Blow up problems for a degenerate parabolic equation with nonlocal source and nonlocal nonlinear boundary condition

Guangsheng Zhong ${ }^{1,2^{*}}$ and Lixin Tian ${ }^{1}$

[^0]
Abstract

This article deals with the blow-up problems of the positive solutions to a nonlinear parabolic equation with nonlocal source and nonlocal boundary condition. The blow-up and global existence conditions are obtained. For some special case, we also give out the blow-up rate estimate.

Keywords: parabolic equation, nonlocal source, nonlocal nonlinear boundary condition, existence, blow-up

1. Introduction

In this article, we consider the positive solution of the following degenerate parabolic equation

$$
\begin{array}{ll}
u_{t}=f(u)\left(\Delta u+a \int_{\Omega} u(x, t) d x\right), & x \in \Omega, \quad t>0, \\
u(x, t)=\int_{\Omega} g(x, y) u^{l}(y, t) d y, \quad x \in \partial \Omega, \quad t>0, \tag{1.1}\\
u(x, 0)=u_{0}(x), \quad x \in \Omega, &
\end{array}
$$

where $a, l>0$ and Ω is a bounded domain in $R^{N}(N \geq 1)$ with smooth boundary $\partial \Omega$. There have been many articles dealing with properties of solutions to degenerate parabolic equations with homogeneous Dirichlet boundary condition (see [1-4] and references therein). For example, Deng et al. [5] studied the parabolic equation with nonlocal source

$$
\begin{equation*}
u_{t}=f(u)\left(\Delta u+a \int_{\Omega} u d x\right) \tag{1.2}
\end{equation*}
$$

which is subjected to homogeneous Dirichlet boundary condition. It was proved that there exists no global positive solution if and only if $\int^{\infty} 1 /(s f(s)) d s<\infty$ and $\int_{\Omega} \varphi(x) d x>1 / a$, where $\phi(x)$ is the unique positive solution of the linear elliptic problem

$$
\begin{equation*}
-\Delta \varphi=1, x \in \Omega ; \varphi(x)=0, x \in \partial \Omega \tag{1.3}
\end{equation*}
$$

[^1]However, there are some important phenomena formulated into parabolic equations which are coupled with nonlocal boundary conditions in mathematical modeling such as thermoelasticity theory (see [6,7]). Friedman [8] studied the problem of nonlocal boundary conditions for linear parabolic equations of the type

$$
\begin{array}{ll}
u_{t}-A u=c(x) u, & x \in \Omega, t>0, \\
u(x, t)=\int_{\Omega} K(x, y) u(y, t) d y, & x \in \partial \Omega, t>0, \tag{1.4}\\
u(x, 0)=u_{0}(x), & x \in \Omega
\end{array}
$$

with uniformly elliptic operator $A=\sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial}{\partial x_{i}}+c(x)$ and $c(x) \leq 0$. It was proved that the unique solution of (1.4) tends to 0 monotonically and exponentially as $t \rightarrow+\infty$ provided that $\int_{\Omega}|\varphi(x, y)| d y \leq \rho<1, x \in \partial \Omega$.
Parabolic equations with both nonlocal sources and nonlocal boundary conditions have been studied as well (see [9-12]). Lin and Liu [13] considered the problem of the form

$$
\begin{array}{lc}
u_{t}=\Delta u+\int_{\Omega} g(u) d x, & x \in \Omega, t>0, \\
u(x, t)=\int_{\Omega} K(x, y) u(y, t) d y, & x \in \partial \Omega, t>0, \tag{1.5}\\
u(x, 0)=u_{0}(x), & x \in \Omega .
\end{array}
$$

They established local existence, global existence, and nonexistence of solutions, and discussed the blow-up properties of solutions.

Chen and Liu [14] considered the following nonlinear parabolic equation with a localized reaction source and a weighted nonlocal boundary condition

$$
\begin{array}{lc}
u_{t}=f(u)\left(\Delta u+a u\left(x_{0}, t\right)\right), & x \in \Omega, t>0, \\
u(x, t)=\int_{\Omega} g(x, y) u(y, t) d y, & x \in \partial \Omega, t>0, \tag{1.6}\\
u(x, 0)=u_{0}(x), & x \in \Omega .
\end{array}
$$

Under certain conditions, they obtained blow-up criteria. Furthermore, they derived the uniform blow-up estimate for some special $f(u)$.
In recent few years, reaction-diffusion problems coupled with nonlocal nonlinear boundary conditions have also been studied. Gladkov and Kim [15] considered the following problem for a single semilinear heat equation

$$
\begin{array}{cc}
u_{t}=\Delta u+c(x, t) u^{p}, & x \in \Omega, t>0, \\
u(x, t)=\int_{\Omega} \varphi(x, y, t) u^{l}(y, t) d y, & x \in \partial \Omega, t>0, \tag{1.7}\\
u(x, 0)=u_{0}(x), & x \in \Omega,
\end{array}
$$

where $p, l>0$. They obtained some criteria for the existence of global solution as well as for the solution to blow-up in finite time.

For other works on parabolic equations and systems with nonlocal nonlinear boundary conditions, we refer readers to [16-20] and the references therein.
Motivated by those of works above, we will study the problem (1.1) and want to understand how the function $f(u)$ and the coefficient a, the weight function $g(x, y)$ and
the nonlinear term $u^{l}(y, t)$ in the boundary condition play substantial roles in determining blow-up or not of solutions.

In this article, we give the following hypotheses:
(H1) $u_{0}(x) \in C^{2+\alpha}(\Omega) \cap C(\bar{\Omega})$ for $\alpha \in(0,1), u_{0}(x)>0$ in $\Omega, u_{0}(x)=\int_{\Omega} g(x, y) u_{0}^{l}(y) d y$ on $\partial \Omega$.
(H2) $g(x, y) \boxtimes 0$ is a nonnegative and continuous function defined for $x \in \partial \Omega, y \in \bar{\Omega}$.
(H3) $f \in C([0, \infty)) \cap C^{1}(0, \infty), f>0, f \geq 0$ in $(0, \infty)$.
The main results of this article are stated as follows.
Theorem 1.1. Assume that $0<l \leq 1$ and $\int_{\Omega} g(x, y) d y<1$ for all $x \in \partial \Omega$.
(1) If a is sufficiently small, then the solution of (1.1) exists globally;
(2) If a is sufficiently large, then the solution of (1.1) also exists globally provided that $\int_{\delta}^{+\infty} 1 /(s f(s)) d s=+\infty$ for some $\delta>0$.

Theorem 1.2. Assume that $l>1$ and $\int_{\Omega} g(x, y) d y<1$ for all $x \in \partial \Omega$. Then the solution of (1.1) exists globally provided that a and $u_{0}(x)$ are sufficiently small. While the solution blows up in finite time if $a, u_{0}(x)$ are sufficiently large and $\int_{\delta}^{+\infty} 1 /(s f(s)) d s<+\infty$ for some $\delta>0$.
Theorem 1.3. Assume that $l>1$ and $\int_{\Omega} g(x, y) d y \geq 1$ for all $x \in \partial \Omega$. If $\int_{\delta}^{+\infty} 1 /(s f(s)) d s<+\infty$ for some $\delta>0$, then the solution of (1.1) blows up in finite time provided that $u_{0}(x)$ is large enough.
Theorem 1.4. If $\int_{\delta}^{+\infty} 1 /(s f(s)) d s<+\infty$ for some $\delta>0$ and $a>\left(\int_{\Omega} \varphi(x) d x\right)^{-1}$, where $\phi(x)$ is the solution of (1.3), then there exists no global positive solution of (1.1).

To describe conditions for blow-up of solutions, we need an additional assumption on the initial data u_{0}.
(H4) There exists a constant $\varepsilon>\varepsilon_{1}>0$ such that $\Delta u_{0}+a \int_{\Omega} u_{0}(x) d x \geq \varepsilon u_{0}$, where ε_{1} will be given later.
Theorem 1.5. Assume $u_{0}(x)$ satisfies (H1), (H2), and (H4), $\Delta u_{0} \leq 0$ in Ω holds, and let $f(u)=u^{p}, 0<p \leq 1, l=1$, then the following limits converge uniformly on any compact subset of Ω :
(1) If $0<p<1, \lim _{t \rightarrow T^{*}} u(x, t)\left(T^{*}-t\right)^{1 / p}=(a p|\Omega|)^{-1 / p}$.
(2) If $p=1, \lim _{t \rightarrow T^{*}}\left|\ln \left(T^{*}-t\right)\right|^{-1} \ln u(x, t)=1$.

This article is organized as follows. In Section 2, we establish the comparison principle and the local existence. Some criteria regarding to global existence and finite time blow-up for problem (1.1) are given in Section 3. In Section 4, the global blow-up result and the blow-up rate estimate of blow-up solutions for the special case of $f(u)=$ $u^{p}, 0<p \leq 1$ and $l=1$ are obtained.

2. Comparison principle and local existence

First, we start with the definition of subsolution and supersolution of (1.1) and comparison principle. Let $Q_{T}=\Omega \times(0, T), S_{T}=\partial \Omega \times(0, T)$, and $\bar{Q}_{T}=\bar{\Omega} \times[0, T)$.

Definition 2.1. A function $\underline{u}(x, t)$ is called a subsolution of (1.1) on Q_{T}, if $\underline{u} \in C^{2,1}\left(Q_{T}\right) \cap C\left(\bar{Q}_{T}\right)$ satisfies

$$
\begin{array}{ll}
\underline{u}_{t} \leq f(\underline{u})\left(\Delta \underline{u}+a \int_{\Omega} \underline{u} d x\right), & x \in \Omega, t>0 \\
\underline{u}(x, t) \leq \int_{\Omega} g(x, y) \underline{u}^{l}(y, t) d y, & x \in \partial \Omega, t>0 \tag{2.1}\\
\underline{u}(x, 0) \leq u_{0}(x), & x \in \Omega
\end{array}
$$

Similarly, a supersolution $\bar{u}(x, t)$ of (1.1) is defined by the opposite inequalities.
A solution of problem (1.1) is a function which is both a subsolution and a supersolution of problem (1.1).

The following comparison principle plays a crucial role in our proofs which can be obtained by similar arguments as [10] and its proof is therefore omitted here.
Lemma 2.2. Suppose that $w(x, t) \in C^{2,1}\left(Q_{T}\right) \cap C\left(\bar{Q}_{T}\right)$ and satisfies

$$
\begin{array}{ll}
w_{t}-d(x, t) \Delta w \geq c_{1}(x, t) w+c_{2}(x, t) \int_{\Omega} c_{3}(x, t) w(x, t) d x, & (x, t) \in Q_{T} \\
w(x, t) \geq c_{4}(x, t) \int_{\Omega} c_{5}(x, y) w^{l}(y, t) d y & (x, t) \in S_{T} \tag{2.2}
\end{array}
$$

where $d(x, t), c_{i}(x, t)(i=1,2,3,4)$ are bounded functions and $d(x, t) \geq 0, c_{i}(x, t) \geq 0$ (i $=2,3,4)$ in $Q_{T}, c_{5}(x, y) \geq 0$ for $x \in \partial \Omega, y \in \Omega$ and is not identically zero. Then, $w(x, 0)>$ 0 for $x \in \bar{\Omega}$ implies $w(x, t)>0$ in Q_{T}. Moreover, $c_{5}(x, y) \equiv 0$ or if $c_{4}(x, t) \int_{\Omega} c_{5}(x, y) d y \leq 1$ on S_{T}, then $w(x, 0) \geq 0$ for $x \in \bar{\Omega}$ implies $w(x, t) \geq 0$ in Q_{T}.

On the basis of the above lemmas, we obtain the following comparison principle of (1.1).

Lemma 2.3. Let u and v be nonnegative subsolution and supersolution of (1.1), respectively, with $u(x, 0) \leq v(x, 0)$ for $x \in \bar{\Omega}$. Then, $u \leq v$ in Q_{T} if $u \geq \eta$ or $v \geq \eta$ for some small positive constant η holds.

Local in time existence of positive classical solutions of (1.1) can be obtained by using fixed point theorem [21], the representation formula and the contraction mapping principle as in [13]. By the above comparison principle, we get the uniqueness of solution to the problem. The proof is more or less standard, so is omitted here.

3. Global existence and blow-up in finite time

In this section, we will use super- and subsolution techniques to derive some conditions on the existence or nonexistence of global solution.

Proof of Theorem 1.1. (1) Let $\psi(x)$ be the unique positive solution of the linear elliptic problem

$$
\begin{array}{ll}
-\Delta \psi=\varepsilon_{0}, & x \in \Omega \\
\psi(x)=\int_{\Omega} g(x, y) d y, & x \in \partial \Omega \tag{3.1}
\end{array}
$$

where ε_{0} is a positive constant such that $0<\psi(x)<1$ (since $\int_{\Omega} g(x, y) d y<1$, there exists such ε_{0}. Let $\bar{K}=\max _{x \in \bar{\Omega}} \psi(x), \underline{K}=\min _{x \in \bar{\Omega}} \psi(x)$.

We define a function $w(x, t)$ as following:

$$
\begin{equation*}
w(x, t)=M \psi(x), \tag{3.2}
\end{equation*}
$$

where $M \geq 1$ is a constant to be determined later. Then, we have

$$
\begin{align*}
\left.w\right|_{\partial \Omega} & =M \int_{\Omega} g(x, y) d y \geq M \int_{\Omega} g(x, y) \psi^{l}(x) d y=M^{1-l} \int_{\Omega} g(x, y) w^{l}(y, t) d y \\
& \geq \int_{\Omega} g(x, y) w^{l}(y, t) d y \tag{3.3}
\end{align*}
$$

On the other hand, we have for $x \in \Omega, t>0$,

$$
\begin{equation*}
w_{t}-f(w)\left(\Delta w+a \int_{\Omega} w(x, t) d x\right) \geq f(M \psi(x)) M\left(\varepsilon_{0}-a|\Omega| \bar{K}\right) \tag{3.4}
\end{equation*}
$$

We choose $M=\max \left\{\underline{K}^{-1} \max _{x \in \bar{\Omega}} u_{0}(x), 1\right\}$ and set $a_{0}=\varepsilon_{0}(|\Omega| \bar{K})^{-1}$, then it is easy to verify that $w(x, t)$ is a supersolution of (1.1) provided that $a \leq a_{0}$. By comparison principle, $u(x, t) \leq w(x, t)$, then $u(x, t)$ exists globally.
(2) Consider the following problem

$$
\begin{align*}
& z^{\prime}(t)=b_{1} f(\bar{K} z(t)) z(t), \quad t>0 \tag{3.5}\\
& z(0)=z_{0}
\end{align*}
$$

where $z_{0}>\max \left\{\underline{K}^{-1} \max _{x \in \bar{\Omega}} u_{0}(x), 1\right\}, b_{1}$ is a positive constant to be fixed later. It follows from hypothesis (H3) and the theory of ordinary differential equation (ODE) that there exists a unique solution $z(t)$ to problem (3.5) and $z(t)$ is increasing. If $\int_{\delta}^{+\infty} 1 /(s f(s)) d s=+\infty$ for some positive δ, we know that $z(t)$ exists globally and $z(t)$ $\geq z_{0}$.
Let $v(x, t)=z(t) \psi(x)$, where $\psi(x)$ is given by (3.1), then for $x \in \Omega, t>0$, we obtain

$$
\begin{align*}
v_{t} & -f(v)\left(\Delta v+a \int_{\Omega} v(x, t) d x\right) \\
& =z^{\prime}(t) \psi(x)-f(z(t) \psi(x))\left(z(t) \Delta \psi(x)+a \int_{\Omega} z(t) \psi(x) d x\right) \tag{3.6}\\
& \geq z^{\prime}(t) \underline{K}-f(\bar{K} z(t)) z(t)\left(a \bar{K}|\Omega|-\varepsilon_{0}\right) \\
& =f(\bar{K} z(t)) z(t)\left(b_{1} \underline{K}-\left(a \bar{K}|\Omega|-\varepsilon_{0}\right)\right) .
\end{align*}
$$

Set $a_{1}=\varepsilon_{0}(\bar{K}|\Omega|)^{-1}$, if a is sufficiently large such that $a>a_{1}$, then we can choose $b_{1}=\underline{K}^{-1}\left(a \bar{K}|\Omega|-\varepsilon_{0}\right)>0$. Thus,

$$
\begin{equation*}
v_{t}-f(v)\left(\Delta v+a \int_{\Omega} v(x, t) d x\right) \geq 0 \tag{3.7}
\end{equation*}
$$

On the other hand, for $x \in \partial \Omega, t>0$, we get

$$
\begin{align*}
v(x, t) & =z(t) \int_{\Omega} g(x, y) d y>z(t) \int_{\Omega} g(x, y) \psi^{l}(y) d y \\
& >\int_{\Omega} g(x, y) z^{l}(t) \psi^{l}(y) d y=\int_{\Omega} g(x, y) v^{l}(y, t) d y \tag{3.8}
\end{align*}
$$

Here, we use the conclusions $0<\psi(x)<1$ and $z(t)>1$.
Also for $x \in \bar{\Omega}$, we have

$$
\begin{equation*}
v(x, 0)=z(0) \psi(x)=z_{0} \psi(x) \geq z_{0} \underline{K} \geq u_{0}(x) . \tag{3.9}
\end{equation*}
$$

And the inequalities (3.5)-(3.9) show that $v(x, t)$ is a supersolution of (1.1). Again by using the comparison principle, we obtain the global existence of $u(x, t)$. The proof is complete.

Proof of Theorem 1.2. The proof of global existence part is similar to the first case of Theorem 1.1. For any given positive constant $M \leq 1, w(x)=M \psi(x)$ is a supersolution of problem (1.1) provided that $u_{0}(x) \leq \psi(x)<1$ and $a<\varepsilon_{0}(|\Omega| \bar{K})^{-1}$, so the solution of (1.1) exists globally by using the comparison principle.

To prove the bow-up result, we introduce the elliptic problem

$$
-\Delta \varphi(x)=1, \quad x \in \Omega ; \varphi(x)=\int_{\Omega} g(x, y) \varphi(y) d y, \quad x \in \partial \Omega
$$

Under the hypothesis (H2) and $\int_{\Omega} g(x, y) d y<1$, we know that it exists a unique positive solution $\phi(x)$. Let $K_{*}=\min _{x \in \bar{\Omega}} \varphi(x), K^{*}=\max _{x \in \bar{\Omega}} \varphi(x)$, and $z(t)$ be the solution of the following ODE

$$
\begin{align*}
& z^{\prime}(t)=f\left(K_{*} z(t)\right) z(t), \quad t>0 \tag{3.10}\\
& z(0)=z_{1}>1
\end{align*}
$$

Then, $z(t)$ is increasing and $z(t) \geq z_{1}$. Due to the condition $\int_{\delta}^{+\infty} 1 /(s f(s)) d s<+\infty$ for some positive constant δ, we know that $z(t)$ of problem (3.10) blows up in finite time.
If a and $u_{0}(x)$ are so large that $a \geq\left(K^{*}\right)^{l-1}\left(K^{*}+l\right)|\Omega|^{-1} K_{*}{ }^{-l}, u_{0}(x) \geq z_{1}\left(K^{*}\right)^{l}$, then we set $v_{1}(x, t)=\mathrm{z}(t) \phi^{l}(x)$. For $x \in \Omega, t>0$, we obtain

$$
\begin{align*}
& v_{1 t}-f\left(v_{1}\right)\left(\Delta v_{1}+a \int_{\Omega} v_{1}(x, t) d x\right) \\
& =z^{\prime}(t) \varphi^{l}(x)-f\left(z(t) \varphi^{l}(x)\right) z(t)\left(l(l-1) \varphi^{l-2}(x)|\nabla \varphi|^{2}+l \varphi^{l-1}(x) \Delta \varphi(x)+a \int_{\Omega} \varphi^{l}(x) d x\right) \tag{3.11}\\
& \leq z^{\prime}(t)\left(K^{*}\right)^{l}-f\left(K_{*}^{l} z(t)\right) z(t)\left(a K_{*}^{l}|\Omega|-l\left(K^{*}\right)^{l-1}\right) \leq 0 .
\end{align*}
$$

For $x \in \partial \Omega, t>0$, by Jensen's inequality, we get

$$
\begin{align*}
v_{1}(x, t) & =z(t) \varphi^{l}(x)=z(t)\left(\int_{\Omega} g(x, y) \varphi(y) d y\right)^{l} \\
& \leq z(t)\left(\int_{\Omega} g(x, y) d y\right)^{l-1}\left(\int_{\Omega} g(x, y) \varphi^{l}(y) d y\right) \tag{3.12}\\
& \leq \int_{\Omega} g(x, y) z^{l}(t) \varphi^{l}(y) d y=\int_{\Omega} g(x, y) v_{1}^{l}(y) d y .
\end{align*}
$$

Also for $x \in \bar{\Omega}$, we have

$$
\begin{equation*}
v_{1}(x, 0)=z(0) \varphi^{l}(x)=z_{1} \varphi^{l}(x) \leq z_{1}\left(K^{*}\right)^{l} \leq u_{0}(x) \tag{3.13}
\end{equation*}
$$

The inequalities (3.10)-(3.13) show that $\nu_{1}(x, t)$ is a subsolution of problem (1.1). Since $v_{1}(x, t)$ blows up in finite time, $u(x, t)$ also blows up in finite time by comparison principle.

Proof of Theorem 1.3. Let $z(t)$ be the solution of the following ODE

$$
\begin{align*}
& z^{\prime}(t)=b_{2} f(z(t)) z(t), \quad t>0, \tag{3.14}\\
& z(0)=z_{2}
\end{align*}
$$

where $0<b_{2}<a|\Omega|$. If $u_{0}(x)$ is large enough, we can set $1<z_{2}<\min _{x \in \bar{\Omega}} u_{0}(x)$. Then, $z(t)$ is increasing and satisfies $z(t) \geq z_{2}>1$. Moreover, $z(t)$ of problem (3.14) blows up in finite time.

Set $s(x, t)=z(t)$, then we have for $x \in \Omega, t>0$,

$$
\begin{align*}
s_{t} & -f(s)\left(\Delta s+a \int_{\Omega} s(x, t) d x\right) \tag{3.15}\\
& =z^{\prime}(t)-a f(z(t))|\Omega| z(t)=\left(b_{2}-a|\Omega|\right) f(z(t)) z(t)<0 .
\end{align*}
$$

For $x \in \partial \Omega, t>0$,

$$
\begin{align*}
& s(x, t)=z(t) \leq \int_{\Omega} g(x, y) z(t) d y<\int_{\Omega} g(x, y) z^{l}(t) d y=\int_{\Omega} g(x, y) s^{l}(y, t) d y . \tag{3.16}\\
& s(x, 0)=z(0)=z_{2}<u_{0}(x), \quad x \in \bar{\Omega} . \tag{3.17}
\end{align*}
$$

From (3.14)-(3.17), we see that $s(x, t)$ is a subsolution of (1.1). Hence, $u(x, t) \geq s(x$, t) by comparison principle, which implies $u(x, t)$ blows up in finite time. This completes the proof.

Proof of Theorem 1.4. Consider the following equation

$$
\begin{array}{ll}
v_{t}=f(v)\left(\Delta v+a \int_{\Omega} v d x\right), & x \in \Omega, t>0 \\
v(x, t)=0, & x \in \partial \Omega, t>0, \tag{3.18}\\
v(x, 0)=v_{0}(x), & x \in \Omega,
\end{array}
$$

and let $v(x, t)$ be the solution to problem (3.18). It is obvious that $v(x, t)$ is a subsolution of (1.1). By Theorem 1 in [5], we can obtain the result immediately.

4. Blow-up rate estimate

Now, we consider problem (1.1) with $f(u)=u^{p}, 0<p \leq 1$ and $l=1$, i.e.,

$$
\begin{array}{lc}
u_{t}=u^{p}\left(\Delta u+a \int_{\Omega} u(x, t) d x\right), & x \in \Omega, t>0, \\
u(x, t)=\int_{\Omega} g(x, y) u(y, t) d y, & x \in \partial \Omega, t>0, \tag{4.1}\\
u(x, 0)=u_{0}(x), & x \in \Omega,
\end{array}
$$

where $\int_{\Omega} g(x, y) d y \leq 1$ for all $x \in \partial \Omega$, and suppose that the solution of (4.1) blows up in finite time T^{*}.
Set $U(t)=\max _{x \in \bar{\Omega}} u(x, t)$, then $U(t)$ is Lipschitz continuous.
Lemma 4.1. Suppose that u_{0} satisfies (H1), (H2), and (H4), then there exists a positive constant c_{0} such that

$$
\begin{equation*}
U(t) \geq c_{0}\left(T^{*}-t\right)^{-1 / p} \tag{4.2}
\end{equation*}
$$

Proof. By the first equation in (4.1), we have (see [22])

$$
\begin{equation*}
U^{\prime}(t) \leq a|\Omega| U^{1+p}(t), \quad \text { a.e. } t \in\left(0, T^{*}\right) \tag{4.3}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
-\left(U^{-p}(t)\right)^{\prime} \leq a p|\Omega| \tag{4.4}
\end{equation*}
$$

Integrating (4.3) over (t, T^{*}), we can get

$$
\begin{equation*}
U(t) \geq(a p|\Omega|)^{-1 / p}\left(T^{*}-t\right)^{-1 / p} \tag{4.5}
\end{equation*}
$$

Setting $c_{0}=(a p|\Omega| p)^{-1 / p}$, then we draw the conclusion.
Lemma 4.2. Under the conditions of Lemma 4.1, there exists a constant ε_{1}, which will be given below, such that

$$
\begin{equation*}
u_{t}-\varepsilon_{1} u^{p+1} \geq 0, \quad(x, t) \in \Omega \times\left(0, T^{*}\right) \tag{4.6}
\end{equation*}
$$

Proof. Let $J(x, t)=u_{t}-\varepsilon_{1} u^{p+1}$ for $(x, t) \in \Omega \times\left(0, T^{*}\right)$, a series of computations yields

$$
\begin{align*}
& J_{t}-u^{p} \Delta J-2 p \varepsilon_{1} u^{p} J-a u^{p} \int_{\Omega} J d x \\
& =p u^{-1} J^{2}+\varepsilon_{1}(p+1) p u^{2 p-1}|\nabla u|^{2}+p \varepsilon_{1}^{2} u^{2 p+1}+a \varepsilon_{1} u^{p} \int_{\Omega} u^{p+1} d x-a \varepsilon_{1}(p+1) u^{2 p} \int_{\Omega} u d x \tag{4.7}\\
& \geq p \varepsilon_{1}^{2} u^{2 p+1}+a \varepsilon_{1} u^{p} \int_{\Omega} u^{p+1} d x-a \varepsilon_{1}(p+1) u^{2 p} \int_{\Omega} u d x .
\end{align*}
$$

By virtue of Hölder inequality, we have

$$
\int_{\Omega} u d x \leq|\Omega|^{p /(p+1)}\left(\int_{\Omega} u^{p+1} d x\right)^{1 /(p+1)} .
$$

Furthermore, by Young's inequality, for any $\theta>0$, the following inequality holds

$$
\begin{align*}
u^{2 p} \int_{\Omega} u d x & \leq|\Omega|^{p /(p+1)} u^{p} \cdot u^{p}\left(\int_{\Omega} u^{p+1} d x\right)^{1 /(p+1)} \\
& \leq|\Omega|^{p /(p+1)} u^{p}\left(p /(p+1)\left(\theta u^{p}\right)^{(p+1) / p}+1 /(p+1) \theta^{-(p+1)} \int_{\Omega} u^{p+1} d x\right) \tag{4.8}\\
& =(1 /(p+1))|\Omega|^{p /(p+1)}\left(p \theta^{(p+1) / p} u^{2 p+1}+\theta^{-(p+1)} u^{p} \int_{\Omega} u^{p+1} d x\right) .
\end{align*}
$$

Using (4.8) and taking $\theta=|\Omega|^{p /(p+1)^{2}}, \varepsilon_{1}=\mathrm{a}|\Omega|$, then (4.7) becomes

$$
\begin{equation*}
J_{t}-u^{p} \Delta J-2 p \varepsilon_{1} u^{p} J-a u^{p} \int_{\Omega} J d x \geq p \varepsilon_{1}\left(\varepsilon_{1}-a|\Omega|\right) u^{2 p+1}=0, \tag{4.9}
\end{equation*}
$$

Fix $(x, t) \in \partial \Omega \times\left(0, T^{*}\right)$, then we have

$$
J(x, t)=u_{t}-\varepsilon_{1} u^{p+1}=\int_{\Omega} g(x, y) u_{t}(y, t) d y-\varepsilon_{1}\left(\int_{\Omega} g(x, y) u(y, t) d y\right)^{p+1}
$$

Since $u_{t}(y, t)=J(y, t)+\varepsilon_{1} u^{p+1}(y, t)$, we have

$$
\begin{aligned}
& \int_{\Omega} g(x, y) u_{t}(y, t) d y-\varepsilon_{1}\left(\int_{\Omega} g(x, y) u(y, t) d y\right)^{p+1} \\
& =\int_{\Omega} g(x, y) J(y, t) d y+\varepsilon_{1}\left(\int_{\Omega} g(x, y) u^{p+1}(y, t) d y-\left(\int_{\Omega} g(x, y) u(y, t) d y\right)^{p+1}\right)
\end{aligned}
$$

Noticing that $p>0,0<F(x)=\int_{\Omega} g(x, y) d y \leq 1, x \in \partial \Omega$, we can apply Jensen's inequality to the last integral in the above inequality,

$$
\begin{aligned}
& \int_{\Omega} g(x, y) u^{p+1}(y, t) d y-\left(\int_{\Omega} g(x, y) u(y, t) d y\right)^{p+1} \\
& \geq F(x)\left(\int_{\Omega} g(x, y) u(y, t) d y / F(x)\right)^{p+1}-\left(\int_{\Omega} g(x, y) u(y, t) d y\right)^{p+1} \geq 0
\end{aligned}
$$

Hence, for $(x, t) \in \partial \Omega \times\left(0, T^{*}\right)$, we have

$$
\begin{equation*}
J(x, t) \geq \int_{\Omega} g(x, y) J(y, t) d y \tag{4.10}
\end{equation*}
$$

On the other hand, (H4) implies that

$$
\begin{equation*}
J(x, 0)>0, x \in \Omega \tag{4.11}
\end{equation*}
$$

Owing to $u(x, t)$ is a positive continuous function for $(x, t) \in \bar{\Omega} \times\left[0, T^{*}\right)$, it follows from (4.9)-(4.11) and Lemma 2.2 that $J(x, t) \geq 0$ for $(x, t) \in \bar{\Omega} \times\left[0, T^{*}\right)$, i.e., $u_{t} \geq \varepsilon_{1} u^{p}$ ${ }^{+1}$. This completes the proof.

Integrating (4.6) from t to T^{*}, we conclude that

$$
\begin{equation*}
u(x, t) \leq c_{2}\left(T^{*}-t\right)^{-1 / p} \tag{4.12}
\end{equation*}
$$

where $c_{2}=\left(\varepsilon_{1} p\right)^{-1 / p}$ is a positive constant independent of t. Combining (4.2) with (4.12), we obtain the following result.

Theorem 4.3. Under the conditions of Lemma 4.1, if $u(x, t)$ is the solution of (4.1) and blows up in finite time T^{*}, then there exist positive constants c_{1}, c_{2}, such that

$$
c_{1}\left(T^{*}-t\right)^{-1 / p} \leq \max _{x \in \bar{\Omega}} u(x, t) \leq c_{2}\left(T^{*}-t\right)^{-1 / p}
$$

Lemma 4.4. Assume that $u_{0}(x)$ satisfies (H1), (H2), and (H4), $\Delta u_{0} \leq 0$ in $\Omega . u(x, t)$ is the solution of problem (4.1). Then, $\Delta u \leq 0$ in any compact subsets of $\Omega \times\left(0, T^{*}\right)$.

The proof is similar to that of Lemma 1.1 in [14].
Denote

$$
g(t)=a \int_{\Omega} u d x, \quad G(t)=\int_{0}^{t} g(s) d s .
$$

Lemma 4.5. Under the conditions of Lemma 4.4, it holds that

$$
\begin{equation*}
\lim _{t \rightarrow T^{*}} g(t)=\infty, \quad \lim _{t \rightarrow T^{*}} G(t)=\infty \tag{4.13}
\end{equation*}
$$

Proof. From Lemma 4.3, we have

$$
\begin{equation*}
u_{t} \leq u^{p} g(t), \quad \text { a.e. } t \in\left[0, T^{*}\right) \tag{4.14}
\end{equation*}
$$

Integrating (4.14) over $(0, t)$, we obtain

$$
\begin{align*}
& \frac{1}{1-p} u^{1-p}(x, t) \leq \int_{0}^{t} g(s) d s+\frac{1}{1-p} u_{0}^{1-p}(x), \quad 0<p<1, \tag{4.15}\\
& \ln u(x, t) \leq \int_{0}^{t} g(s) d s+\ln u_{0}(x), \quad p=1 \tag{4.16}
\end{align*}
$$

In view of $\lim _{t \rightarrow T^{*}} u(x, t)=\infty, \lim _{t \rightarrow T^{*}} G(t)=\infty$. Noting that $u_{t} \geq 0$ by the assumption of the initial function, then we see that $g(t)$ is monotone nondecreasing. Therefore, $\lim _{t \rightarrow T^{*}} g(t)=\infty$.

Lemma 4. 6. Under the conditions of Lemma 4.4, then we have
(1) $\lim _{t \rightarrow T^{*}} \frac{u^{1-p}(x, t)}{(1-p) G(t)}=\lim _{t \rightarrow T^{*}} \frac{\|u(\cdot, t)\|_{\infty}^{1-p}}{(1-p) G(t)}=1, \quad 0<p<1$,
(2) $\lim _{t \rightarrow T^{*}} \frac{\ln u(x, t)}{G(t)}=\lim _{t \rightarrow T^{*}} \frac{\|\ln u(\cdot, t)\|_{\infty}}{G(t)}=1, \quad p=1$,
uniformly on any compact subsets of Ω.
Proof. Let $\lambda>0$ be the principal eigenvalue of $-\Delta$ in Ω with the null Dirichlet boundary condition, and $\varphi(x)$ be the corresponding eigenfunction satisfying $\varphi(x)>0$, $\int_{\Omega} \phi(x) d x=1$.
In case of (1). Define $z_{1}(x, t)=G(t)-u^{1-p} /(1-p), \gamma_{1}(t)=\int_{\Omega} z_{1}(y, t) \phi(y) d y$. A direct computation shows

$$
\begin{aligned}
\gamma_{1}^{\prime}(t) & =\int_{\Omega}\left(g(t)-u^{-p}(y, t) u_{t}(y, t)\right) \phi(y) d y=-\int_{\Omega} \Delta u(\gamma, t) \phi(y) d y \\
& =\lambda \int_{\Omega} \phi(\gamma) u(y, t) d y+\int_{\partial \Omega} u(\partial \phi / \partial n) d S \\
& \leq \lambda \int_{\Omega}\left(G(t)-z_{1}(y, t)\right)^{1 /(1-p)} \phi(y) d y \\
& \leq C_{1}\left(G^{1 /(1-p)}(t)+\int_{\Omega}\left(z_{1}^{-}(y, t)\right)^{1 /(1-p)} \phi(\gamma) d y\right),
\end{aligned}
$$

where $z_{1}^{-}=\max \left\{-z_{1}, 0\right\}$ and using the equality $\int_{\partial \Omega}(\partial \phi / \partial n) d S=-\lambda<0$. From (4.15), we know that

$$
\begin{equation*}
\inf _{\Omega} z_{1}(y, t) \geq-C^{\prime} \tag{4.19}
\end{equation*}
$$

which means $z_{1}^{-} \leq C^{\prime}$. Then,

$$
\begin{equation*}
\gamma_{1}^{\prime}(t) \leq C_{2} G^{1 /(1-p)}(t)+C_{3} \tag{4.20}
\end{equation*}
$$

Integrate (4.20) from 0 to t,

$$
\begin{equation*}
\gamma_{1}(t) \leq C_{4}\left(1+\int_{0}^{t} G^{1 /(1-p)}(s) d s\right) \tag{4.21}
\end{equation*}
$$

Thus, (4.19) and (4.21) imply

$$
\int_{\Omega}\left|z_{1}(y, t)\right| \phi(y) d y \leq C_{5}\left(1+\int_{0}^{t} G^{1 /(1-p)}(s) d s\right)
$$

Define $K_{\rho}=\{y \in \Omega$: $\operatorname{dist}(y, \partial \Omega) \geq \rho\}$. Since $-\Delta z_{1} \leq 0$ in $\Omega \times\left(0, T^{*}\right)$. Using Lemma 4.5 in [1], we obtain

$$
\begin{equation*}
\sup _{K_{\rho}} z_{1}(x, t) \leq \frac{C_{6}}{\rho^{N+1}}\left(1+\int_{0}^{t} G^{1 /(1-p)}(s) d s\right) . \tag{4.22}
\end{equation*}
$$

It follows from (4.22) and (4.15) that

$$
\begin{equation*}
-\frac{k_{1}}{G(t)} \leq 1-\frac{u^{1-p}(x, t)}{(1-p) G(t)} \leq \frac{K_{1}}{\rho^{N+1}} \frac{1+\int_{0}^{t} G^{1 /(1-p)}(s) d s}{G(t)} \tag{4.23}
\end{equation*}
$$

for any $x \in K_{\rho}$ and $t \in\left(0, T^{*}\right)$, where k_{1} and K_{1} are positive constants.
We know from Theorem 4.3 that

$$
\begin{equation*}
\int_{0}^{t} G^{1 /(1-p)}(s) d s \leq C_{7} \int_{0}^{t}\left(T^{*}-s\right)^{-1 / p} d s \tag{4.24}
\end{equation*}
$$

In view of (4.15) and Theorem 4.3, it follows that

$$
\begin{equation*}
G(t) \geq C_{8} u^{1-p} \geq C_{9}\left(T^{*}-t\right)^{-(1-p) / p} \tag{4.25}
\end{equation*}
$$

From (4.23)-(4.25), we get

$$
\begin{equation*}
-\frac{k_{1}}{G(t)} \leq 1-\frac{u^{1-p}(x, t)}{(1-p) G(t)} \leq \frac{C_{10}}{\rho^{N+1}} \frac{1+\int_{0}^{t}\left(T^{*}-s\right)^{-1 / p} d s}{\left(T^{*}-t\right)^{-(1-p) / p}} \tag{4.26}
\end{equation*}
$$

It is obvious that

$$
\lim _{t \rightarrow T^{*}} \frac{\int_{0}^{t}\left(T^{*}-s\right)^{-1 / p} d s}{\left(T^{*}-t\right)^{-(1-p) / p}}=0
$$

Thus,

$$
\lim _{t \rightarrow T^{*}} \frac{u^{1-p}(x, t)}{(1-p) G(t)}=\lim _{t \rightarrow T^{*}} \frac{\|u(\cdot, t)\|_{\infty}^{1-p}}{(1-p) G(t)}=1
$$

In case of (2). We define $z_{2}(x, t)=G(t)-\ln u(x, t), \gamma_{2}(t)=\int_{\Omega} z_{2}(\gamma, t) \phi(y) d y$. Then,

$$
\begin{aligned}
\gamma_{2}^{\prime}(t) & =\int_{\Omega}\left(g(t)-u^{-1}(y, t) u_{t}(y, t)\right) \phi(y) d y=-\int_{\Omega} \Delta u(y, t) \phi(y) d y \\
& =\lambda \int_{\Omega} \phi(y) u(y, t) d y+\int_{\partial \Omega} u(\partial \phi / \partial n) d S \\
& \leq \lambda \int_{\Omega} \exp \left\{G(t)-z_{2}(y, t)\right\} \phi(y) d y .
\end{aligned}
$$

From (4.16), we know that

$$
\begin{equation*}
\inf _{\Omega} z_{2}(y, t) \geq-C^{\prime \prime} \tag{4.27}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\gamma_{2}^{\prime}(t) \leq C_{11} \exp \{G(t)\} \tag{4.28}
\end{equation*}
$$

Integrate (4.28) from 0 to t yields

$$
\begin{equation*}
\gamma_{2}(t) \leq C_{12}\left(1+\int_{0}^{t} \exp \{G(s)\} d s\right), \tag{4.29}
\end{equation*}
$$

Thus, (4.29) and (4.27) imply

$$
\int_{\Omega}\left|z_{2}(y, t)\right| \phi(y) d y \leq C_{13}\left(1+\int_{0}^{t} \exp \{G(s)\} d s\right)
$$

Define $K_{\zeta}=\{y \in \Omega: \operatorname{dist}(y, \partial \Omega) \geq \zeta\}$. Since $-\Delta z_{2} \leq 0$ in $\Omega \times\left(0, T^{*}\right)$, we obtain

$$
\begin{equation*}
\sup _{K_{\zeta}} z_{2}(x, t) \leq \frac{C_{14}}{\zeta^{N+1}}\left(1+\int_{0}^{t} \exp \{G(s)\} d s\right) \tag{4.30}
\end{equation*}
$$

It follows from (4.30) and (4.27) that

$$
\begin{equation*}
-\frac{k_{2}}{G(t)} \leq 1-\frac{\ln u(x, t)}{G(t)} \leq \frac{K_{2}}{\zeta^{N+1}} \frac{1+\int_{0}^{t} \exp \{G(s)\} d s}{G(t)} \tag{4.31}
\end{equation*}
$$

for any $x \in K_{\zeta}$ and $t \in\left(0, T^{*}\right)$.
By Theorem 4.3, we have

$$
\begin{align*}
G(t) & =\int_{0}^{t} g(s) d s \leq a \int_{0}^{t}\left(\int_{\Omega}|U(s)| d x\right) d s \\
& \leq a|\Omega|\left(\varepsilon_{1}\right)^{-1} \int_{0}^{t}\left(T^{*}-s\right)^{-1} d s \leq \ln \left(T^{*}-t\right)^{-1}+\ln T^{*} \tag{4.32}
\end{align*}
$$

On the other hand, we know form (4.16) and Theorem 4.3 that

$$
\begin{equation*}
G(t) \geq C_{16}\left|\ln \left(T^{*}-t\right)\right| \tag{4.33}
\end{equation*}
$$

From (4.31)-(4.33), we get

$$
-\frac{k_{2}}{G(t)} \leq 1-\frac{\ln u(x, t)}{G(t)} \leq \frac{C_{17}}{\zeta^{N+1}} \frac{1+T^{*} \int_{0}^{t}\left(T^{*}-s\right)^{-1} d s}{\left|\ln \left(T^{*}-t\right)\right|}
$$

It is easy to derive

$$
\lim _{t \rightarrow T^{*}} \frac{1+T^{*} \int_{0}^{t}\left(T^{*}-s\right)^{-1} d s}{\left|\ln \left(T^{*}-t\right)\right|}=0
$$

Thus,

$$
\lim _{t \rightarrow T^{*}} \frac{\ln u(x, t)}{G(t)}=\lim _{t \rightarrow T^{*}} \frac{\|\ln u(\cdot, t)\|_{\infty}}{G(t)}=1
$$

This completes the proof.

Proof of Theorem 1.5. Case 1: $0<p<1$. Form (4.17), we have

$$
u(x, t) \sim((1-p) G(t))^{1 /(1-p)} \text { as } t \rightarrow T^{*}
$$

where the notation $u \sim v$ means $\lim _{t \rightarrow T^{*}} u(t) / v(t)=1$.
Furthermore,

$$
\begin{equation*}
G^{\prime}(t)=g(t)=a \int_{\Omega} u d x \sim a|\Omega|((1-p) G(t))^{1 /(1-p)} \text { as } t \rightarrow T^{*} . \tag{4.34}
\end{equation*}
$$

Integrating (4.34) over (t, T^{*}) yields

$$
\begin{equation*}
G(t) \sim(1-p)^{-1}\left(a p|\Omega|\left(T^{*}-t\right)\right)^{-(1-p) / p} \text { as } t \rightarrow T^{*} \tag{4.35}
\end{equation*}
$$

So, we can get our conclusion by using (4.17) and (4.35).
Case 2: $p=1$. In this case, for any given $\sigma: 0<\sigma \ll 1$. By (4.18), there exists $0<t_{0}$ $<T^{*}$ such that

$$
(1-\sigma) G(t) \leq \ln u(x, t) \leq(1+\sigma) G(t), \quad x \in \Omega, t \in\left[t_{0}, T^{*}\right) .
$$

Therefore,

$$
\begin{equation*}
a|\Omega| \exp \{(1-\sigma) G(t)\} \leq G^{\prime}(t)=a \int_{\Omega} u d x \leq a|\Omega| \exp \{(1+\sigma) G(t)\}, \quad t_{0} \leq t \leq T^{*} . \tag{4.36}
\end{equation*}
$$

In view of the right-hand side of the (4.36), we have

$$
\exp \{-(1+\sigma) G(t)\} d G(t) \leq a|\Omega| d t, \quad t_{0} \leq t \leq T^{*}
$$

Integrating the above inequality from t to T^{*} yields that

$$
\exp \{-(1+\sigma) G(t)\} \leq a(1+\sigma)|\Omega|\left(T^{*}-t\right), \quad t_{0} \leq t \leq T^{*}
$$

Namely,

$$
\begin{equation*}
G(t) \geq(-1 /(1+\sigma)) \ln \left[a(1+\sigma)|\Omega|\left(T^{*}-t\right)\right], \quad t_{0} \leq t \leq T^{*} \tag{4.37}
\end{equation*}
$$

Similar arguments to the left-hand side of (3.36) yield that

$$
\begin{equation*}
G(t) \leq(-1 /(1-\sigma)) \ln \left[a(1-\sigma)|\Omega|\left(T^{*}-t\right)\right], \quad t_{0} \leq t \leq T^{*} \tag{4.38}
\end{equation*}
$$

Consequently, (4.37) and (4.38) guarantee that for $t_{0} \leq t \leq T^{*}$,

$$
\begin{equation*}
(-1 /(1+\sigma)) \ln \left[a(1+\sigma)|\Omega|\left(T^{*}-t\right)\right] \leq G(t) \leq(-1 /(1-\sigma)) \ln \left[a (1 - \sigma) | \Omega | \left(T^{*}-\right.\right. \tag{4.39}
\end{equation*}
$$

$t)]$.
Letting $\sigma \rightarrow 0$, we have

$$
\begin{equation*}
\lim _{t \rightarrow T^{*}} G(t)\left|\ln \left(T^{*}-t\right)\right|^{-1}=1 \tag{4.40}
\end{equation*}
$$

because of $\lim _{t \rightarrow T^{*}} G(t)=\infty$. Due to $\ln u(x, t) \sim G(t)$ uniformly on any compact subset of Ω, the proof is complete.

Acknowledgements

The authors express their thanks to the referee for his or her helpful comments and suggestions on the manuscript of this article.

Author details

${ }^{1}$ Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang 212013, China ${ }^{2}$ School of Science, Nantong University, Nantong 226007, China

Authors' contributions

The main results in this article were derived by GZ and LT. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.
Received: 5 September 2011 Accepted: 18 April 2012 Published: 18 April 2012

References

1. Souple, P: Uniform blow-up profiles and boundary for diffusion equations with nonlocal nonlinear source. J Diff Equ. 153, 374-406 (1999). doi:10.1006/jdeq. 1998.3535
2. Weissler, FB: An L ${ }^{\infty}$ blow-up estimate for a nonlinear heat equation. Commun Pure Appl Math. 38, 291-296 (1985). doi:10.1002/cpa. 3160380303
3. Galaktionov, VA: On asymptotic self-similar behavior for a quasilinear heat equation: single point blow-up. SIAM J Math Anal. 26, 675-693 (1995). doi:10.1137/S0036141093223419
4. Giga, Y, Umeda, N: Blow-up directions at space infinity for solutions of semilinear heat equations. Bol Soc Parana Mat. 23, 9-28 (2005)
5. Deng, W, Li, Y, Xie, C: Existence and nonexistence of global solutions of some nonlocal degenerate parabolic equations. Appl Math Lett. 16, 803-808 (2003). doi:10.1016/S0893-9659(03)80118-0
6. Day, WA: Extensions of property of heat equation to linear thermoelasticity and other theories. Q Appl Math. 40, 319-330 (1982)
7. Day, WA: A decreasing property of solutions of parabolic equations with applications to thermoelasticity. Q Appl Math. 40, 468-475 (1983)
8. Friedman, A: Monotonic decay of solutions of parabolic equations with nonlocal boundary conditions. Q Appl Math. 44, 401-407 (1986)
9. Cui, ZJ, Yang, ZD: Roles of weight functions to a nonlinear porous medium equation with nonlocal source and nonlocal boundary condition. J Math Anal Appl. 342, 559-570 (2008). doi:10.1016/j.jmaa.2007.11.055
10. Deng, K: Comparison principle for some nonlocal problems. Q Appl Math. 50, 517-522 (1992)
11. Pao, CV: Asymptotic behavior of solutions of reaction diffusion equations with nonlocal boundary conditions. J Comput Appl Math. 88, 225-238 (1998). doi:10.1016/S0377-0427(97)00215-X
12. Wang, Y, Mu, C, Xiang, Z: Properties of positive solution for nonlocal reaction-diffusion equation with nonlocal boundary. Boundary Value Problems Article ID 64579. 1-12 (2007)
13. Lin, Z, Liu, Y: Uniform blowup profiles for diffusion equations with nonlocal source and nonlocal boundary. Acta Mathematica Scientia (Series B). 24, 443-450 (2004)
14. Chen, YP, Liu, LH: Global blow-up for a localized nonlinear parabolic equation with a nonlocal boundary condition. J Math Anal Appl. 384, 421-430 (2011). doi:10.1016/j.jmaa.2011.05.079
15. Gladkov, A, Kim, KI: Blow-up of solutions for semilinear heat equation with nonlinear nonlocal boundary condition. J Math Anal Appl. 338, 264-273 (2008). doi:10.1016/j.jmaa.2007.05.028
16. Gladkov, A, Kim, KI: Uniqueness and nonuniqueness for reaction-diffusion equation with nonlinear nonlocal boundary condition. Adv Math Sci Appl. 19, 39-49 (2009)
17. Gladkov, A, Guedda, M: Blow-up problem for semilinear heat equation with absorption and a nonlocal boundary condition. Nonlinear Anal. 74, 4573-4580 (2011). doi:10.1016/j.na.2011.04.027
18. Liang, J, Wang, HY, Xiao, TJ: On a comparison principle for delay coupled systems with nonlocal and nonlinear boundary conditions. Nonlinear Anal. 71, 359-365 (2009). doi:10.1016/j.na.2008.11.012
19. Liu, DM, Mu, CL: Blowup properties for a semilinear reaction-diffusion system with nonlinear nonlocal boundary conditions. Abstr Appl Anal Article ID 148035. 1-17 (2010)
20. Mu, CL, Liu, DM, Zhou, SM: Properties of positive solutions for a nonlocal reaction diffusion equation with nonlocal nonlinear boundary condition. J Kor Math Soc. 47, 1317-1328 (2011)
21. Yin, HM: On a class of parabolic equations with nonlocal boundary conditions. J Math Anal Appl. 294, 712-728 (2004). doi:10.1016/j.jmaa.2004.03.021
22. Friedman, A, Mcleod, J: Blow-up of positive solutions of semilinear heat equations. Indiana Univ Math. 34, 425-447 (1985). doi:10.1512/iumj.1985.34.34025

doi:10.1186/1687-2770-2012-45

Cite this article as: Zhong and Tian: Blow up problems for a degenerate parabolic equation with nonlocal source
and nonlocal nonlinear boundary condition. Boundary Value Problems 2012 2012:45.

[^0]: * Correspondence: zhgs917@163. com
 ${ }^{1}$ Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang 212013, China Full list of author information is available at the end of the article

[^1]: © 2012 Zhong and Tian; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

