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Abstract

The existence of multiple solutions for a class of fourth-order elliptic equation with
respect to the generalized asymptotically linear conditions is established by using the
minimax method and Morse theory.
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1 Introduction
Consider the following Navier boundary value problem{

�2u(x) + c�u = f (x, u), in�;
u = �u = 0 on ∂�,

(1)

where Δ2 is the biharmonic operator, and Ω is a bounded smooth domain in ℝN (N

> 4), and c < λ∗
1 the first eigenvalue of -Δ in H1

0(�).

The conditions imposed on f (x, t) are as follows:

(H′
1) f ∈ C1(�̄ × R,R), f (x, 0) = 0, f (x, t)t ≥ 0 for all x Î Ω, t Î ℝ;

(H′
2) f1(t) ≤ f (x, t) ≤ f2 (t) uniformly in x Î Ω, where fl, f2 Î C (ℝ) and we denote

f−
0 = lim

|t|→0
inf

f1(t)
t

, f +0 = lim
|t|→0

sup
f2(t)
t

,

f−
∞ = lim

|t|→∞
inf

f1(t)
t

, f +∞ = lim
|t|→∞

sup
f2(t)
t

.

In view of the condition (H′
2) , problem (1) is called generalized asymptotically linear

at both zero and infinity. Clearly, u = 0 is a trivial solution of problem (1). It follows

from (H′
1) and (H′

2) that the functional

I(u) =
1
2

∫
�

(|�u|2 − c|∇u|2)dx −
∫
�

F(x, u)dx (2)
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is of C2 on the space H1
0(�) ∩ H2(�) with the norm

‖u‖ :=
(∫

�

(|�u|2 − c|∇u|2)dx
)1
2 ,

where F(x, t) =
∫ t
0 f (x, s)ds. Under the condition (H′

2) , the critical points of I are

solutions of problem (1). Let 0 <l1 <l2 < ··· <lk < ··· be the eigenvalues of

(�2 + c�,H2(�) ∩ H1
0(�)) and jl(x) > 0 be the eigenfunction corresponding to ll. In

fact, λ1 = λ∗
1(λ

∗
1 − c) . Let Eλk denote the eigenspace associated to lk. Throughout this

article, we denoted by | · |p the Lp (Ω) norm.

If f−
∞ = f +∞ in the above condition (H′

2) is an eigenvalue of

(�2 + c�,H2(�) ∩ H1
0(�)) , then the problem (1) is called resonance at infinity. Other-

wise, we call it non-resonance. A main tool of seeking the critical points of functional I

is the mountain pass theorem (see [1-3]). To apply this theorem to the functional I in

(2), usually we need the following condition [1], i.e., for some θ >2 and M >0,

(AR) 0 < θF(x, s) ≤ f (x, s)s for a.e. x ∈ � and |s| > M.

It is well known that the condition (AR) plays an important role in verifying that the

functional I has a “mountain-pass” geometry and a related (PS)c sequence is bounded

in H2(�) ∩ H1
0(�) when one uses the mountain pass theorem.

If f(x, t) admits subcritical growth and satisfies (AR) condition by the standard argu-

ment of applying mountain pass theorem, we know that problem (1) has nontrivial

solutions. Similarly, lase f(x, t) is of critical growth (see, for example, [4-7] and their

references).

It follows from the condition (AR) that lim
|t|→∞

F(x, t)
t2

= +∞ after a simple computa-

tion. That is, f(x, t) must be superlinear with respect to t at infinity. Noticing our con-

dition (H′
2) , the nonlinear term f(x, t) is generalized asymptotically linear, not

superlinear, with respect to t at infinity; which means that the usual condition (AR)

cannot be assumed in our case. If the mountain pass theorem is used to seek the criti-

cal points of I, it is difficult to verify that the functional I has a “mountain pass” struc-

ture and the (PS)c sequence is bounded.

In [8], Zhou studied the following elliptic problem

−�u = f (x, u) u ∈ H1
0(�),

where the conditions on f(x, t) are similar to (H′
1) and (H′

2) . He provided a valid

method to verify the (PS) sequence of the variational functional, for above problem is

bounded in H1
0(�) (see also [9,10]).

To the authors’ knowledge, there seems few results on problem (1) when f(x, t) is gener-

alized asymptotically linear at infinity. However, the method in [8] cannot be applied

directly to the biharmonic problems. For example, for the Laplacian problem, u ∈ H1
0(�)

implies |u|, u+, u− ∈ H1
0(�) , where u+ = max(u, 0), u- = max(-u, 0). We can use u+ or u-

as a test function, which is helpful in proving a solution nonnegative. While for the
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biharmonic problems, this trick fails completely since u ∈ H2
0(�) does not imply u+,

u− ∈ H2
0(�) (see [[11], Remark 2.1.10] and [12,13]). As far as this point is concerned, we

will make use of the new methods to discuss in the following Lemma 2.2.

This fourth-order semilinear elliptic problem can be considered as an analogue of a

class of second-order problems which have been studied by many authors. In [14],

there was a survey of results obtained in this direction. In [15], Micheletti and Pistoia

showed that (P1) admits at least two solutions by a variation of linking if f(x, u) is sub-

linear. Chipot [16] proved that the problem (P1) has at least three solutions by a varia-

tional reduction method and a degree argument. In [17], Zhang and Li showed that

(P1) admits at least two nontrivial solutions by Morse theory and local linking if f(x, u)

is superlinear and subcritical on u.

In this article, we consider multiple solutions of problem (1) in the non-resonance by

using the mountain pass theorem and Morse theory. At first, we use the truncated skill

and mountain pass theorem to obtain a positive solution and a negative solution of

problem (1) under our more general conditions (H′
1) and (H′

2) with respect to the

conditions (H1) and (H3) in [8]. In the course of proving existence of positive solution

and negative solution, our conditions are general, but the proof of our compact condi-

tion is more simple than that in [8]. Furthermore, we can obtain a nontrivial solution

when the nonlinear term f is non-resonance at the infinity by using Morse theory.

2 Main result and auxiliary lemmas
Let us now state the main result.

Theorem 2.1. Assume conditions (H′
1)and (H′

2)hold, f +0 < λ1and

λk < f−
∞ ≤ f +∞ < λk+1 for some k ≥ 2, then problem (1) has at least three nontrivial

solutions.

Consider the following problem{
�2u + c�u = f+(x, u), x ∈ �,

u |∂� = �u|∂� = 0,

where

f+(x, t) =
{
f (x, t), t > 0,
0, t ≤ 0.

Define a functional I+ : H2(�) ∩ H1
0(�) → R by

I+(u) =
1
2

∫
�

(|�u|2 − c|∇u|2)dx −
∫
�

F+(x, u)dx,

where F+(x, t) =
∫ t
0 f+(x, s)ds, then I+ ∈ C2(H2(�) ∩ H1

0(�),R) .

Lemma 2.2. I+ satisfies the (PS) condition.

Proof. Let {un} ⊂ H2(�) ∩ H1
0(�) be a sequence such that∣∣I′+(un)∣∣ ≤ c, < I′+(un), φ >→ 0 as n ® ∞. Note that
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< I′+(un),φ >=
∫
�

(�un�φ − c∇un∇φ)dx −
∫
�

f+(x, un)φdx = ◦(‖φ‖) (3)

for all φ ∈ H2(�) ∩ H1
0(�) . Assume that |un|2 is bounded, taking j = un in (3). By

(H′
2) , there exists c > 0 such that |f+(x, un(x))| ≤ c|un(x)|, a.e. x Î Ω. So (un) is

bounded in H2(�) ∩ H1
0(�) . If |un|2 ® +∞, as n ® ∞, set vn =

un
|un|2 , then |vn|2 = 1.

Taking j = vn in (3), it follows that ||vn|| is bounded. Without loss of generality, we

assume that vn ⇀ v in H2(�) ∩ H1
0(�) , then vn® v in L2(Ω). Hence, vn ® v a.e. in Ω.

Dividing both sides of (3) by |un|2, we get
∫
�

(�vn�φ − c∇vn∇φ)dx −
∫
�

f+(x, un)
|un|2

φdx = ◦
( ‖φ‖

|un|2

)
,∀φ ∈ H2(�) ∩ H1

0(�). (4)

Let � > 0 and f−
∞ − ε > λ1 , and choose a constant M >0 such that

f (x, t) ≥ (f−
∞ − ε)t, t > M .

Let φ ∈ H2(�) ∩ H1
0(�) and j ≥ 0. From (4), we have

∫
�

(�vn�φ − c∇vn∇φ)dx =
∫
�

f+(x, un)
|un|2

φdx + ◦(1)

=
∫

|u+n|2vn<M

f (x, un)
|un|2

φdx +
∫

|u+n|2vn≥M

f (x, un)∣∣u+n∣∣2 φdx + ◦(1)

≥ (f−
∞ − ε)

∫
�

vnφdx − c
∫

0≤|u+n|2vn≤M

vnφdx + ◦(1).

Letting n ® ∞, for all φ ∈ H2(�) ∩ H1
0(�) and j ≥ 0 we have∫

�

(�v�φ − c∇v∇φ)dx ≥ (f−
∞ − ε)

∫
�

v+φdx. (5)

Then we have{
�2v + c�v ≥ (f−

∞ − ε)v+, x ∈ �,

v|∂� = �v|∂� = 0.

While let -Δv = u, by the comparison maximum principle v ≥ 0. Since the definition

of vn, we have v ≢ 0 and we arrive at a contradiction by choosing j = j1 in (5).

Since |un|2 is bounded, from (3) we get the boundedness of ||un||. A standard argu-

ment shows that {un} has a convergent subsequence in H2(�) ∩ H1
0(�) . Therefore, I+

satisfies (PS) condition.

Lemma 2.3. Let j1 be the eigenfunction corresponding to l1 with ||j1|| = 1. If

f +0 < λ1 < f−
∞ , then

(a) There exist r, b >0 such that I+ (u) ≥ b for all u ∈ H2(�) ∩ H1
0(�)with ||u|| = r;

(b) I+(tj1) = -∞ as t ® +∞.
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Proof. By (H′
1) and (H′

2) , if f−
∞ ∈ (λ1, +∞) , for any ε > 0, there exist A = A(ε) ≥ 0

and B = B(ε) such that for all (x, s) Î Ω × ℝ,

F+(x, s) ≤ 1
2
(f +0 + ε)s2 + Asp+1, (6)

F+(x, s) ≥ 1
2
(f−

∞ − ε)s2 − B, (7)

where p ∈
(
1,

N + 4
N − 4

)
if N > 4.

Choose ε >0 such that f +0 + ε < λ1 . By (6), the Poincaré inequality and the Sobolev

inequality, we get

I+(u) =
1
2

∫
�

(|�u|2 − c|∇u|2)dx −
∫
�

F+(x, u)dx

≥ 1
2

∫
�

(|�u|2 − c|∇u|2)dx − 1
2

∫
�

[(f +0 + ε)u2 + A|u|p+1]dx

≥ 1
2

(
1 − f +0 + ε

λ1

)
‖u‖2 − c‖u‖p+1.

So, part (a) holds if we choose ||u|| = r > 0 small enough.

On the other hand, if f−
∞ ∈ (λ1, +∞) , take ε >0 such that f−

∞ − ε > λ1 . By (7), we

have

I+(u) ≤ 1
2

‖u‖2 − f−
∞ − ε

2
|u|22 + B |�| .

Since f−
∞ − ε > λ1 and ||jl|| = 1, it is easy to see that

I+(tφ1) ≤ 1
2

(
1 − f−

∞ − ε

λ1

)
t2 + B |�| → −∞ as t → +∞

and part (b) is proved.

Lemma 2.4. Let H2(�) ∩ H1
0(�) = V ⊕ W , where V = Eλ1 ⊕ Eλ2 ⊕ · · · ⊕ Eλk . If f

satisfies (H′
1) -(H

′
3) , then

(i) the functional I is coercive on W, that is

I(u) → +∞ as ‖u‖ → +∞, u ∈ W

and bounded from below on W,

(ii) the functional I is anti-coercive on V.

Proof. For u Î W, by (H′
2) , for any ε >0, there exists Bl = Bl(ε) such that for all (x,

s) Î Ω × ℝ,

F(x, s) ≤ 1
2
(f +∞ + ε)s2 + B1. (8)
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So we have

I(u) =
1
2

∫
�

(|�u|2 − c|∇u|2)dx −
∫
�

F(x, u)dx

≥ 1
2

∫
�

(|�u|2 − c|∇u|2)dx − 1
2
(f +∞ + ε) |u|22 − B1 |�|

≥ 1
2

(
1 − f +∞ + ε

λk+1

)
‖u‖2 − B1 |�| .

Choose ε >0 such that f +∞ + ε < λk+1 . This proves (i).

(ii) When λk < f−
∞ ≤ f +∞ < λk+1 , it is easy to see that the conclusion holds.

Lemma 2.5. If λk < f−
∞ ≤ f +∞ < λk+1 , then I satisfies the (PS) condition.

Proof. Let {un} ⊂ H2(�) ∩ H1
0(�) be a sequence such that |I (un)| ≤ c, <I’(un), j >

® 0.

Since

< I′(un),φ >=
∫
�

(�un�φ − c∇un∇φ)dx −
∫
�

f (x, un)φdx = ◦(‖φ‖) (9)

for all φ ∈ H2(�) ∩ H1
0(�) . If |un|2 is bounded, we can take j = un. By (H′

2) , there

exists a constant c >0 such that |f (x, un(x))| ≤ c|un(x)|, a.e. x Î Ω. So (un) is bounded

in H2(�) ∩ H1
0(�) . If |un|2 ® +∞, as n ® ∞, set vn =

un
|un|2 , then |vn|2 = 1. Taking j

= vn in (9), it follows that ||vn|| is bounded. Without loss of generality, we assume vn

⇀ v in H2(�) ∩ H1
0(�) , then vn ® v in L2(Ω). Hence, vn ® v a.e. in Ω. Dividing both

sides of (9) by |un|2, for any φ ∈ H2(�) ∩ H1
0(�) , we get

∫
�

(�vn�φ − c∇vn∇φ)dx −
∫
�

f (x, un)
|un|2

φdx = ◦
( ‖φ‖

|un|2

)
. (10)

Then for a.e. x Î Ω and suitable �, we have

(f−
∞ − ε)v2 ≤ f (x, un)

|un|2
v ≤ (f +∞ + ε)v2

as n ® ∞. In fact, if v(x) ≠ 0, by (H′
2) , we have∣∣un(x)∣∣ = ∣∣vn(x)∣∣ |un|2 → +∞

and

(f−
∞ − ε)v2 ≤ f (x, un)

|un|2
v =

f (x, un)
un

vnv ≤ (f +∞ + ε)v2.

as n ® ∞. If v(x) = 0, we have∣∣f (x, un)∣∣
|un|2

≤ c |vn| → 0.
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Since

∣∣f (x, un)∣∣
|un|2

≤ c |vn|, by choosing j = v in (10) and the Lebesgue dominated con-

vergence theorem, we arrive at

λk |v|22 ≤
∫
�

(�v�v − c∇v∇v)dx ≤ λk+1 |v|22 .

From Fourier series theory, it is easy to see that v ≡ 0. It contradicts to

lim
n→∞ |vn|2 = |v|2 = 1 .

It is well known that critical groups and Morse theory are the main tools in solving

elliptic partial differential equation. Let us recall some results which will be used later.

We refer the readers to the book [18] for more information on Morse theory.

Let H be a Hilbert space and I Î Cl(H, ℝ) be a functional satisfying the (PS) condition

or (C) condition, and Hq (X, Y) be the qth singular relative homology group with inte-

ger coefficients. Let u0 be an isolated critical point of I with I(u0) = c, c Î ℝ, and U be

a neighborhood of u0. The group

Cq(I, u0) := Hq(Ic ∩ U, Ic ∩ U\{u0}), q ∈ Z

is said to be the qth critical group of I at u0, where Ic = {u Î H: I (u) ≤ c}.

Let K: = {u Î H: I’(u) = 0} be the set of critical points of I and a <inf I (K), the criti-

cal groups of I at infinity are formally defined by (see [19])

Cq(I,∞) := Hq(H, Ia), q ∈ Z.

The following result comes from [18,19] and will be used to prove the result in this

article.

Proposition 2.6 [19]. Assume that H = H+
∞ ⊕ H−

∞ , I is bounded from below on

H+
∞and I(u) ® -∞ as ||u|| ® ∞ with u ∈ H−

∞ . Then

Ck(I,∞) � 0, if k = dimH−
∞ < ∞. (11)

3 Proof of the main result
Proof of Theorem 2.1. By Lemmas 2.2 and 2.3 and the mountain pass theorem, the

functional I+ has a critical point ul satisfying I+(ul) ≥ b. Since I+ (0) = 0, ul ≠ 0 and by

the maximum principle, we get ul > 0. Hence ul is a positive solution of the problem

(1) and satisfies

C1(I+, u1) �= 0, u1 > 0. (12)

Using the results in [18], we obtain

Cq(I, u1) = Cq(IC1
0(�), u1) = Cq(I+|C1

0(�), u1) = Cq(I+, u1) = δq1Z. (13)

Similarly, we can obtain another negative critical point u2 of I satisfying

Cq(I, u2) = δq,1Z. (14)
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Since f +0 < λ1, the zero function is a local minimizer of I, then

Cq(I, 0) = δq,0Z. (15)

On the other hand, by Lemmas 2.4, 2.5 and the Proposition 2.6, we have

Ck(I,∞) � 0. (16)

Hence I has a critical point u3 satisfying

Ck(I, u3) � 0. (17)

Since k ≥ 2, it follows from (13)-(17) that ul, u2, and u3 are three different nontrivial

solutions of the problem (1).
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