
RESEARCH Open Access

Attractor bifurcation for FKPP type equation with
periodic boundary condition
Qiang Zhang1,2

Correspondence: zqcs007@163.com
1College of Mathematics, Sichuan
University, Chengdu, Sichuan
610064, P. R. China
Full list of author information is
available at the end of the article

Abstract

In this article, we make bifurcation analysis on the FKPP type equation under
periodic boundary condition. And we show that the solutions bifurcate from the
trivial solution u = 0 to an attractor ∑l as parameter crosses certain critical value.
Moreover, we prove that the attractor ∑l consists of only one cycle of steady state
solutions and is homeomorphic to S1. The analysis is based on a new theory of
bifurcation, called attractor bifurcation, which was developed by Ma and Wang.
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1 Introduction
We consider the following reaction diffusion equation of FKPP type:

⎧⎪⎨
⎪⎩

∂u
∂t

= auxx + λu + bu2 − du3, (x, t) ∈ R × (0,∞),

u(x, t) = u(x + 2kπ , t),∀k ∈ Z, (x, t) ∈ R × (0,∞),
u(x, 0) = ϕ(x), x ∈ R,

(1:1)

supplemented with the following natural constraint:

2π∫
0

u(x)dx = 0, (1:2)

where a > 0, d > 0, b are given and l > 0 is system parameter.

In 1937, the FKPP equation was first proposed by Fisher as a model to describe the

propagation of advantageous genes [1] and was studied mathematically by Kolmogorov

et al. [2]. Moreover, it was also used as biological models for population dynamics

[3-5].

The FKPP equation has been extensively studied during the last decades. Among all

the topics of these, the existence of traveling waves (exact form of solutions) and the

asymptotic behavior of solutions attract much attention. Many different kinds of meth-

ods for the existence of traveling waves (exact form of solutions) haven been devel-

oped, such as Painleve expansion method [6,7], bilinear method [8,9], symmetry

methods [10]. On the other hand, many results on the asymptotic behavior of solutions

are also obtained; see among others [11-14] and references therein.
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However, there is few work on the attractor bifurcation of the FKPP equation. As a

new notion of bifurcation, attractor bifurcation was developed by Ma and Wang

[15-17] and attracted researchers [18,19]. Ma and Wang [15] first proposed this new

notion and applied it to Rayleigh-Benard Convection. Afterwards, with this new theory,

Park [18] analyzed the bifurcation of the complex Ginzburg-Landau equation (CGLE)

and Zhang et al. [19] studied the attractor bifurcation of the Kuramoto-Sivashinsky

equation.

In this article, we focus on the attractor bifurcation of FKPP type Equation (1.1). The

bifurcation analysis near the first eigenvalue of (1.1) will be discussed. The topology

structure of the bifurcated solutions will also be studied. As a result, we show the sys-

tem bifurcates from the trivial solution to an attractor ∑l as system parameter l
crosses the critical value a, the first eigenvalue of the eigenvalue problem of the linear-

ized equation of (1.1). Furthermore, we prove that ∑l is homeomorphic to S1 and con-

sists of only one cycle of steady state solutions.

This article is organized as follows. The mathematical setting are given in Section 2.

The main results are stated in Section 3. The preliminaries are put in section 4. And

Section 5 devote to the proof of the main theorem.

2 Mathematical setting
Let

H = L2(0, 2π),

H1 =

⎧⎨
⎩u ∈ H2(0, 2π)

∣∣∣∣∣∣
2π∫
0

u(x)dx = 0, u(x + 2kπ) = u(x)

⎫⎬
⎭ ,

and we define Ll = -A + Bl : H1 ® H and G : H1 ® H by
⎧⎨
⎩
Au = −auxx,
Bλu = λu,
Gu = bu2 − du3.

Consequently, we have an operator equation which is equivalent to the problem

(1.1):
⎧⎨
⎩

du
dt

= Lλu + G(u),

u(x, 0) = ϕ.
(2:1)

Thanks to the existence result of semi-linear evolution equations, see Temam [20],

Pazy [21], we can define a semigroup

S(t) : H1 → H, t ≥ 0,

which satisfies the semigroup property.

3 Main results
3.1 The definition of attractor bifurcation

In order to state the main theorem of this article, we start with the definition of attrac-

tor bifurcation which was first proposed by Ma and Wang in [15-17].
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Let H and H1 be two Hilbert spaces, and H1 ↪ H be a dense and compact inclusion.

We consider the following nonlinear evolution equations
⎧⎨
⎩

du
dt

= Lλu + G(u),

u(x, 0) = u0,
(3:1)

where u : [0, ∞) ® H is the unknown function, l Î R is the system parameter, and

Ll:H1: ® H are parameterized linear completely continuous fields depending continu-

ously on l, which satisfy
⎧⎨
⎩
Lλ = −A + Bλ a sectorial operator,
A : H1 → H a linear homeomorphism,
Bλ : H1 → H a parameterized linear compact operators.

(3:2)

Since Ll is a sectorial operator which generates an analytic semigroup

Sλ(t) = {etLλ}t≥0 for any l Î R, we can define fractional power operators (-Ll)
μ for 0 ≤

μ ≤ 1 with domain Hμ = D((-Ll)
μ) such that Hμ1 ⊂ Hμ2 if μ1 >μ2, and H0 = H. In addi-

tion, we assume that the nonlinear terms G(., l) : Ha ® H for some 0 ≤ a < 1 are a

family of parameterized Cr bounded operator (r ≥ 1) continuously depending on l,
such that

G(u,λ) = o
(‖u‖Hα

)
, ∀λ ∈ R. (3:3)

Definition 3.1.1 A set Σ ⊂ H is called an invariant set of (3.1) if S(t) Σ = Σ for any t

≥ 0. An invariant set Σ ⊂ H of (3.1) is said to be an attractor if Σ is compact, and

there exists a neighborhood of W ⊂ H of Σ such that for any ψ0 Î W we have

lim
t→∞distH(ψ(t,ψ0),�) = 0.

Definition 3.1.2 (1) We say that the solution to Equation (3.1) bifurcates from (ψ, l)
= (0, l0) to an invariant set Ωl, if there exists a sequence of invariant sets {	λn} of
(3.1) such that 0 /∈ 	λn, and

lim
n→∞ λn = λ0,

lim
n→∞ max

x∈	λn

|x| = 0.

(2) If the invariant sets Ωl are attractors of (3.1), then the bifurcation is called attrac-

tor bifurcation.

3.2 Main theorem

In this article, based on attractor bifurcation theory we obtain the following results.

Theorem 3.2.1 For the problem (1.1) with (1.2), if 2b2 < 9ad, following assertions

hold true:

(1) if l ≤ a, the steady state u = 0 is locally asymptotically stable. Furthermore, if b =

0, the steady state u = 0 is globally asymptotically stable.

(2) if l >a, the Equation (1.1) bifurcates from u = 0 to an attractor Σl which is

homeomorphic to S1.

(3) Σl consists of exactly one cycle of steady solutions of (1.1).

(4) There exists a neighborhood U of u = 0, such that Σl attracts U/Γ, where Γ is the

stable manifold of u = 0 with co-dimension 2 in H.
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4 Preliminaries
4.1 Attractor bifurcation theory

In the following, we proceed with the principle of exchange of stabilities (PES). Let the

eigenvalues (counting multiplicity) of Ll be given by

βk(λ) ∈ C(k ≥ 1).

Suppose that

	βi(λ)

⎧⎨
⎩

< 0, ifλ < λ0

= 0, ifλ = λ0(1 ≤ i ≤ m)
> 0, ifλ < λ0

(4:1)

	βj(λ0) < 0,∀j ≥ m + 1. (4:2)

Let the eigenspace of Ll at l = l0 be

E0 =
⋃

1≤j≤m

∞⋃
k=1

{u, v ∈ H1

∣∣∣(Lλ0 − βj(λ0))
kw = 0, w = u + iv }.

It is known that dim E0 = m.

Theorem 4.1.1[17] Assume that the conditions (3.2), (3.3), (4.1), and (4.2) hold true,

and u = 0 is locally asymptotically stable for (3.1) at l = l0. Then the following asser-

tions hold true:

(1) (3.1) bifurcates from (u, l) = (0, l0) to attractors Ωl, having the same homology

as Sm-1, for l >l0, with m - 1 ≤ dim Ωl ≤ m, which is connected as m > 1;

(2) for any ul Î Ωl, ul can be expressed as

uλ = vλ + o
(‖vλ‖H1

)
, vλ ∈ E0;

(3) There is an open set U ⊂ H with 0 Î U such that the attractor Ωl bifurcated

from (0, l0) attracts U/Γ in H, where Γ is the stable manifold of u = 0 with co-

dimension m.

To get the structure of the bifurcated solutions, we introduce another theorem.

Let v be a two-dimensional Cr (r ≥ 1) vector field given by

vλ(x) = λx − F(x,λ), (4:3)

for x Î R2. Here

F(x,λ) = Fk(x,λ) + o(|x|k), (4:4)

where Fk is a k-multilinear field, which satisfies an inequality

C1|x|k+1 ≤< Fk(x,λ), x >≤ C2|x|k+1, (4:5)

for some constants 0 <C1 <C2 and k = 2m + 1, m ≥ 1.
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Theorem 4.1.2 ([[16], Theorem 5.10, p. 134]) Under conditions (4.4) and (4.5), the

vector field (4.3) bifurcates from (x, l) = (0, 0) to an attractor Πl for l > 0, which is

homeomorphic to S1. Moreover, one and only one of the following is true.

(1) Πl is a period orbit,

(2) Πl consists of infinitely many singular points,

(3) Πl contains at most 2(k + 1) = 4(m + 1) singular points, and has 4N + n (N + n

≥ 1) singular points, 2N of which are saddle points, 2N of which are stable node points

(possibly degenerate), and n of which have index zero.

4.2 Center manifold reduction

Since the key point in the proof of Theorem 3.2.1 is the center manifold function, we

introduce an approximation formula of the center manifold function derived in [16].

We assume that the spaces H1 and H can be decomposed into
{
H1 = Eλ

1 ⊕ Eλ
2, dim Eλ

1 < ∞, near λ0 ∈ R,
H = Ẽλ

1 ⊕ Ẽλ
2, Ẽ

λ
1 = Eλ

1, Ẽ
λ
2 = the closure of Eλ

2 in H,
(4:6)

where Eλ
1,E

λ
2 are invariant spaces of Ll, i.e., Ll can be decomposed into Lλ = Lλ

1 ⊕ Lλ
2

such that for any l near l0,

Lλ
1 = Lλ

∣∣∣E1 : Eλ
1 → Ẽλ

1 ,

Lλ
2 = Lλ

∣∣∣E2 : Eλ
2 → Ẽλ

2,
(4:7)

where all eigenvalues of Lλ
2 possess negative real parts, all eigenvalues of Lλ

1 possess

nonnegative real parts at l = l0.
Thus, for l near l0, (3.1) can be rewritten as

⎧⎪⎨
⎪⎩

dx
dt

= Lλ
1 + G1(x + y,λ),

dy
dt

= Lλ
2 + G2(x + y,λ),

where u = x + y ∈ H1, x ∈ Eλ
1, y ∈ Eλ

2, Gi = PiG(u,λ), and Pi : H → Ẽi are canonical

projections. Moreover, let

Eλ
2(α) = closure of Eλ

2 in Hα ,

where a < 1 given by (3.3).

By the classical center manifold theorem (see among others [20,22]), there exists a

neighborhood of l0, a neighborhood Bλ ⊂ Eλ
1 of x = 0, and a C1 center manifold func-

tion �(.,λ) : Bλ → Eλ
2(α), depending continuously on l. Then to investigate the

dynamic bifurcation of (3.1) it suffices to consider the finite dimensional system as fol-

lows

dx
dt

= Lλ
1 + G1(x + �λ(x),λ), x ∈ Bλ ⊂ Eλ

1.

Assume the nonlinear operator G be in the following form

G(u,λ) = Gk(u,λ) + o(‖u‖k), (4:8)
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for some integer k ≥ 2. Here Gk is a k-multilinear operator

Gk : H1 × · · · × H1 → H,

Gk(u,λ) = Gk(u, · · · , u,λ).

Theorem 4.2.1 ([[16], Theorem 3.8, p. 63]) Under the conditions (3.2), (4.1), (4.2),

(4.6), and (4.8), the center manifold function F(x, l) can be expressed as

�(x,λ) = (−Lλ
2)

−1P2Gk(x,λ) +O
(
|	β| ‖x‖k

)
+ o

(
‖x‖k

)
, (4:9)

where Lλ
2 is as in (4.7), P2 : H → Ẽ2 the canonical projection, x ∈ Eλ

1, and

β =
(
βλ
1 , . . . ,β

λ
m

)
the eigenvalues of Lλ

1.

5 Proof of main theorem
In this section, we shall prove Theorem 3.2.1 by four steps.

Step 1. In this step, we shall study the eigenvalue problem of the linearized equation

of (2.1) and shall find the eigenvectors and the critical value of l.
Consider the eigenvalue problem of the linear equation,

Lλu = βu. (5:1)

Note that the eigenvalues {ρk}∞k=1 and eigenvectors {ek}∞k=1 of Laplace operator, which

satisfy
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d2

dx2
ek = ρkek,

ek(x + 2kπ) = ek(x),∫ 2π

0 ek(x)dx = 0,∫ 2π

0 e2k(x)dx = 1,

are
⎧⎨
⎩

ρk = −k2,

ek =
sin kx√

π
or

cos kx√
π

.

Then the eigenvalues and eigenvectors of (5.1) are
⎧⎨
⎩

β2k−1 = β2k = λ − ak2,

e2k−1 =
sin kx√

π
, e2k =

cos kx√
π

. (5:2)

Now, we get the PES:

β1(λ) = β2(λ)

⎧⎨
⎩

< 0,λ < a,
= 0,λ = a,
> 0,λ > a,

βj(a) < 0, j ≥ 3.

As a result, conditions (4.1) and (4.2) are verified.

Step 2. We verify that for any l Î R, operator Ll + G satisfies conditions (3.2) and

(3.3).

From the theory of elliptic equations, operator A : H1 ® H is a homeomorphism.

Note that conclusion H1 ↪ H is compact, then operator Bl : H1 ® H is linear compact
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operator. Thanks to the results of analytic semigroup in [20-22], from (5.2) we know

that operator Ll : H1 ® H is a sectorial operator which generates an analytical semi-

group. Condition (3.2) is verified.

It is easy to get the following inequality

∥∥G(u)∥∥2H =

2π∫
0

∣∣bu2 − du3
∣∣2dx

≤ C

2π∫
0

(u4 + u6)dx

≤ C
(
‖u‖4L4(0,2π) + ‖u‖6L6(0,2π)

)

≤ C

⎛
⎜⎝‖u‖4H1

2

+ ‖u‖6H1
2

⎞
⎟⎠ ,

which implies that G(u) = o

⎛
⎜⎝‖u‖H1

2

⎞
⎟⎠, where

H1
2

=

⎧⎨
⎩u ∈ H1(0, 2π)

∣∣∣∣∣∣
2π∫
0

u(x)dx = 0, u(x + 2kπ) = u(x)

⎫⎬
⎭ ,

condition (3.3) is verified.

Step 3. In this part, we shall prove the existence of attractor bifurcation and analyze

the topological structure of attractor Σl.

Let Eλ
1 = E0 = span{e1, e2}, Eλ

2 = E⊥
0 . Let F be the center manifold function, in the

neighborhood of (u, l) = (0, a), we have

u = y + �(y),

where y = x1e1 + x2e2.

Then the reduction equations of (2.1) are as follows
⎧⎪⎨
⎪⎩

dx1
dt

= (λ − a)x1+ < G(u), e1 >,

dx2
dt

= (λ − a)x2+ < G(u), e2 > .
(5:3)

To get the exact form of the reduction equations, we need to obtain the expression

of <G(u), e1 > and <G(u), e2 >.

Let G2 : H1 × H1 ® H and G3 : H1 × H1 × H1 ® H are the bilinear and trilinear

operators of G, respectively, i.e.,

G2(u1, u2) = bu1u2,

G3(u1, u2, u3) = −du1u2u3.

Since

< G2(x1e1 + x2e2, x1e1 + x2e2), e1 >=< G2(x1e1 + x2e2, x1e1 + x2e2), e2 >= 0,
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the first-order approximation of (5.3) doesn’t work. Now, we shall find out the sec-

ond-order approximation of (5.3). And the most important of all is to obtain the

approximation expression of the center manifold function.

Since

< G2(x1e1 + x2e2, x1e1 + x2e2), ek >

= bx21

2π∫
0

e21ekdx + bx22

2π∫
0

e22ekdx + 2bx1x2

2π∫
0

e1e2ekdx,

and

2π∫
0

e21ekdx = 0, k �= 4,

2π∫
0

e21e4dx = − 1
2
√

π
, (5:4)

2π∫
0

e22ekdx = 0, k �= 4,

2π∫
0

e22e4dx =
1

2
√

π
, (5:5)

2π∫
0

e1e2ekdx = 0, k �= 3,

2π∫
0

e1e2e3dx =
1

2
√

π
, (5:6)

we can obtain

< G2(x1e1 + x2e2, x1e1 + x2e2), ek >=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

b√
π
x1x2, k = 3,

b

2
√

π
x22 − b

2
√

π
x21, k = 4,

0, k �= 3, 4.

(5:7)

By the formula (4.9) in Theorem 4.2.1 and (5.7), the center manifold function F, in

the neighborhood of (u, l) = (0, a), can be expressed as

�(y) = −
∞∑
k=3

β−1
k < G2(y, y), ek > ek +O

((|β1|2 + |β2|
)2∣∣y∣∣2) + o

(∣∣y∣∣2)

= −(λ − 4a)−1 b

2
√

π
(2x1x2e3 − x22e4 + x21e4)

+O
(|λ − a|2 (|x1|2 + |x2|2

)
+ o|x1|2 + |x2|2

)
.

In the following, we calculate <G(u), ej >, j = 1, 2.

< G(u), ej > =< G2(y + �(y), y + �(y)), ej > + < G3(y + �(y), y + �(y), y + �(y)), ej >

=< G2(y,�(y)), ej > + < G2(�(y), y), ej > +G3(y, y, y), ej >

+O
(|λ − a|2 (|x1|3 + |x2|3

)
+ o

(|x1|3 + |x2|3
)
, j = 1, 2.

Next we only need to find out <G2(y, F(y)), ej >, <G2(F(y),y), ej > and G3(y, y, y), ej
>.
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By calculation, we have

< G2(y,�(y)), e1 > =< G2(�(y), y), e1 >

=

2π∫
0

by�(y)e1dx

= −(λ − 4a)−1 b2
2
√

π

2π∫
0

(x1e21 + x2e1e2)(2x1x2e3 − x22e4 + x21e4)dx

+O
(|λ − a|2 (|x1|3 + |x2|3

)
+ o

(|x1|3 + |x2|3
)

= −(λ − 4a)−1 b2

2
√

π

2π∫
0

(−x31e
2
1e4 + x1x22e

2
1e4 + 2x1x22e1e2e3)dx

+O
(|λ − a|2 (|x1|3 + |x2|3

)
+ o

(|x1|3 + |x2|3
)
,

< G2(y,�(y)), e2 > =< G2(�(y), y), e2 >

=

2π∫
0

by�(y)e2dx

= −(λ − 4a)−1 b2

2
√

π

2π∫
0

(x2e22 + x1e1e2)(2x1x2e3 − x22e4 + x21e4)dx

+O
(|λ − a|2 (|x1|3 + |x2|3

)
+ o

(|x1|3 + |x2|3
)

= −(λ − 4a)−1 b2

2
√

π

2π∫
0

(2x21x2e1e2e3 − x21x2e
2
2e4 + x32e

2
2e4)dx

+O
(|λ − a|2 (|x1|3 + |x2|3

)
+ o

(|x1|3 + |x2|3
)
.

Note that (5.4) hold true, we have

< G2(y,�(y)), e1 >= −(λ − 4a)−1 b2

4π
x31 − (λ − 4a)−1 b2

4π
x1x

2
2

+O
(|λ − a|2 (|x1|3 + |x2|3

)
+ o

(|x1|3 + |x2|3
)
,

< G2(y,�(y)), e2 >= −(λ − 4a)−1 b2

4π
x32 − (λ − 4a)−1 b2

4π
x21x2

+O
(|λ − a|2 (|x1|3 + |x2|3

)
+ o

(|x1|3 + |x2|3
)
.

Since

2π∫
0

e41dx =

2π∫
0

e42dx =
3
4π

,

2π∫
0

e21e
2
2dx =

1
4π

,

we have

< G3(y, y, y), e1 >=

2π∫
0

−dy3e1dx = −d

2π∫
0

(
x31e

4
1 + 3x1x22e

2
1e

2
2

)
dx = − 3d

4π
x31 − 3d

4π
x1x

2
2,

< G3(y, y, y), e2 >=

2π∫
0

−dy3e2dx = −d

2π∫
0

(3x21x2e
2
1e

2
2 + x32e

4
2)dx = − 3d

4π
x32 − 3d

4π
x21x2,
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then we obtain the expression of <G(u), ej >, j = 1,2.

< G(u), e1 >= Ax31 + Ax1x22 +O
(|λ − a|2 (|x1|3 + |x2|3

)
+ o

(|x1|3 + |x2|3
)
,

< G(u), e2 >= Ax21x2 + Ax32 +O
(|λ − a|2 (|x1|3 + |x2|3

)
+ o

(|x1|3 + |x2|3
)
,

(5:8)

where A = −(λ − 4a)−1 b2

2π
− 3d

4π
.

Put (5.8) into (5.3), we have the approximation of reduction equation
⎧⎪⎨
⎪⎩

dx1
dt

= (λ − a)x1 + Ax31 + Ax1x22 +O
(|λ − a|2 (|x1|3 + |x2|3

)
+ o

(|x1|3 + |x2|3
)
,

dx2
dt

= (λ − a)x2 + Ax21x2 + Ax32 +O
(|λ − a|2 (|x1|3 + |x2|3

)
+ o

(|x1|3 + |x2|3
)
.
(5:9)

For the case of l <a, it is obviously that u = 0 is locally asymptotically stable. For the

case of l = a, if 9ad > 2b2, which implies that A < 0, then u = 0 is also locally asymp-

totically stable. In particular, if b = 0, l ≤ a, by Poincaré inequality we have

1
2
d
dt

‖u‖2H = −a ‖ux‖2H + λ ‖u‖2H − d ‖u‖4H
≤ (λ − a) ‖ux‖2H − d ‖u‖4H
≤ −d ‖u‖4H ,

which implies that u = 0 is globally asymptotically stable. Assertion (1) of Theorem

3.2.1 be proved.

Since the following equality holds true

x1
(
Ax31 + Ax1x

2
2

)
+ x2

(
Ax21x2 + Ax32

)
= A

(
x21 + x22

)2
,

according to Theorem 4.1.2, we can conclude that if l >a, the equation (1.1) bifur-

cates from u = 0 to an attractor Σl which is homeomorphic to S1. Assertion (2) and

(4) of Theorem 3.2.1 are proved.

Step 4. In the last step, we shall show that the bifurcated attractor of (2.1) contains a

singularity cycle.

By Krasnoselskii Theorem for potential operator, at least, Ll + G bifurcates from (u,

l) = (0,a) to a steady solutions (Vl, l).
Since the solutions of (2.1) are translation invariant,

Vλ(x, t) → Vλ(x + θ , t), ∀θ ∈ R,

the set

T = {Vλ(x + θ , t) |θ ∈ R }

represents S1 in H1, which implies that assertion (3) of Theorem 3.2.1 is proved.
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