
13/2

2 .
+& ‘Vu
L2

for some function F* (¢) with f; F¥(s)ds < C+ Ct forall 0 < £ < Ty and k > 1.

Let us define

2
+

2 5 5
(pk+1 (t) =C ‘\/pk+1wk+l (t) \/pk+1ak+1(t) + ‘§k+1 (t) . + ‘ﬁkJrl(t)
L 12 32 12
and
v = [V o« [var @« [0
L2 12 2’

Then integrating (78) over (0, £) < (0, T), we have

t t

t
(pk+1(t) + / ¢k+1(s)d5 = Cf <(pk +8‘ﬁk> ds + fF§¢k+1ds
0

0 0

which implies, by virtue of Gronwall’s inequality, that

t t

o () + / Yk (s)ds < Crexp (Czt)/ ((pk + 8'(/fk> ds.
0

0

Hence, choosing ¢ > 0 and then 7. > 0 so small that 4(7- + ¢)C; < 1, T» <T; and exp
(CyT) < 2, we also deduce from Gronwall’s inequality that for all K > 1,

K T
Z sup @™1(1) + / v de | < oo.
=1 \0=t=T. ,

Therefore, we conclude that (pk, u, wk) converges to a limit (p, u, w) in the follow-
ing strong sense:
(#w) > @w in 1% (0,T;1%) N1* (0,7, DY)
andp® — p in L*(0, T,;L?).
Now it is simple to check that (p, u#, w) is a weak solution to the original problem

(1)-(4). Then, by virtue of the lower semi-continuity of norms, we deduce from the
uniform bound (70) that (p, u, w) satisfies the following regularity estimate:

esssup(|pl
0<t<T,

it 0+l 2000 1 (W) 1o + [ (ot owi] 2)

T,
+/ (It W) + (e, wtl)égj)dt <C.
0
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The time-continuity of the solution (p, u, w) can be proved by the same argument as
in Section 2. This completes the proof of Proposition 3.1.

Here we should emphasize that the constant C and the local existence time 7 in
(79) do not depend on ¢ and the size of Q.

4 Proof of theorem 1.1
In this section, we complete the proof of Theorem 1.1.

Assume for the moment that Q is a bounded domain with smooth boundary. Let
(Po> o, Wo) be the given data satisfying (5). For each small 6 > 0, let pg = po + 6 and let

(ud), w?) € H) N H? be the unique smooth solution to the elliptic problem:

—(+ £)ug = (e + % = £)Vdlivilg — 2¢rouny + Vp(pp) = (p0) 81

$2.
By — (' + )V divi — 2¢1ow + 4cuh = (o) g,

Then by virtue of Proposition 3.1, there exist a time T- € (0, 7) and a unique strong
solution (p‘j, u’, w°) in [0, T:] x Q to the problem (1)-(4) with the initial data replaced
by (03, u, wd). Notice that (u8, wd) — (uo, wo) in H> as 6 — 0, (p°, u’, w’) satisfies the
bound (44), and the constant 7+, C are independent of ¢. Hence, following the same
argument as in the proof of Theorem 2.1, we prove the existence and regularity of a
strong solution to the original problem (1) - (4). Moreover, since the constant C and
the local existence T in (44) are independent of the size of the domain, we also obtain
the same existence and regularity results for unbounded domains by means of the
domain expansion technique. Finally, the uniqueness can be proved by using the simi-
lar methods to the proof of the convergence in Section 3.

This completes the proof of Theorem 1.1.
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