Existence of solutions for a class of nonlinear boundary value problems on half-line

Türker Ertem ${ }^{*}$ and Ağacık Zafer

* Correspondence:
turkerertem@gmail.com
Department of Mathematics, Middle East Technical University, 06800 Ankara, Turkey

Abstract

Consider the infinite interval nonlinear boundary value problem

$$
\begin{aligned}
& \left(p(t) x^{\prime}\right)^{\prime}+q(t) x=f(t, x), t \geq t_{0} \geq 0, \\
& x\left(t_{0}\right)=x_{0}, \\
& x(t)=a v(t)+b u(t)+o\left(r_{i}(t)\right), \quad t \rightarrow \infty,
\end{aligned}
$$

where u and v are principal and nonprincipal solutions of $\left(p(t) x^{\prime}\right)^{\prime}+q(t) x=0, r_{1}(t)=0$ $\left(u(t)(v(t))^{\mu}\right)$ and $r_{2}(t)=o\left(v(t)(u(t))^{\mu}\right)^{\text {f }}$ for some $\mu \in(0,1)$, and a and b are arbitrary but fixed real numbers.
Sufficient conditions are given for the existence of a unique solution of the above problem for $i=1,2$. An example is given to illustrate one of the main results.
Mathematics Subject Classication 2011: 34D05.
Keywords: Boundary value problem, singular, half-line, principal, nonprincipal

1. Introduction

Boundary value problems on half-line occur in various applications such as in the study of the unsteady flow of a gas through semi-infinite porous medium, in analyzing the heat transfer in radial flow between circular disks, in the study of plasma physics, in an analysis of the mass transfer on a rotating disk in a non-Newtonian fluid, etc. More examples and a collection of works on the existence of solutions of boundary value problems on half-line for differential, difference and integral equations may be found in the monographs [1,2] For some works and various techniques dealing with such boundary value problems (we may refer to [3-6] and the references cited therein).
In this article by employing principal and nonprincipal solutions we introduce a new approach to study nonlinear boundary problems on half-line of the form

$$
\begin{align*}
& \left(p(t) x^{\prime}\right)^{\prime}+q(t) x=f(t, x), \quad t \geq t_{0}, \tag{1.1}\\
& x\left(t_{0}\right)=x_{0}, \tag{1.2}\\
& x(t)=a v(t)+b u(t)+o(r(t)), \quad t \rightarrow \infty, \tag{1.3}
\end{align*}
$$

where a and b are any given real numbers, u and v are principal and nonprincipal solutions of

$$
\begin{equation*}
\left(p(t) x^{\prime}\right)^{\prime}+q(t) x=0, \quad t \geq 0 \tag{1.4}
\end{equation*}
$$

and $p \in C([0, \infty),(0, \infty)), q \in C([0, \infty), \mathbb{R})$ and $f \in C([0, \infty) \times \mathbb{R}, \mathbb{R})$.
We will show that the problem (1.1)-(1.3) has a unique solution in the case when

$$
\begin{equation*}
r(t)=o\left(u(t)(v(t))^{\mu}\right) \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
r(t)=o\left(v(t)(u(t))^{\mu}\right) \tag{1.6}
\end{equation*}
$$

where $\mu \in(0,1)$ is arbitrary but fixed real numbers.
The nonlinear boundary value problem (1.1)-(1.3) is also closely related to asymptotic integration of second order differential equations. Indeed, there are several important works in the literature, see [7-16], dealing with mostly the asymptotic integration of solutions of second order nonlinear equations of the form

$$
x^{\prime \prime}=f(t, x)
$$

The authors are usually interested in finding conditions on the function $f(t, x)$ which guarantee the existence of a solution asymptotic to linear function

$$
\begin{equation*}
x(t)=a t+b, \quad t \rightarrow \infty . \tag{1.7}
\end{equation*}
$$

We should point out that $u(t)=1$ and $v(t)=t$ are principal and nonprincipal solutions of the corresponding unperturbed equation

$$
x^{\prime \prime}=0,
$$

and the function $x(t)$ in (1.7) can be written as

$$
x=a v(t)+b u(t) .
$$

Note that $v(t) \rightarrow \infty$ as $t \rightarrow \infty$ but $u(t)$ is bounded in this special case. It turns out such information is crucial in investigating the general case. Our results will be applicable whether or not $u(t) \rightarrow \infty(v(t) \rightarrow \infty)$ as $t \rightarrow \infty$.

2. Main results

It is well-known that $[17,18]$ if the second order linear Equation (1.4) has a positive solution or nonoscillatory at ∞, then there exist two linearly independent solutions $u(t)$ and $v(t)$, called principal and nonprincipal solutions of the equation. The principal solution u is unique up to a constant multiple. Moreover, the following useful properties are satisfied:

$$
\lim _{t \rightarrow \infty} \frac{u(t)}{v(t)}=0, \quad \int_{t_{*}}^{\infty} \frac{1}{p(t) u^{2}(t)} d t=\infty, \quad \int_{t_{*}}^{\infty} \frac{1}{p(t) v^{2}(t)} d t<\infty
$$

where $t_{m} \geq 0$ is a sufficiently large real number.
Let v be a principal solution of (1.4). Without loss of generality we may assume that $v(t)>0$ if $t \geq t_{1}$ for some $t_{1} \geq 0$. It is easy to see that

$$
\begin{equation*}
v(t)=u(t) \int_{t_{1}}^{t} \frac{1}{p(s) u^{2}(s)} d s \tag{2.1}
\end{equation*}
$$

is a nonprincipal solution of (1.4), which is strictly positive for $t>t_{1}$.

Theorem 2.1. Let $t_{0}>t_{1}$. Assume that the function f satisfies

$$
\begin{equation*}
|f(t, x)| \leq h_{1}(t) g(|x|)+h_{2}(t), \quad t \geq t_{0} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f\left(t, x_{1}\right)-f\left(t, x_{2}\right)\right| \leq \frac{k(t)}{v(t)}\left|x_{1}-x_{2}\right|, \quad t \geq t_{0} \tag{2.3}
\end{equation*}
$$

where $g \in C([0, \infty),[0, \infty))$ is bounded; $h_{1}, h_{2}, k \in C\left(\left[t_{0}, \infty\right),[0, \infty)\right)$. Suppose further that

$$
\begin{equation*}
\int_{t_{0}}^{\infty} u(s) k(s) d s \leq \mu \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{p(t) u^{2}(t)} \int_{t}^{\infty} u(s) h_{i}(s) d s \leq \beta(t), \quad t \geq t_{0}, \quad i=1,2 \tag{2.5}
\end{equation*}
$$

for some $\beta \in C\left(\left[t_{0}, \infty\right),[0, \infty)\right)$ such that

$$
\begin{equation*}
\int_{t_{0}}^{t} \beta(s) d s=o\left((v(t))^{\mu}\right), \quad t \rightarrow \infty \tag{2.6}
\end{equation*}
$$

If either

$$
\begin{equation*}
v(t) \rightarrow \infty, \quad t \rightarrow \infty \tag{2.7}
\end{equation*}
$$

or else

$$
\begin{equation*}
b=\frac{x_{0}}{u\left(t_{0}\right)}-a \int_{t_{1}}^{t_{0}} \frac{1}{p(s) u^{2}(s)} d s \tag{2.8}
\end{equation*}
$$

then there is a unique solution $x(t)$ of (1.1)-(1.3), where r is given by (1.5).
Proof. Denote by M the supremum of the function g over $[0, \infty)$. Let X be a space of functions defined by

$$
X=\left\{x \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right)|\quad| x(t) \mid \leq l_{1} v(t)+l_{2} u(t), \quad \forall t \geq t_{0}\right\}
$$

where

$$
l_{1}=(M+1) p\left(t_{0}\right) u^{2}\left(t_{0}\right) \beta\left(t_{0}\right)+|a|
$$

and

$$
l_{2}=\frac{\left|x_{0}\right|}{u\left(t_{0}\right)}+|a| \int_{t_{1}}^{t_{0}} \frac{1}{p(s) u^{2}(s)} d s
$$

Note that X is a complete metric space with the metric d defined by

$$
d\left(x_{1}, x_{2}\right)=\sup _{t \geq t_{0}} \frac{1}{v(t)}\left|x_{1}(t)-x_{2}(t)\right|, \quad x_{1}, x_{2} \in X .
$$

Define an operator F on X by

$$
\begin{aligned}
(F x)(t)= & -u(t) \int_{t_{0}}^{t} \frac{1}{p(s) u^{2}(s)} \int_{s}^{\infty} u(\tau) f(\tau, x(\tau)) d \tau d s+a v(t) \\
& +\left[\frac{x_{0}}{u\left(t_{0}\right)}-a \int_{t_{1}}^{t_{0}} \frac{1}{p(s) u^{2}(s)} d s\right] u(t)
\end{aligned}
$$

In view of conditions (2.2) and (2.5) we see that F is well defined. Next we show that $F X \subset X$. Indeed, let $x \in X$, then

$$
\begin{aligned}
|(F x)(t)| & \leq u(t) \int_{t_{0}}^{t} \frac{1}{p(s) u^{2}(s)} \int_{s}^{\infty} u(\tau)|f(\tau, x(\tau))| d \tau d s+|a| v(t)+l_{2} u(t) \\
& \leq u(t) \int_{t_{0}}^{t} \frac{1}{p(s) u^{2}(s)} \int_{t_{0}}^{\infty} u(\tau)|f(\tau, x(\tau))| d \tau d s+|a| v(t)+l_{2} u(t) \\
& \leq u(t) \int_{t_{0}}^{t} \frac{1}{p(s) u^{2}(s)} \int_{t_{0}}^{\infty} u(\tau)\left(h_{1}(\tau) g(|x(\tau)|)+h_{2}(\tau)\right) d \tau d s+|a| v(t)+l_{2} u(t) \\
& \leq u(t) \int_{t_{0}}^{t} \frac{1}{p(s) u^{2}(s)} \int_{t_{0}}^{\infty} u(\tau)\left(M h_{1}(\tau)+h_{2}(\tau)\right) d \tau d s+|a| v(t)+l_{2} u(t) \\
& \leq(M+1) p\left(t_{0}\right) u^{2}\left(t_{0}\right) \beta\left(t_{0}\right) u(t) \int_{t_{0}}^{t} \frac{1}{p(s) u^{2}(s)} d s+|a| v(t)+l_{2} u(t) \\
& \leq l_{1} v(t)+l_{2} u(t),
\end{aligned}
$$

which means that $F x \in X$.
Using (2.1), (2.3) and (2.4) we also see that

$$
\begin{aligned}
\left|\left(F x_{1}\right)(t)-\left(F x_{2}\right)(t)\right| & \leq u(t) \int_{t_{0}}^{t} \frac{1}{p(s) u^{2}(s)} \int_{s}^{\infty} u(\tau)\left|f\left(\tau, x_{1}(\tau)\right)-f\left(\tau, x_{2}(\tau)\right)\right| d \tau d s \\
& \leq u(t) \int_{t_{0}}^{t} \frac{1}{p(s) u^{2}(s)} \int_{s}^{\infty} u(\tau) \frac{k(\tau)}{v(\tau)}\left|x_{1}(\tau)-x_{2}(\tau)\right| d \tau d s \\
& \leq d\left(x_{1}, x_{2}\right) u(t) \int_{t_{0}}^{t} \frac{1}{p(s) u^{2}(s)} \int_{s}^{\infty} u(\tau) k(\tau) d \tau d s \\
& \leq d\left(x_{1}, x_{2}\right) u(t) \int_{t_{0}}^{t} \frac{1}{p(s) u^{2}(s)} \int_{t_{0}}^{\infty} u(\tau) k(\tau) d \tau d s \\
& \leq d\left(x_{1}, x_{2}\right) v(t) \int_{t_{0}}^{\infty} u(\tau) k(\tau) d \tau \\
& \leq \mu d\left(x_{1}, x_{2}\right) v(t)
\end{aligned}
$$

where $x_{1}, x_{2} \in X$ arbitrary. This implies that F is a contracting mapping.

Thus according to Banach contraction principle F has a unique fixed point x. It is not difficult to see that the fixed point solves (1.1) and (1.2). It remains to show that x (t) satisfies (1.3) as well. It is not difficult to show that

$$
\begin{aligned}
|x(t)-a v(t)-b u(t)| & \leq u(t) \int_{t_{0}}^{t} \frac{1}{p(s) u^{2}(s)} \int_{s}^{\infty} u(\tau)|f(\tau, x(\tau))| d \tau d s+|c| u(t) \\
& \leq u(t) \int_{t_{0}}^{t} \frac{1}{p(s) u^{2}(s)} \int_{s}^{\infty} u(\tau)\left(M h_{1}(\tau)+h_{2}(\tau)\right) d \tau d s+|c| u(t) \\
& \leq(M+1) u(t) \int_{t_{0}}^{t} \beta(s) d s+|c| u(t)
\end{aligned}
$$

where

$$
c=\frac{x_{0}}{u\left(t_{0}\right)}-a \int_{t_{1}}^{t_{0}} \frac{1}{p(s) u^{2}(s)} d s-b
$$

If (2.7) is satisfied, then in view (2.6) and the above inequality we easily obtain (1.3). In case (2.8) holds, then $c=0$ and hence we still have (1.3).

From Theorem 2.1 we deduce the following Corollary.
Corollary 2.2. Assume that the function f satisfies (2.2) and

$$
\left|f\left(t, x_{1}\right)-f\left(t, x_{2}\right)\right| \leq \frac{k(t)}{t}\left|x_{1}-x_{2}\right|, \quad t \geq t_{0}
$$

where $k \in C\left(\left[t_{0}, \infty\right),[0, \infty)\right)$. Suppose further that

$$
\int_{t_{0}}^{\infty} k(s) d s \leq \mu ; \quad \int_{t}^{\infty} h_{i}(s) d s \leq \beta(t), \quad t \geq t_{0}, \quad i=1,2
$$

for some $\mu \in(0,1)$ and $\beta \in C\left(\left[t_{0}, \infty\right),[0, \infty)\right)$, where

$$
\int_{t_{0}}^{t} \beta(s) d s=o\left(t^{\mu}\right), \quad t \rightarrow \infty
$$

Then for each $a, b \in \mathbb{R}$ the boundary value problem

$$
\begin{aligned}
& x^{\prime \prime}=f(t, x), \quad t \geq t_{0}, \\
& x\left(t_{0}\right)=x_{0}, \\
& x(t)=a t+b+o\left(t^{\mu}\right), \quad t \rightarrow \infty
\end{aligned}
$$

has a unique solution.
Let v be a nonprincipal solution of (1.4). Without loss of generality we may assume that $v(t)>0$, if $t \geq t_{2}$ for some $t_{2} \geq 0$. It is easy to see that [17,18]

$$
\begin{equation*}
u(t)=v(t) \int_{t}^{\infty} \frac{1}{p(s) v^{2}(s)} d s \tag{2.9}
\end{equation*}
$$

is a principal solution of (1.4) which is strictly positive. Take t_{2} large enough so that

$$
\int_{t}^{\infty} \frac{1}{p(s) v^{2}(s)} d s \leq 1
$$

Then from (2.9), we have $v(t) \geq u(t)$ for $t \geq t_{2}$, which is needed in the proof of the next theorem.

Theorem 2.3. Let $t_{0} \geq t_{2}$. Assume that the function f satisfies (2.2) and (2.3). Suppose further that

$$
\begin{equation*}
\int_{t_{0}}^{\infty} v(s) k(s) d s \leq \mu \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{p(t) v^{2}(t)} \int_{t}^{\infty} v(s) h_{i}(s) d s \leq \beta(t), \quad t \geq t_{0}, \quad i=1,2 \tag{2.11}
\end{equation*}
$$

for some $\beta \in C\left(\left[t_{0}, \infty\right),[0, \infty)\right)$ such that

$$
\begin{equation*}
\int_{t_{0}}^{t} \beta(s) d s=o\left((u(t))^{\mu}\right), \quad t \rightarrow \infty \tag{2.12}
\end{equation*}
$$

If either

$$
\begin{equation*}
u(t) \rightarrow \infty, \quad t \rightarrow \infty \tag{2.13}
\end{equation*}
$$

or else

$$
\begin{equation*}
a=\frac{x_{0}}{v\left(t_{0}\right)}-b \int_{t_{0}}^{\infty} \frac{1}{p(s) v^{2}(s)} d s \tag{2.14}
\end{equation*}
$$

then there is a unique solution $x(t)$ of (1.1) - (1.3), where r is given by (1.6).
Proof. Let X be a space of functions defined by

$$
X=\left\{x \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right)|\quad| x(t) \mid \leq l_{1} v(t)+l_{2} u(t), \quad \forall t \geq t_{0}\right\}
$$

where

$$
l_{1}=(M+1) p\left(t_{0}\right) u\left(t_{0}\right) v\left(t_{0}\right) \beta\left(t_{0}\right)+\frac{\left|x_{0}\right|}{v\left(t_{0}\right)}+|b| \int_{t_{0}}^{\infty} \frac{1}{p(s) v^{2}(s)} d s \text { and } l_{2}=|b|
$$

Again, X is a complete metric space with the metric d defined in the proof of the previous theorem.

We define an operator F on X by

$$
\begin{aligned}
(F x)(t)= & -v(t) \int_{t_{0}}^{t} \frac{1}{p(s) v^{2}(s)} \int_{s}^{\infty} v(\tau) f(\tau, x(\tau)) d \tau d s \\
& +\left[\frac{x_{0}}{v\left(t_{0}\right)}-b \int_{t_{0}}^{\infty} \frac{1}{p(s) v^{2}(s)} d s\right] v(t)+b u(t)
\end{aligned}
$$

The remainder of the proof proceeds similarly as in that of Theorem 2.1 by using (2.2), (2.3), (2.9)-(2.14).

Corollary 2.4. Assume that the function f satisfies (2.2) and (2.3). Suppose further that

$$
\int_{t_{0}}^{\infty} s k(s) d s \leq \mu ; \quad \frac{1}{t^{2}} \int_{t}^{\infty} s h_{i}(s) d s \leq \beta(t), \quad t \geq t_{0}, \quad i=1,2
$$

for some $\mu \in(0,1)$ and $\beta \in C\left(\left[t_{0}, \infty\right),[0, \infty)\right)$, where

$$
\int_{1}^{t} \beta(s) d s=o(1), \quad t \rightarrow \infty
$$

If for any given $a, b \in \mathbb{R}$ the condition (2.14) holds then the boundary value problem

$$
\begin{aligned}
& x^{\prime \prime}=f(t, x), \quad t \geq t_{0}, \\
& x\left(t_{0}\right)=x_{0}, \\
& x(t)=a t+b+o(t), \quad t \rightarrow \infty
\end{aligned}
$$

has a unique solution.

3. An example

Consider the boundary value problem

$$
\begin{align*}
& \left(t x^{\prime}\right)^{\prime}=\frac{1}{t^{2}} \arctan x+t^{\nu}, \quad t \geq t_{0}, \quad v<-2, \tag{3.1}\\
& x\left(t_{0}\right)=x_{0}, \tag{3.2}\\
& x(t)=a \ln t+b+o\left((\ln t)^{\mu}\right), \quad t \rightarrow \infty . \tag{3.3}
\end{align*}
$$

where $t_{0}>t_{1}=1$ and $\mu \in(0,1)$ are chosen to satisfy

$$
\begin{equation*}
\frac{1+\ln t_{0}}{t_{0}} \leq \mu \tag{3.4}
\end{equation*}
$$

Note that since

$$
\lim _{t_{0} \rightarrow \infty} \frac{1+\ln t_{0}}{t_{0}}=0
$$

for any given $\mu \in(0,1)$ there is a t_{0} such that (3.4) holds.
Comparing with the boundary value problem (1.1)-(1.3) we see that $p(t)=t, q(t)=0$, and $f(t, x)=\left(1 / t^{2}\right) \arctan x+t^{v}$. The corresponding linear equation becomes

$$
\left(t x^{\prime}\right)^{\prime}=0, \quad t \geq t_{0}
$$

Clearly, we may take

$$
u(t)=1 \text { and } v(t)=\ln t .
$$

Let

$$
h_{1}(t)=\frac{1}{t^{2}}, \quad h_{2}(t)=t^{\nu}, \quad g(x)=\arctan x, \quad k(t)=\frac{\ln t}{t^{2}}, \quad \beta(t)=\frac{1}{t^{2}}
$$

then it is easy to see that

$$
\begin{aligned}
& |f(t, x)| \leq \frac{1}{t^{2}} \arctan |x|+t^{\nu}=h_{1}(t) g(|x|)+h_{2}(t) \\
& \left|f\left(t, x_{1}\right)-f\left(t, x_{2}\right)\right| \leq \frac{1}{t^{2}}\left|x_{1}-x_{2}\right|=\frac{k(t)}{v(t)}\left|x_{1}-x_{2}\right| \\
& \int_{t_{0}}^{\infty} k(s) d s=\int_{t_{0}}^{\infty} \frac{\ln s}{s^{2}} d s=\frac{1+\ln t_{0}}{t_{0}} \leq \mu \text { by }(3.4) \\
& \frac{1}{t} \int_{t}^{\infty} h_{1}(s) d s \leq \frac{1}{t} \int_{t}^{\infty} \frac{1}{s^{2}} d s=\frac{1}{t^{2}}=\beta(t), \quad t \geq t_{0} \\
& \frac{1}{t} \int_{t}^{\infty} h_{2}(s) d s=-\frac{t^{\nu}}{v+1} \leq \beta(t), \quad t \geq t_{0}, \\
& \int_{t_{0}}^{t} \beta(s) d s=\int_{t_{0}}^{t} \frac{1}{s^{2}} d s=\frac{1}{t_{0}}-\frac{1}{t}=o\left((\ln t)^{\mu}\right), \quad t \rightarrow \infty, \quad \mu \in(0,1),
\end{aligned}
$$

and

$$
v(t)=\ln t \rightarrow \infty, \quad t \rightarrow \infty,
$$

i.e., all the conditions of Theorem 2.1 are satisfied. Therefore we may conclude that if (3.4) holds, then the boundary value problem (3.1)-(3.3) has a unique solution.

Furthermore, we may also deduce that there exist solutions $x_{1}(t)$ and $x_{2}(t)$ such that

$$
x_{1}(t)=1+o\left((\ln t)^{\mu}\right), \quad t \rightarrow \infty
$$

and

$$
x_{2}(t)=\ln t+o\left((\ln t)^{\mu}\right), \quad t \rightarrow \infty .
$$

by taking $(a, b)=(0,1)$ and $(a, b)=(1,0)$, respectively.

Acknowledgements

This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under project number 108 T 688.

Authors' contributions

Both authors contributed to this work equally, read and approved the final version of the manuscript.

Competing interests

The authors declare that they have no competing interests
Received: 28 January 2012 Accepted: 16 April 2012 Published: 16 April 2012

References

1. Agarwal, RP, O'Regan, D: Infinite Interval Problems for Differential, Difference and Integral Equations. Kluwer Academic Publisher, Netherlands (2001)
2. O'Regan, D: Theory of Singular Boundary Value Problems. World Scientific, River Edge, New Jersey, USA (1994)
3. Agarwal, RP, O'Regan, D: Boundary value problems on the half line in the theory of colloids. Math Probl Eng. 8(2):143-150 (2002). doi:10.1080/10241230212905
4. Chen, SZ, Zhang, Y: Singular boundary value problems on a half-line. J Math Anal Appl. 195, 449-468 (1995). doi:10.1006/jmaa.1995.1367
5. Rachůnková, I, Tomeček, J: Superlinear singular problems on the half line. Boundary Value Probl 2010, 18 (2010). pages (Article ID 429813
6. Li, J, Nieto, JJ: Existence of positive solutions for multipoint boundary value problem on the half-line with impulses. Boundary Value Probl 2009, 12 (2009). pages (Article ID 834158
7. Caligo, D: Comportamento asintotico degli integrali dell'equazione $y^{\prime \prime}+a(t) y=0$, nell'ipotesi $\lim _{t \rightarrow \infty} a(t)=0$. Boll Un Mat Ital. 3, 286-295 (1941)
8. Boas, ML, Boas, RP Jr, Levinson, N: The growth of solutions of a differential equation. Duke Math J. 9, 847-853 (1942). doi:10.1215/S0012-7094-42-00959-1
9. Haupt, O: Über das asymptotische verhalten der lösungen gewisser linearer gewöhnlicher differentialgleichungen. Math Z. 48, 289-292 (1942). doi:10.1007/BF01180019
10. Bihari, I: Researches of the boundedness and stability of the solutions of non-linear differential equations. Acta Math Acad Sci Hung. 8, 261-278 (1957)
11. Hale, JK, Onuchic, N: On the asymptotic behavior of solutions of a class of differential equations. Contrib Diff Equ. 2, 61-75 (1963)
12. Lipovan, O: On the asymptotic behavior of the solutions to a class of second order nonlinear differential equations. Glasgow Math J. 45, 179-187 (2003). doi:10.1017/S0017089502001143
13. Mustafa, OG, Rogovchenko, Y : Asymptotic integration of a class of nonlinear differential equations. Appl Math Lett. 19, 849-853 (2006). doi:10.1016/j.aml.2005.10.013
14. Agarwal, RP, Djebali, S, Moussaoui, T, Mustafa, OG: On the asymptotic integration of nonlinear differential equations. J Comput Appl Math. 202, 352-376 (2007). doi:10.1016/j.cam.2005.11.038
15. Eastham, MSP: The Asymptotic Solution of Linear Differential Systems. Applications of the Levinson Theorem. Clarendon Press, Oxford (1989)
16. Kiguradze, IT, Chanturia, TA: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Kluwer Academic Publishers, Dordrecht (1993)
17. Hartman, P: Ordinary Differential Equations. Wiley, New York (1964)
18. Kelley, W, Peterson, A: The Theory of Differential Equations: Classical and Qualitative. Pearson Education, Inc., Upper Saddle River, New Jersey (2004)
[^0]
Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

[^0]: doi:10.1186/1687-2770-2012-43
 Cite this article as: Ertem and Zafer: Existence of solutions for a class of nonlinear boundary value problems on half-line. Boundary Value Problems 2012 2012:43

