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Abstract

We consider the system of differential equations⎧⎨
⎩

−�p(x)u = λp(x)[g(x)a(u) + f (v)] in �,
−�p(x)v = λp(x)[g(x)b(v) + h(u)] in �,
u = v = 0 on ∂�,

where Ω ⊂ ℝN is a bounded domain with C2 boundary ∂Ω, 1 < p(x) ÎC1 (�̄) is a
function. �p(x)u = div (|∇u|p(x)−2∇u) is called p(x)-Laplacian. We discuss the
existence of positive solution via sub-super solutions without assuming sign
conditions on f(0), h(0).
MSC: 35J60; 35B30; 35B40.
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1. Introduction
The study of diferential equations and variational problems with variable exponent has

been a new and interesting topic. It arises from nonlinear elasticity theory, electrorheo-

logical fluids, etc., (see[1-3]). Many results have been obtained on this kind of pro-

blems, for example [1,3-8]. In [7], Fan gives the regularity of weak solutions for

differential equations with variable exponent. On the existence of solutions for elliptic

systems with variable exponent, we refer to [8,9]. In this article, we mainly consider

the existence of positive weak solutions for the system

(P)

⎧⎨
⎩

−�p(x)u = λp(x)[g(x)a(u) + f (v)] in �,
−�p(x)v = λp(x)[g(x)b(v) + h(u)] in �,
u = v = 0 on ∂�,

where Ω ⊂ ℝN is a bounded domain with C2 boundary ∂Ω, 1 < p(x) Î C1 (�̄) is a

function. The operator �p(x)u = div (|∇u|p(x)−2∇u) is called p(x)-Laplacian. Especially,

if p(x) ≡ p (a constant), (P) is the well-known p-Laplacian system. There are many arti-

cles on the existence of solutions for p-Laplacian elliptic systems, for example [5,10].

Owing to the nonhomogeneity of p(x)-Laplacian problems are more complicated than
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those of p-Laplacian, many results and methods for p-Laplacian are invalid for p(x)-

Laplacian; for example, if Ω is bounded, then the Rayleigh quotient

λp(x) = inf
u∈W1,p(x)

0 (�)\{0}

∫
�

1
p(x) |∇u|p(x)dx∫

�
1

p(x) |u|p(x)dx

is zero in general, and only under some special conditions lp(x) >0 (see [11]), and

maybe the first eigenvalue and the first eigenfunction of p(x)-Laplacian do not exist,

but the fact that the first eigenvalue lp >0 and the existence of the first eigenfunction

are very important in the study of p-Laplacian problems. There are more difficulties in

discussing the existence of solutions of variable exponent problems.

Hai and Shivaji [10], consider the existence of positive weak solutions for the follow-

ing p-Laplacian problems

(I)

⎧⎨
⎩

−�pu = λf (v) in �,
−�pv = λg(u) in �,
u = v = 0 on ∂�

the first eigenfunction is used to construct the subsolution of p-Laplacian problems

success-fully. On the condition that l is large enough and

lim
u→+∞

f
[
M(g(u))

1
(p−1)

]

up−1
= 0, for every M > 0,

the authors give the existence of positive solutions for problem (I).

Chen [5], considers the existence and nonexistence of positive weak solution to the

following quasilinear elliptic system:

(II)

⎧⎨
⎩

−�pu = λf (u, v) = λuαvγ in �,
−�qv = λg(u, v) = λuδvβ in �,
u = v = 0 on ∂�

the first eigenfunction is used to construct the subsolution of problem(II), the main

results are as following

(i) If a, b ≥ 0, g, δ >0, θ = (p - 1 - a)(q - 1 - b) - gδ >0, then problem (II) has a posi-

tive weak solution for each l >0;

(ii) If θ = 0 and pg = q(p - 1 - a), then there exists l0 >0 such that for 0 < l < l0,
then problem (II) has no nontrivial nonnegative weak solution.

On the p(x)-Laplacian problems, maybe the first eigenvalue and the first eigenfunc-

tion of p(x)-Laplacian do not exist. Even if the first eigenfunction of p(x)-Laplacian

exist, because of the nonhomogeneity of p(x)-Laplacian, the first eigenfunction cannot

be used to construct the subsolution of p(x)-Laplacian problems. Zhang [12] investi-

gated the existence of positive solutions of the system
⎧⎨
⎩

−�p(x)u = λp(x)f (v) in �,
−�p(x)v = λp(x)g(u) in �,
u = v = 0 on ∂�,
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In this article, we consider the existence of positive solutions of the system
⎧⎨
⎩

−�p(x)u = λp(x)F(x, u, v) in �,
−�p(x)v = λp(x)G(x, u, v) in �,
u = v = 0 on ∂�,

where p(x) Î C1 (�̄) is a function, F(x, u, v) = [g(x)a(u) + f(v)], G(x, u, v) = [g(x)b(v)

+h(u)], l is a positive parameter and Ω ⊂ ℝN is a bounded domain.

To study p(x)-Laplacian problems, we need some theory on the spaces Lp(x)(Ω), W1,p

(x)(Ω) and properties of p(x)-Laplacian which we will use later (see [6,13]). If Ω ⊂ ℝN

is an open domain, write

C+(�) = {h : h ∈ C(�), h(x) > 1 for x ∈ �},
h+ = sup

x∈�

h(x), h− = inf
x∈�

h(x), for any h ∈ C(�).

Throughout the article, we will assume that:

(H1) Ω ⊂ ℝN is an open bounded domain with C2 boundary ∂Ω.

(H2) p(x) Î C1 (�̄) and 1 < p- ≤ p+.

(H3) a, b Î C1([0, ∞)) are nonnegative, nondecreasing functions such that

lim
u→+∞

a(u)
up−−1

= 0, lim
u→+∞

b(u)
up −−1

= 0.

(H4) f, h : [0, +∞) ® R are C1, monotone functions, limu®+∞ f(u) = +∞, limu®+∞ h(u)

= +∞, and

lim
u→+∞

f
[
M(h(u))

1
(p−−1)

]

up−−1
= 0, ∀M > 0.

(H5) g : [0, +∞) ® (0, +∞) is a continuous function such that L1 = min
x∈�̄

g(x) , and

L2 = maxx∈�̄g(x).

Denote

Lp(x)(�) =

⎧⎨
⎩u|u is a measurable real - valued function,

∫
�

|u(x)|p(x)dx < ∞
⎫⎬
⎭ .

We introduce the norm on Lp(x)(Ω) by

|u|p(x) = inf

⎧⎨
⎩λ > 0 :

∫
�

∣∣∣∣u(x)λ

∣∣∣∣
p(x)

dx ≤ 1

⎫⎬
⎭ ,

and (Lp(x)(Ω), |.|p(x)) becomes a Banach space, we call it generalized Lebesgue space.

The space (Lp(x)(Ω), |.|p(x)) is a separable, reflexive, and uniform convex Banach space

(see [[6], Theorems 1.10 and 1.14]).

The space W1,p(x)(Ω) is defined by W1,p(x)(Ω) = {u Î Lp(x) : | ∇u| Î Lp(x)}, and it is

equipped with the norm

‖u‖ = |u|p(x) + |∇u|p(x), ∀u ∈ W1,p(x)(�).
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We denote by W0
1,p(x)(Ω) is the closure of C∞

0 (�) in W1,p(x)(Ω). W1,p(x)(Ω) and

W1,p(x)
0 (�) are separable, reflexive, and uniform convex Banach space (see [[6], Theo-

rem 2.1] We define

(L(u), v) =
∫
�

|∇u|p(x)−2∇u∇vdx, ∀v, u ∈ W1,p(x)
0 (�),

then L : W1,p(x)
0 (�) → (W1,p(x)

0 (�))∗ is a continuous, bounded, and strictly mono-

tone operator, and it is a homeomorphism (see [[14], Theorem 3.1]).

If u, v ∈ W1,p(x)
0 (�), (u, v) is called a weak solution of (P) if it satisfies

⎧⎪⎨
⎪⎩

∫
�

|∇u|p(x)−2∇u · ∇qdx =
∫
�

λp(x)F(x, u, v)qdx, ∀q ∈ W1,p(x)
0 (�),

∫
�

|∇v|p(x)−2∇v · ∇qdx =
∫
�

λp(x)G(x, u, v)qdx, ∀q ∈ W1,p(x)
0 (�).

Define A : W1,p(x)(�) → (W1,p(x)
0 (�))∗ as

< Au, ϕ >=
∫
�

(|∇u|p(x)−2∇u∇ϕ + l(x, u)ϕ)dx,

∀u ∈ W1,p(x)(�), ∀ϕ ∈ W1,p(x)
0 (�),

where l(x, u) is continuous on �̄ × R , and l(x, .) is increasing. It is easy to check that

A is a continuous bounded mapping. Copying the proof of [15], we have the following

lemma.

Lemma 1.1. (Comparison Principle). Let u, v Î W1,p(x)(Ω) satisfying Au - Av ≥ 0 in

(W1,p(x)
0 (�))∗,ϕ(x) = min{u(x) − v(x), 0} . If ϕ(x) ∈ W1,p(x)

0 (�)(i.e., u ≥ v on ∂Ω ),

then u ≥ v a.e. in Ω.

Here and hereafter, we will use the notation d(x, ∂Ω) to denote the distance of x Î
Ω to the boundary of Ω.

Denote d(x) = d(x, ∂Ω) and ∂�ε = {x ∈ �|d(x, ∂�) < ε} . Since ∂Ω is C2 regularly,

then there exists a constant δ Î (0, 1) such that d(x) ∈ C2(∂�3δ) , and |∇d(x)| ≡ 1.

Denote

v1(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ d(x), d(x) < δ,

γ δ +
d(x)∫
δ

γ

(
2δ − t

δ

) 2
p− − 1 (L1 + 1)

2
p− − 1 dt, δ ≤ d(x) < 2δ,

γ δ +
2δ∫
δ

γ

(
2δ − t

δ

) 2
p− − 1 (L1 + 1)

2
p− − 1 dt, 2δ ≤ d(x).

Obviously, 0 ≤ v1(x) ∈ C1(�̄) . Considering

−�p(x)w(x) = η in �, w = 0 on ∂�, (1)
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we have the following result

Lemma 1.2. (see [16]). If positive parameter h is large enough and w is the unique

solution of (1), then we have

(i) For any θÎ (0, 1) there exists a positive constant C1 such that

C1η
1

p+−1+θ ≤ max
x∈�̄

w(x);

(ii) There exists a positive constant C2 such that

max
x∈�̄

w(x) ≤ C2η
1

p−−1 .

2. Existence results
In the following, when there be no misunderstanding, we always use Ci to denote posi-

tive constants.

Theorem 2.1. On the conditions of (H1) - (H5), then (P) has a positive solution when

l is large enough.

Proof. We shall establish Theorem 2.1 by constructing a positive subsolution (F1, F2)

and supersolution (z1, z2) of (P), such that F1 ≤ z1 and F2 ≤ z2. That is (F1, F2) and

(z1, z2) satisfies

⎧⎨
⎩
∫
�

|∇�1|p(x)−2∇�1 · ∇qdx ≤ ∫
�

λp(x)g(x)a(�1)qdx +
∫
�

λp(x)f (�2)qdx,∫
�

|∇�2|p(x)−2∇�2 · ∇qdx ≤ ∫
�

λp(x)g(x)b(�2)qdx+
∫
�

λp(x)h(�1)qdx,

and

⎧⎨
⎩
∫
�

|∇z1|p(x)−2∇z1 · ∇qdx ≥ ∫
�

λp(x)g(x)a(z1)qdx +
∫
�

λp(x)f (z2)qdx,∫
�

|∇z2|p(x)−2∇z2 · ∇qdx ≥ ∫
�

λp(x)g(x)b(z2)qdx +
∫
�

λp(x)h(z1)qdx,

for all q ∈ W1,p(x)
0 (�) with q ≥ 0. According to the sub-supersolution method for p

(x)-Laplacian equations (see [16]), then (P) has a positive solution.

Step 1. We construct a subsolution of (P).

Let s Î (0, δ) is small enough. Denote

φ(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ekd(x) − 1, d(x) < σ ,

ekσ − 1 +
d(x)∫
σ

kekσ
(
2δ − t
2δ − σ

) 2
p−−1

dt, σ ≤ d(x) < 2δ,

ekσ − 1 +
2δ∫
σ

kekσ
(
2δ − t
2δ − σ

) 2
p−−1

dt, 2δ ≤ d(x).

It is easy to see that φ ∈ C1(�̄) . Denote

α = min
{

inf p(x) − 1
4(sup |∇p(x)| + 1)

, 1
}
, ζ = min{a(0)L1 + f (0), b(0)L1 + h(0),−1}.
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By computation

−�p(x)φ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−k(kekd(x))
p(x)−1

[
(p(x) − 1) + (d(x) +

ln k
k

)∇p∇d +
� d
k

]
, d(x) < σ ,⎧⎨

⎩
1

2δ − σ

2(p(x) − 1)
p− − 1

−
(
2δ − d
2δ − σ

)⎡
⎣
⎛
⎝ln kekσ

(
2δ − d
2δ − σ

) 2
p−−1

⎞
⎠∇p∇d + �d

⎤
⎦
⎫⎬
⎭

×(kekσ )p(x)−1
(
2δ − d
2δ − σ

) 2(p(x)−1)
p−−1

−1

(L1 + 1), σ < d(x) < 2δ,

0, 2δ < d(x).

From (H3) and (H4), there exists a positive constant M >1 such that

f (M − 1) ≥ 1, h(M − 1) ≥ 1.

Let σ = 1
k lnM , then

σk = lnM. (2)

If k is sufficiently large, from (2), we have

−�p(x)φ ≤ −kp(x)α, d(x) < σ . (3)

Let -lζ = ka, then

kp(x)α ≥ −λp(x)ζ ,

from (3), then we have

−�p(x)φ ≤ λp(x)(a(0)L1 + f (0)) ≤ λp(x)(g(x)a(φ) + f (φ)), d(x) < σ . (4)

Since d(x) ∈ C2(∂�3δ) , then there exists a positive constant C3 such that

−�p(x)φ ≤ (kekσ )p(x)−1
(

2δ−d
2δ−σ

)2(p(x) − 1)
p− − 1

−1

.

∣∣∣∣∣∣∣

⎧⎪⎨
⎪⎩

2(p(x) − 1)
(2δ − σ )(p− − 1)

−
(
2δ − d
2δ − σ

)⎡
⎢⎣
⎛
⎜⎝ln kekσ

(
2δ − d
2δ − σ

) 2
p− − 1

⎞
⎟⎠∇p∇d + �d

⎤
⎥⎦
⎫⎪⎬
⎪⎭

∣∣∣∣∣∣∣
≤ C3(kekσ )p(x)−1In k, σ < d(x) < 2δ.

If k is sufficiently large, let -lζ = ka, we have

C3(kekσ )p(x)−1 ln k = C3(kM)p(x)−1 ln k ≤ λp(x),

then

−�p(x)φ ≤ λp(x)(L1 + 1), σ < d(x) < 2δ.

Since j (x) ≥ 0 and a, f are monotone, when l is large enough, then we have

−�p(x)φ ≤ λp(x)(g(x)a(φ) + f (φ)), σ < d(x) < 2δ. (5)
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Obviously

−�p(x)φ = 0 ≤ λp(x)(L1 + 1) ≤ λp(x)(g(x)a(φ) + f (φ)), 2δ < d(x). (6)

Combining (4), (5), and (6), we can conclude that

−�p(x)φ ≤ λp(x)(g(x)a(φ) + f (φ)), a.e. on �. (7)

Similarly

−�p(x)φ ≤ λp(x)(g(x)b(φ) + h(φ)), a.e. on �. (8)

From (7) and (8), we can see that (j1, j2) = (j, j) is a subsolution of (P).

Step 2. We construct a supersolution of (P).

We consider
⎧⎨
⎩

−�p(x)z1 = λp+μ(L2 + 1) in �,
−�p(x)z2 = λp+ (L2 + 1)h(β(λp+(L2 + 1)μ)) in �,
z1 = z2 = 0 on ∂�,

where β = β(λp+(L2 + 1)μ) = maxx∈�̄z1(x) . We shall prove that (z1, z2) is a superso-

lution for (p).

For q ∈ W1,p(x)
0 (�) with q ≥ 0, it is easy to see that

∫
�

|∇z2|p(x)−2∇z2 · ∇qdx =
∫
�

λp+ (L2 + 1)h(β(λp+(L2 + 1)μ))qdx

≥
∫
�

λp+L2h(β(λp+(L2 + 1)μ))qdx +
∫
�

λp+h(z1)qdx.

(9)

Since limu→+∞
f
[
M(h(u)) 1

(p−−1)

]
up−−1 = 0 ,when μ is sufficiently large, combining Lemma 1.2

and (H3), then we have

h(β(λp+(L2 + 1)μ)) ≥ b
(
C2

[
λp+ (L2 + 1)h(β(λp+(L2 + 1)μ))

] 1
p−−1

)
≥ b(z2) (10)

Hence
∫
�

|∇z2|p(x)−2∇z2 · ∇qdx ≥
∫
�

λp+g(x)b(z2)qdx +
∫
�

λp+h(z1)qdx. (11)

Also
∫
�

|∇z1|p(x)−2∇z1 · ∇qdx =
∫
�

λp+ (L2 + 1)μqdx
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By (H3), (H4), when μ is sufficiently large, combining Lemma 1.2 and (H3), we have

(L2 + 1)μ ≥ 1
λp+

[
1
C2

β(λp+(L2 + 1)μ)
]p−−1

≥ L2a(β(λp+(L2 + 1)μ)) + f
(
C2

[
λp+(L2 + 1)h(β(λp+(L2 + 1)μ))

] 1
p−−1

)
.

Then
∫
�

|∇z1|p(x)−2∇z1 · ∇qdx ≥
∫
�

λp+g(x)a(z1)qdx +
∫
�

λp+ f (z2)qdx. (12)

According to (11) and (12), we can conclude that (z1, z2) is a supersolution for (P).

It only remains to prove that j1 ≤ z1 and j2 ≤ z2.

In the definition of v1(x), let γ =2δ (maxx∈�̄φ(x) + maxx∈�̄|∇φ(x)|) . We claim that

φ(x) ≤ v1(x), ∀x ∈ �. (13)

From the definition of v1, it is easy to see that

φ(x) ≤ 2max
x∈�̄

φ(x) ≤ v1(x), when d(x) = δ,

and

φ(x) ≤ 2max
x∈�̄

φ(x) ≤ v1(x), when d(x) ≥ δ.

It only remains to prove that

φ(x) ≤ v1(x), when d(x) < δ.

Since v1 − φ ∈ C1(∂�δ), then there exists a point x0 ∈ ∂�δ such that

v1(x0) − φ(x0) = min
x0∈∂�δ

[v1(x) − φ(x)].

If v1(x0) - j(x0) <0, it is easy to see that 0 < d(x0) < δ, and then

∇v1(x0) − ∇φ(x0) = 0.

From the definition of v1, we have

|∇v1(x0)| = γ =
2
δ

(
max
x∈�̄

φ(x) + max
x∈�̄

|∇φ(x)|
)

> |∇φ(x0)|.

It is a contradiction to ∇v1(x0) - ∇j(x0) = 0. Thus (13) is valid.

Obviously, there exists a positive constant C3 such that

γ ≤ C3λ.

Since d(x) ∈ C2(∂�3δ) , according to the proof of Lemma 1.2, then there exists a

positive constant C4 such that

−�p(x)v1(x) ≤ C∗γ p(x)−1+θ ≤ C4λ
p(x)−1+θ , a.e. in �, where θ ∈ (0, 1).
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When η ≥ λp+ is large enough, we have

−�p(x)v1(x) ≤ η.

According to the comparison principle, we have

v1(x) ≤ w(x), ∀x ∈ �. (14)

From (13) and (14), when η ≥ λp+ and l ≥ 1 is sufficiently large, we have

φ(x) ≤ v1(x) ≤ w(x), ∀x ∈ �. (15)

According to the comparison principle, when μ is large enough, we have

v1(x) ≤ w(x) ≤ z1(x), ∀x ∈ �.

Combining the definition of v1(x) and (15), it is easy to see that

φ1(x) = φ(x) ≤ v1(x) ≤ w(x) ≤ z1(x), ∀x ∈ �.

When μ ≥ 1 and l is large enough, from Lemma 1.2, we can see that

β(λp+(L2 + 1)μ) is large enough, then λp+ (L2 + 1)h(β(λp+(L2 + 1)μ)) is large enough.

Similarly, we have j2 ≤ z2. This completes the proof. □

3. Asymptotic behavior of positive solutions
In this section, when parameter l ® +∞, we will discuss the asymptotic behavior of

maximum of solutions about parameter l, and the asymptotic behavior of solutions

near boundary about parameter l.
Theorem 3.1. On the conditions of (H1)-(H5), if (u, v) is a solution of (P) which has

been given in Theorem 2.1, then

(i) There exist positive constants C1 and C2 such that

C1λ ≤ max
x∈�̄

u(x) ≤ C2
(
λp+ (L2 + 1)μ

) 1
p−−1 (16)

C1λ ≤ max
x∈�̄

v(x) ≤ C2

⎧⎪⎨
⎪⎩λp+(L2 + 1)h

⎡
⎢⎣C2(λp+(L2 + 1)μ)

1
p− − 1

⎤
⎥⎦
⎫⎪⎬
⎪⎭

1
p−−1

(17)

(ii) for any θ Î (0, 1), there exist positive constants C3 and C4 such that

C3λd(x) ≤ u(x) ≤ C4(λp+ (L2 + 1)μ)1/(p
−−1)(d(x))θ , as d(x) → 0, (18)

C3λd(x) ≤ v(x) ≤ C4

⎧⎪⎨
⎪⎩λp+ (L2 + 1)h

⎡
⎢⎣C2(λp+(L2 + 1)μ)

1
p− − 1

⎤
⎥⎦
⎫⎪⎬
⎪⎭

1
p−−1

(d(x))θ , as d(x) → 0 (19)

where μ satisfies (10).
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Proof. (i) Obviously, when 2δ ≤ d(x), we have

u(x), v(x) ≥ φ(x) = ekσ −1+

2δ∫
σ

kekσ
(
2δ − t

2δ − σ

) 2
p−−1

dt ≥ −λ
ζ

α

2δ∫
σ

M
(
2δ − t

2δ − σ

) 2
p−−1

dt,

then there exists a positive constant C1 such that

C1λ ≤ max
x∈�̄

u(x) and C1λ ≤ max
x∈�̄

v(x).

It is easy to see

u(x) ≤ z1(x) ≤ max
x∈�̄

z1(x) ≤ C2(λp+ (L2 + 1)μ)
1

p−−1 ,

then

max
x∈�̄

u(x) ≤ C2
(
λp+(L2 + 1)μ

) 1
p−−1 .

Similarly

max
x∈�̄

v(x) ≤ C2

{
λp+(L2 + 1)h

[
C2

(
λp+ (L2 + 1)μ

) 1
p−−1

]} 1
p−−1

Thus (16) and (17) are valid.

(ii) Denote

v3(x) = α(d(x))θ , d(x) ≤ ρ,

where θ Î (0, 1) is a positive constant, r Î (0, δ) is small enough.

Obviously, v3(x) Î C1(Ωr), By computation

−�p(x)v3(x) = −(αθ)p(x)−1(θ−1)(p(x)−1)(d(x))(θ−1)(p(x)−1)−1(1+�(x)), d(x) < ρ,

where

�(x) = d

(∇p∇d
)
Inαθ

(θ − 1)
(
p (x) − 1

) + d

(∇p∇d
)
In d(

p (x) − 1
) + d

�d

(θ − 1)
(
p (x) − 1

) .

Let α = 1
ρ
C2

(
λp+ (L2 + 1) μ

)1/(p− −1), where r > 0 is small enough, it is easy to see

that

(α)p(x)
−1 ≥ λp+ μ (L2 + 1) and |�(x)| ≤ 1

2
.

where r >0 is small enough, then we have

−�p(x) v3 (x) ≥ λp+ μ (L2 + 1) .

Obviously v3(x) ≥ z1(x) on ∂Ωr. According to the comparison principle, we have v3
(x) ≥ z1 (x) on Ωr. Thus
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u (x) ≤ C4
(
λp+ (L2 + 1) μ

)1/(p− −1)
(d (x))θ , as d (x) → 0.

Let α =
1
ρ
C2

{
λp+ (L2 + 1) h

[
C2

(
λp+ (L2 + 1) μ

) 1
p−−1

]} 1
p−−1

, when r >0 is small

enough, it is easy to see that

(α)p(x)−1 ≥ λp+ (L2 + 1) h
[
C2

(
λp+ (L2 + 1) μ

) 1
p−−1

]
.

Similarly, when r >0 is small enough, we have

v (x) ≤ C4

{
λp+ (L2 + 1) h

[
C2

(
λp+ (L2 + 1) μ

) 1
p−−1

]} 1
p−−1

(d (x))θ as d (x) → 0

Obviously, when d(x) <s, we have

u (x) , v (x) ≥ φ (x) = ekd(x) − 1 ≥ C3λd (x) .

Thus (18) and (19) are valid. This completes the proof. □
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