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Abstract

This study investigates the existence of global solutions to a class of nonlinear
damped wave operator equations. Dividing the differential operator into two parts,
variational and non-variational structure, we obtain the existence, uniformly bounded
and regularity of solutions.
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1 Introduction
In recent years, there have been extensive studies on well-posedness of the following

nonlinear variational wave equation with general data:⎧⎨⎩
∂t

2u − c(u)∂x
(
c(u)∂xu

)
= 0 in (0,∞) × R,

u|t=0 = u0 on R,
∂tu|t=0 = u1 on R,

(1:1)

where c(·) is given smooth, bounded, and positive function with c’(·) ≥ 0 and c’(u0) >

0,u0 Î H1(R),u1(x) Î L2(R). Equation (1.1) appears naturally in the study for liquid

crystals [1-4]. In addition, Chang et al. [5], Su [6] and Kian [7] discussed globally

Lipschitz continuous solutions to a class one dimension quasilinear wave equations⎧⎨⎩
utt − (

p
(
ρ(x), ux

))
x = ρ(x)h

(
ρ(x), u, ux

)
,

u(x, 0) = u0(x),
ut(x, 0) = ω0(x),

(1:2)

where (x,t) Î R × R+, u0(x),ω0(x) Î R. Furthermore, Nishihara [8] and Hayashi [9]

obtained the global solution to one dimension semilinear damped wave equation{
utt + ut − uxx = f (u), (t, x) ∈ R+ × R+

(u, ut)(0, x) = (u0, u1)(x).
(1:3)

Ikehata [10] and Vitillaro [11] proved global existence of solutions for semilinear

damped wave equations in RN with noncompactly supported initial data or in the

energy space, in where the nonlinear term f(u) = |u|p or f(u) = 0 is too special; some

authors [12-14] discussed the regularity of invariant sets in semilinear wave equation,

but they didn’t refer to any the initial value condition of it. Unfortunately, it is diffi-

culty to classify a class wave operator equations, since the differential operator
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structure is too complex to identify whether have variational property. Our aim is to

classify a class of nonlinear damped wave operator equations in order to research them

more extensively and go beyond the results of [12].

In this article, we are interested in the existence of global solutions of the following

nonlinear damped wave operator equations:⎧⎨⎩
d2u
dt2 + kdu

dt = G(u), k > 0
u(x, 0) = ϕ(x),
ut(x, 0) = ψ(x),

(1:4)

where G : X2 × R+ → X∗
1 is a mapping, X2 ⊂ X1, X1, X2 are Banach spaces and X∗

1 is

the dual spaces of X1, R
+ = [0, ∞), u = u(x,t). If k > 0, (1.4) is called damped wave

equation. We obtain the existence, uniformly bounded and regularity of solutions by

dividing the differential operator G(u) into two parts, variational and non-variational

structure.

2 Preliminaries
First we introduce a sequence of function spaces:{

X ⊂ H2 ⊂ X2 ⊂ X1 ⊂ H,
X2 ⊂ H1 ⊂ H,

(2:1)

where H, H1, H2 are Hilbert spaces, X is a linear space, X1, X2 are Banach spaces and

all inclusions are dense embeddings. Suppose that{
L : X → X1 is one to one dense linear operator,
〈Lu, v〉H = 〈u, v〉H, ∀u, v ∈ X.

(2:2)

In addition, the operator L has an eigenvalue sequence

Lek = λkek, (k = 1, 2, ...) (2:3)

such that {ek} ⊂ X is the common orthogonal basis of H and H2. We investigate the

existence of global solutions of the Equation (1.4), so we need define its solution.

Firstly, in Banach space X, introduce

Lp((0,T),X) =

⎧⎨⎩u : (0,T) → X|
T∫

0

‖u‖pdt < ∞
⎫⎬⎭ ,

where p = (p1, p2,..., pm),pi ≥ 1(1 ≤ i ≤ m),

‖u‖p =
m∑
k=1

|u|pkk ,

where | · |k is semi-norm in X, and ‖·‖X =
∑m

i=1 |·|i. Similarily, we can define

W1,p((0,T),X) =
{
u : (0,T) → X|u, u′ ∈ Lp((0,T),X)

}
.

Let Lploc((0,∞),X) =
{
u(t) ∈ X|u ∈ Lp((0,T),X),∀T > 0

}
..

Definition 2.1. Set (�, ψ) Î X2 × H1, u ∈ W1,∞
loc ((0,∞) ,H1)

⋂
L∞
loc((0,∞),X2) is

called a globally weak solution of (1.4), if for ∀v Î X1, it has
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〈ut, v〉H + k〈u, v〉H =

t∫
0

〈Gu, v〉dt + k〈ϕ, v〉H + 〈ψ , v〉H. (2:4)

Definition 2.2. Let Y1,Y2 be Banach spaces, the solution u(t, �, ψ) of (1.4) is called

uniformly bounded in Y1 × Y2, if for any bounded domain Ω1 × Ω2⊂Y1 × Y2, there

exists a constant C which only depends the domain Ω1 × Ω2, such that

‖u‖Y1 + ‖ut‖Y2 ≤ C, ∀(ϕ,ψ) ∈ �1 × �2 and t ≥ 0.

Definition 2.3. A mapping G : X2 → X∗
1 is called weakly continuous, if for any

sequence {un} ⊂ X2, un ⇀ u0 in X2,

lim
n→∞

〈
G(un), v

〉
=
〈
G(u0), v

〉
, ∀v ∈ X1.

Lemma 2.1. [15]Let H2, H be Hilbert spaces, and H2 ⊂ H be a continuous embed-

ding. Then there exists a orthonormal basis {ek} of H, and also is one orthogonal basis

of H2.

Proof. Let I : H2 ® H be imbedded. According to assume I is a linear compact

operator, we define the mapping A : H2 ® H as follows

〈Au, v〉H2
= 〈Iu, v〉H = 〈u, v〉H, ∀v ∈ H2.

obviously, A : H2 ® H2 is linear symmetrical compact operator and positive definite.

Therefore, A has a complete eigenvalue sequence {lk} and eigenvector

sequence
{
ẽk
} ⊂ H2 such that

Aẽk = λkẽk, k = 1, 2, ...,

and
{
ẽk
}
is orthogonal basis of H2. Hence〈

ẽi, ẽj
〉
H =

〈
Aẽi, ẽj

〉
H2

= λi
〈
ẽi, ẽj

〉
H2

= 0, if i �= j.

it implies
{
ẽi
}
is also orthogonal sequence of H. Since H2 ⊂ H is dense,

{
ẽi
}
is also

orthogonal sequence of H, so {ei} =
{
ẽi/
∥∥ẽi∥∥H} is norm orthogonal basis of H. The

proof is completed.

Now, we introduce an important inequality

Lemma 2.2. [16] (Gronwall inequality) Let x(t), y(t), z(t) be real function on [a, b],

where x(t) ≥ 0,∀a ≤ t ≤ b, z(t) Î C[a, b], y(t) is differentiable on [a, b]. If the inequality

as follows is hold

z(t) ≤ y(t) +

t∫
a

x(τ )z(τ )dτ , a ≤ t ≤ b, (2:5)

then

z(t) ≤ y(a)e
∫ t
a x(s)ds +

t∫
a

e
∫ t
a x(τ)

dy
ds

ds. (2:6)
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3 Main results
Suppose that G = A + B : X2 × R+ → X∗

1. Throughout of this article, we assume that

(i) There exists a function F Î C1 : X2 ® R1 such that

〈Au, Lv〉 = 〈−DF(u), v
〉
, ∀u, v ∈ X (3:1)

(ii) Function F is coercive, if

F(u) → ∞ ⇔ ‖u‖X2
→ ∞ (3:2)

(iii) B as follows

|〈Bu, Lv〉| ≤ C1F(u) + C2 ‖v‖2H1
, ∀u, v ∈ X (3:3)

for some g ∈ L1loc(0,∞).

Theorem 3.1. Set G : X2 × R+ → X∗
1is weakly continuous, (�, ψ) Î X2 × H1, then we

obtain the results as follows:

(1) If G = A satisfies the assumption (i) and (ii), then there exists a globally weak

solution of (1.4)

u ∈ W1,∞
loc

(
(0,∞),H1

⋂
L∞
loc((0,∞),X2)

)
and u is uniformly bounded in X2 × H1;

(2) If G = A + B satisfies the assumption (i), (ii) and (iii), then there exists a globally

weak solution of (1.4)

u ∈ W1,∞
loc ((0,∞),H1)

⋂
L∞
loc((0,∞),X2);

(3) Furthermore, if G = A + B satisfies

|〈Gu, v〉| ≤ 1
2

‖v‖2H + CF(u) + g(t) (3:4)

for some g ∈ L1loc(0,∞), then u ∈ W2,2
loc

(
(0,∞),H

)
.

Proof. Let {ek} ⊂ X be the public orthogonal basis of H and H2, satisfies (2.3).

Note⎧⎪⎪⎪⎨⎪⎪⎪⎩
Xn =

{
n∑
i=1

αiei|αi ∈ R1
}
,

X̃n =

{
n∑
j=1

βj(t)ej|βj ∈ C2 [0,∞)

}
.

(3:5)
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From the assumption, we know LXn = Xn, LX̃n = X̃n, apply the Galerkin method to

make truncate in X̃n:⎧⎨⎩
d2ui
dt2 + kdui

dt =
〈
G(un), ei

〉
, 1 ≤ i ≤ n

ui(x, 0) = 〈ϕ, ei〉H,
u′

i(x, 0) = 〈ψ , ei〉H
(3:6)

there exists un =
∑n

i=1
ui(t)ei ∈ C2 ((0,∞),Xn

)
for any v ∈ X̃n satisfies

t∫
0

〈
d2un
dt2

+ k
dun
dt

, v
〉
H
dt =

t∫
0

〈Gun, v〉 dt (3:7)

for any v Î Xn, it yields that〈
dun
dt

, v
〉
H
+ k〈un, v〉H =

t∫
0

〈Gun, v〉dt + k〈ϕ, v〉H + 〈ψ , v〉H (3:8)

(1) If G = A, un ∈ X̃n substitute v = d
dt Lun into (3.7), we get

t∫
0

〈
d2un
dt2

+ k
dun
dt

,
d
dt
Lun

〉
H1

dt =

t∫
0

〈
Gun,

d
dt

Lun

〉
dt

combine condition (2.2) with (3.1), we get

t∫
0

∫
�

d2un
dt2

dun
dt

dxdt +

t∫
0

∫
�

k
dun
dt

dun
dt

dxdt +

t∫
0

DF(un)
dun
dt

dxdt = 0

t∫
0

1
2
d
dt

∥∥∥∥dundt
∥∥∥∥2
H1

dt + k

t∫
0

∥∥∥∥dundt
∥∥∥∥2
H1

dt +

t∫
0

d
dt
F(un)dt = 0

1
2

∥∥∥∥dundt
∥∥∥∥2
H1

− 1
2

‖ψn‖2H1
+ k

t∫
0

∥∥∥∥dundt
∥∥∥∥2
H1

dt + F(un) − F(ϕn) = 0

consequently, we get

F(un) +
1
2

∥∥u′
n
∥∥2
H1

+ k

t∫
0

∥∥u′
n
∥∥2
H1

dt = F(un) +
1
2

‖ψn‖2H1
. (3:9)

Assume � Î H2, combine(2.2)with(2.3), we know {en} is also the orthogonal basis of

H1, then �n ® � in H2, ψn ® ψ in H1, owing to H2 ⊂ X2 is embedded, so{
ϕn → ϕ in X2

ψn → ψ in X1
(3:10)

due to the condition (3.6), from (3.9)and (3.10) we easily know

{un} ⊂ W1,∞
loc ((0,∞),H1)

⋂
L∞
loc((0,∞),X2) is bounded.
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consequently, assume that

un ⇀ u0 in W1,∞
loc ((0,∞),H1)

⋂
L∞
loc((0,∞),X2) a.e. t > 0

i.e. un ⇀ u0 in X2 a.e. t > 0, and G is weakly continuous, so

lim
n→∞ 〈Gun, v〉 = 〈Gu0, v〉 .

By (3.8), we have

lim
n→∞

[〈
dun
dt

〉
H
+ k〈un, v〉H

]
= lim

n→∞

t∫
0

〈
Gun,v

〉
dt + k〈ϕ, v〉H + 〈ψ , v〉H

〈
du0
dt

, v
〉
H
+ k〈u0, v〉H =

t∫
0

〈Gu0, v〉 dt + k〈ϕ, v〉H + 〈ψ , v〉H

it indicates for any v ∈ ⋃∞
n=1 Xn ⊂ X2, it holds. Hence, for any v Î X2, we have〈

du0
dt

, v
〉
H
+ k〈u0, v〉H =

t∫
0

〈Gu0, v〉 dt + k〈ϕ, v〉H + 〈ψ , v〉H. (3:11)

Consequently, u0 is a globally weak solution of (1.4).

Furthermore, by (3.9) and (3.10), for any R > 0, there exists a constant C such that if

‖ϕ‖X2
+ ‖ψ‖H1

≤ R (3:12)

then the weak solution u(t, �, ψ) of (1.4) satisfies∥∥u(t,ϕ,ψ)
∥∥
X2

+
∥∥ut(t,ϕ,ψ)

∥∥
H1

≤ C. ∀t ≥ 0 (3:13)

Assume (�,ψ) Î X2 × H1 satisfies (3.12), by H2 ⊂ X2 is dense. May fix �n Î H2 such

that

‖ϕn‖X2
+ ‖ψ‖H1

≤ R, lim
n→∞ ϕn = ϕ in X2

by (3.13), the solution {u(t, �n, ψ)} of (1.4) is bounded in

W1,∞
loc

(
(0,∞),H1

)⋂
L∞
loc((0,∞),X2) a.e. t > 0.

Therefore, assume u(t, �n, ψ) ⇀ u in W1,∞
loc

(
(0,∞),H1

)⋂
L∞
loc((0,∞),X2) then u(t)

is a weak solution of (1.4), it satisfies uniformly bounded of (3.13). So the conclusion

(1) is proved.

(2) If G = A + B, un ∈ X̃n, substitute v = d
dt Lun into (3.7), we get

t∫
0

[〈
d2un
dt2

,
d
dt
Lun

〉
H1

]
+ k

〈
dun
dt

,
d
dt
Lun1

〉
H1

dt

=

t∫
0

[〈
Aun,

dun
dt

〉
+
〈
Bun,

dun
dt

〉]
dt
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combine the condition (2.2) and (3.1), we have

t∫
0

∫
�

d2un
dt2

dun
dt

dxdt + k

t∫
0

∫
�

dun
dt2

dun
dt

dxdt +

t∫
0

〈
DF(un)

dun
dt

〉
dt

=

t∫
0

〈
Bun,

dun
dt

〉
dt

t∫
0

1
2
d

dt

∥∥∥∥dundt
∥∥∥∥2
H1

dt + k

t∫
0

∥∥∥∥dundt
∥∥∥∥2
H1

dt +

t∫
0

d

dt
F(un)dt

=

t∫
0

〈
Bun,

dun
dt

〉
dt

1
2

∥∥u′
n
∥∥
H2

1
− 1

2
‖ψn‖2H1

+ k

t∫
0

∥∥u′
n
∥∥2
H1

dt + F(un) + F(ϕn)

=

t∫
0

〈
Bun,

dun
dt

〉
dt

consequently, we have

F(un) +
1
2

∥∥u′
n
∥∥2
H1

+ k

t∫
0

∥∥u′
n
∥∥2
H1

dt =

t∫
0

〈
Bun,

dun
dt

〉
dt + F(ϕn) +

1
2

‖ψn‖2H1
(3:14)

by the condition (3.3),(3.14)implies

F(un) +
1
2

∥∥u′
n
∥∥2
H1

≤ C

t∫
0

[
F(un) +

1
2

∥∥u′
n
∥∥2
H1

]
dt + f (t) (3:15)

where f (t) =
∫ t
0 g(τ )dt +

1
2

‖ψ‖2H1
+ supnF(ϕn)..

by Gronwall inequality [Lemma(2.2)], from (3.15) we easily know:

F(un) +
1
2

∥∥u′
n
∥∥2
H1

≤ f (0)eC
t
+

t∫
0

f ′(τ )eC(t−τ)dτ (3:16)

it implies that, for any 0 <T < ∞

{un} ⊂ W1,∞ (
(0,T),X2

)⋂
L∞ ((0,T) ,X2) is bounded.

now, use the same way as (1), we can obtain the result (2).

(3) If the condition (3.4) is hold, un ∈ X̃n, substitute v = d2u
dt2

into (3.7), we can get

t∫
0

[〈
d2un
dt2

,
d2un
dt2

〉
H
+ k

〈
dun
dt

,
d2un
dt2

〉
H

]
dt =

t∫
0

〈
Gun,

d2un
dt2

〉
dt
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then

t∫
0

〈
d2un
dt2

,
d2un
dt2

〉
H
dt +

k
2

t∫
0

d
dt

∥∥u′
n(t)

∥∥2
H dt

≤
t∫

0

[
1
2

∥∥u′′
n(t)

∥∥2
H + CF(un) + g(t)

]
dt

t∫
0

〈
d2un
dt2

,
d2un
dt2

〉
H
dt +

k

2

∥∥u′
n
∥∥2
H

≤ k
2

‖ψn‖2H +

t∫
0

[
1
2

∥∥∥∥d2undt2

∥∥∥∥2
H
+ CF(un) + g(τ )

]
dτ

by (3.16), it implies that∫
0

t

∥∥∥∥d2undt2

∥∥∥∥2
H
dτ ≤ C, (C > 0)

consequently, for any 0 <T < ∞

{un} ⊂ W2,2((0,T),H) is bounded.

it implies that u Î W2,2((0,T), H), the main theorem (3.1) has been proved.
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