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Abstract

This article deals with the blow-up problems of the positive solutions to a nonlinear
parabolic equation with nonlocal source and nonlocal boundary condition. The
blow-up and global existence conditions are obtained. For some special case, we
also give out the blow-up rate estimate.
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1. Introduction
In this article, we consider the positive solution of the following degenerate parabolic

equation

ut = f (u)(�u + a
∫
�
u(x, t)dx), x ∈ �, t > 0,

u(x, t) =
∫
�
g(x, y)ul(y, t)dy, x ∈ ∂�, t > 0,

u(x, 0) = u0(x), x ∈ �,
(1:1)

where a, l > 0 and Ω is a bounded domain in RN (N ≥ 1) with smooth boundary ∂Ω.

There have been many articles dealing with properties of solutions to degenerate

parabolic equations with homogeneous Dirichlet boundary condition (see [1-4] and

references therein). For example, Deng et al. [5] studied the parabolic equation with

nonlocal source

ut = f (u)(�u + a
∫

�

udx), (1:2)

which is subjected to homogeneous Dirichlet boundary condition. It was proved that

there exists no global positive solution if and only if
∫ ∞

1
/
(sf (s))ds < ∞ and

∫
�

ϕ(x)dx > 1
/
a , where �(x) is the unique positive solution of the linear elliptic pro-

blem

−�ϕ = 1, x ∈ �;ϕ(x) = 0, x ∈ ∂�. (1:3)
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However, there are some important phenomena formulated into parabolic equations

which are coupled with nonlocal boundary conditions in mathematical modeling such

as thermoelasticity theory (see [6,7]). Friedman [8] studied the problem of nonlocal

boundary conditions for linear parabolic equations of the type

ut − Au = c(x)u, x ∈ �, t > 0,
u(x, t) =

∫
�
K(x, y)u(y, t)dy, x ∈ ∂�, t > 0,

u(x, 0) = u0(x), x ∈ �,
(1:4)

with uniformly elliptic operator A =
n∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑
i=1

bi(x)
∂

∂xi
+ c(x) and c(x)≤ 0.

It was proved that the unique solution of (1.4) tends to 0 monotonically and exponen-

tially as t ®+∞ provided that
∫

�

∣∣ϕ(x, y)∣∣ dy ≤ ρ < 1, x ∈ ∂�.

Parabolic equations with both nonlocal sources and nonlocal boundary conditions

have been studied as well (see [9-12]). Lin and Liu [13] considered the problem of the

form

ut = �u +
∫

�

g(u)dx, x ∈ �, t > 0,

u(x, t) =
∫

�

K(x, y)u(y, t)dy, x ∈ ∂�, t > 0,

u(x, 0) = u0(x), x ∈ �.

(1:5)

They established local existence, global existence, and nonexistence of solutions, and

discussed the blow-up properties of solutions.

Chen and Liu [14] considered the following nonlinear parabolic equation with a loca-

lized reaction source and a weighted nonlocal boundary condition

ut = f (u)(�u + au(x0, t)) , x ∈ �, t > 0,

u(x, t) =
∫

�

g(x, y)u(y, t)dy, x ∈ ∂�, t > 0,

u(x, 0) = u0(x), x ∈ �.

(1:6)

Under certain conditions, they obtained blow-up criteria. Furthermore, they derived

the uniform blow-up estimate for some special f(u).

In recent few years, reaction-diffusion problems coupled with nonlocal nonlinear

boundary conditions have also been studied. Gladkov and Kim [15] considered the fol-

lowing problem for a single semilinear heat equation

ut = �u + c(x, t)up, x ∈ �, t > 0 ,
u(x, t) =

∫
�

ϕ(x, y, t)ul(y, t)dy, x ∈ ∂�, t > 0,
u(x, 0) = u0(x), x ∈ � ,

(1:7)

where p, l > 0. They obtained some criteria for the existence of global solution as

well as for the solution to blow-up in finite time.

For other works on parabolic equations and systems with nonlocal nonlinear bound-

ary conditions, we refer readers to [16-20] and the references therein.

Motivated by those of works above, we will study the problem (1.1) and want to

understand how the function f(u) and the coefficient a, the weight function g(x, y) and
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the nonlinear term ul (y, t) in the boundary condition play substantial roles in deter-

mining blow-up or not of solutions.

In this article, we give the following hypotheses:

(H1) u0(x) ∈ C2+α(�) ∩ C(�) for aÎ(0,1),u0(x) > 0 in Ω, u0(x) =
∫
�
g(x, y)ul0(y)dy

on ∂Ω.

(H2) g(x, y)≢0 is a nonnegative and continuous function defined for x ∈ ∂�, y ∈ � .

(H3) fÎC([0,∞))∩C1(0,∞), f > 0, f’ ≥ 0 in (0,∞).

The main results of this article are stated as follows.

Theorem 1.1. Assume that 0 <l ≤ 1 and
∫

�

g(x, y)dy < 1 for all xÎ∂Ω.

(1) If a is sufficiently small, then the solution of (1.1) exists globally;

(2) If a is sufficiently large, then the solution of (1.1) also exists globally provided

that
∫ +∞

δ

1
/
(sf (s))ds = +∞ for some δ > 0.

Theorem 1.2. Assume that l > 1 and
∫

�

g(x, y)dy < 1 for all xÎ∂Ω. Then the solu-

tion of (1.1) exists globally provided that a and u0(x) are sufficiently small. While the

solution blows up in finite time if a,u0(x) are sufficiently large and∫ +∞

δ

1
/
(sf (s))ds < +∞ for some δ > 0.

Theorem 1.3. Assume that l > 1 and
∫

�

g(x, y)dy ≥ 1 for all xÎ∂Ω. If

∫ +∞

δ

1
/
(sf (s))ds < +∞ for some δ > 0, then the solution of (1.1) blows up in finite

time provided that u0(x) is large enough.

Theorem 1.4. If
∫ +∞

δ

1
/
(sf (s))ds < +∞ for some δ > 0 and a >

(∫
�

ϕ(x)dx
)−1

,

where �(x) is the solution of (1.3), then there exists no global positive solution of (1.1).

To describe conditions for blow-up of solutions, we need an additional assumption

on the initial data u0.

(H4) There exists a constant ε >ε1 > 0 such that �u0 + a
∫

�

u0(x)dx ≥ εu0 , where ε1

will be given later.

Theorem 1.5. Assume u0(x) satisfies (H1), (H2), and (H4), Δu0 ≤ 0 in Ω holds, and

let f(u) = up,0 <p ≤ 1, l = 1, then the following limits converge uniformly on any com-

pact subset of Ω:

(1) If 0 <p < 1, lim
t→T∗

u(x, t)(T∗ − t)1/p = (ap |�|)−1/p .

(2) If p = 1, lim
t→T∗

∣∣ln(T∗ − t)
∣∣−1

ln u(x, t) = 1 .

This article is organized as follows. In Section 2, we establish the comparison princi-

ple and the local existence. Some criteria regarding to global existence and finite time

blow-up for problem (1.1) are given in Section 3. In Section 4, the global blow-up

result and the blow-up rate estimate of blow-up solutions for the special case of f (u) =

up, 0 <p ≤ 1 and l = 1 are obtained.
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2. Comparison principle and local existence
First, we start with the definition of subsolution and supersolution of (1.1) and com-

parison principle. Let QT = Ω × (0, T), ST = ∂Ω × (0, T), and QT = � × [0,T) .

Definition 2.1. A function u(x, t) is called a subsolution of (1.1) on QT, if

u ∈ C2,1(QT) ∩ C(QT) satisfies

ut ≤ f (u)(�u + a
∫
�
udx) , x ∈ �, t > 0,

u(x, t) ≤ ∫
�
g(x, y)ul(y, t)dy, x ∈ ∂�, t > 0,

u(x, 0) ≤ u0(x), x ∈ �.
(2:1)

Similarly, a supersolution ū(x, t) of (1.1) is defined by the opposite inequalities.

A solution of problem (1.1) is a function which is both a subsolution and a superso-

lution of problem (1.1).

The following comparison principle plays a crucial role in our proofs which can be

obtained by similar arguments as [10] and its proof is therefore omitted here.

Lemma 2.2. Suppose that w(x, t) ∈ C2,1(QT) ∩ C(QT) and satisfies

wt − d(x, t)�w ≥ c1(x, t)w + c2(x, t)
∫

�

c3(x, t)w(x, t)dx, (x, t) ∈ QT ,

w(x, t) ≥ c4(x, t)
∫

�

c5(x, y)wl(y, t)dy, (x, t) ∈ ST ,
(2:2)

where d(x, t), ci (x, t)(i = 1,2,3,4) are bounded functions and d(x, t)≥ 0, ci (x, t)≥ 0 (i

= 2,3,4) in QT, c5 (x, y)≥ 0 for xÎ∂Ω, yÎΩ and is not identically zero. Then, w(x, 0) >

0 for x ∈ � implies w(x, t) > 0 in QT. Moreover, c5 (x, y) ≡ 0 or if

c4(x, t)
∫

�

c5(x, y)dy ≤ 1 on ST, then w(x, 0) ≥ 0 for x ∈ � implies w(x, t) ≥ 0 in QT.

On the basis of the above lemmas, we obtain the following comparison principle of

(1.1).

Lemma 2.3. Let u and v be nonnegative subsolution and supersolution of (1.1),

respectively, with u(x, 0) ≤ v(x, 0) for x ∈ � . Then, u ≤ v in QT if u ≥ h or v ≥ h for

some small positive constant h holds.

Local in time existence of positive classical solutions of (1.1) can be obtained by

using fixed point theorem [21], the representation formula and the contraction map-

ping principle as in [13]. By the above comparison principle, we get the uniqueness of

solution to the problem. The proof is more or less standard, so is omitted here.

3. Global existence and blow-up in finite time
In this section, we will use super- and subsolution techniques to derive some condi-

tions on the existence or nonexistence of global solution.

Proof of Theorem 1.1. (1) Let ψ(x) be the unique positive solution of the linear

elliptic problem

−�ψ = ε0, x ∈ �,

ψ(x) =
∫

�

g(x, y)dy, x ∈ ∂�,
(3:1)
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where ε0 is a positive constant such that 0 <ψ(x) < 1 (since
∫

�

g(x, y)dy < 1 , there

exists such ε0). Let K = maxx∈�ψ(x) , K = minx∈�ψ(x) .

We define a function w(x, t) as following:

w(x, t) = Mψ(x), (3:2)

where M ≥ 1 is a constant to be determined later. Then, we have

w|∂� = M
∫

�

g(x, y)dy ≥ M
∫

�

g(x, y)ψ l(x)dy = M1−l
∫

�

g(x, y)wl(y, t)dy

≥
∫

�

g(x, y)wl(y, t)dy.
(3:3)

On the other hand, we have for x Î Ω, t > 0,,

wt − f (w)(�w + a
∫

�

w(x, t)dx) ≥ f (Mψ(x))M(ε0 − a |�|K). (3:4)

We choose M = max{K−1maxx∈�u0(x), 1} and set a0 = ε0(|�|K)−1 , then it is easy to

verify that w(x, t) is a supersolution of (1.1) provided that a ≤ a0. By comparison prin-

ciple, u(x, t) ≤ w(x, t), then u(x, t) exists globally.

(2) Consider the following problem

z′(t) = b1f (Kz(t))z(t), t > 0,

z(0) = z0,
(3:5)

where z0 > max{K−1maxx∈�u0(x), 1} , b1 is a positive constant to be fixed later. It

follows from hypothesis (H3) and the theory of ordinary differential equation (ODE)

that there exists a unique solution z (t) to problem (3.5) and z (t) is increasing. If∫ +∞

δ

1
/
(sf (s))ds = +∞ for some positive δ, we know that z (t) exists globally and z (t)

≥ z0.

Let v(x, t) = z (t) ψ (x), where ψ (x) is given by (3.1), then for x Î Ω, t > 0, we obtain

vt − f (v)(�v + a
∫

�

v(x, t)dx)

= z′(t)ψ(x) − f (z(t)ψ(x))(z(t)�ψ(x) + a
∫

�

z(t)ψ(x)dx)

≥ z′(t)K − f (Kz(t))z(t)(aK |�| − ε0)

= f (Kz(t))z(t)(b1K − (aK |�| − ε0)).

(3:6)

Set a1 = ε0(K |�|)−1 , if a is sufficiently large such that a >a1, then we can choose

b1 = K−1(aK |�| − ε0) > 0. Thus,

vt − f (v)(�v + a
∫

�

v(x, t)dx) ≥ 0. (3:7)
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On the other hand, for x Î ∂Ω, t > 0, we get

v(x, t) = z(t)
∫

�

g(x, y)dy > z(t)
∫

�

g(x, y)ψ l(y)dy

>

∫
�

g(x, y)zl(t)ψ l(y)dy =
∫

�

g(x, y)vl(y, t)dy.
(3:8)

Here, we use the conclusions 0 <ψ (x) < 1 and z(t) > 1.

Also for x ∈ � , we have

v(x, 0) = z(0)ψ(x) = z0ψ(x) ≥ z0K ≥ u0(x). (3:9)

And the inequalities (3.5)-(3.9) show that v(x, t) is a supersolution of (1.1). Again by

using the comparison principle, we obtain the global existence of u(x, t). The proof is

complete.

Proof of Theorem 1.2. The proof of global existence part is similar to the first case

of Theorem 1.1. For any given positive constant M ≤ 1, w (x) = Mψ (x) is a supersolu-

tion of problem (1.1) provided that u0 (x) ≤ ψ (x) < 1 and a < ε0(|�|K)−1 , so the

solution of (1.1) exists globally by using the comparison principle.

To prove the bow-up result, we introduce the elliptic problem

−�ϕ(x) = 1, x ∈ �; ϕ(x) =
∫

�

g(x, y)ϕ(y)dy , x ∈ ∂�.

Under the hypothesis (H2) and
∫

�

g(x, y)dy < 1 , we know that it exists a unique

positive solution �(x). Let K∗ = minx∈�ϕ(x) , K∗ = maxx∈�ϕ(x) , and z(t) be the solu-

tion of the following ODE

z′(t) = f (K∗z(t))z(t), t > 0,

z(0) = z1 > 1.
(3:10)

Then, z(t) is increasing and z (t) ≥ z1. Due to the condition
∫ +∞

δ

1
/
(sf (s))ds < +∞ for

some positive constant δ, we know that z (t) of problem (3.10) blows up in finite time.

If a and u0 (x) are so large that a ≥ (K∗)l−1(K∗ + l)|�|−1K∗−l,u0 (x) ≥ z1 (K*)l, then

we set v1(x, t) = z(t)�l(x). For x Î Ω, t > 0, we obtain

v1t − f (v1)(�v1 + a
∫

�

v1(x, t)dx)

= z′(t)ϕl(x) − f (z(t)ϕl(x))z(t)(l(l − 1)ϕl−2(x)|∇ϕ|2 + lϕl−1(x)�ϕ(x) + a
∫

�

ϕl(x)dx)

≤ z′(t)(K∗)l − f (K∗lz(t))z(t)(aK∗ l |�| − l(K∗)l−1) ≤ 0.

(3:11)

For x Î ∂Ω, t > 0, by Jensen’s inequality, we get

v1(x, t) = z(t)ϕl(x) = z(t)(
∫

�

g(x, y)ϕ(y)dy)l

≤ z(t)(
∫

�

g(x, y)dy)l−1(
∫

�

g(x, y)ϕl(y)dy)

≤
∫

�

g(x, y)zl(t)ϕl(y)dy =
∫

�

g(x, y)vl1(y)dy.

(3:12)
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Also for x ∈ � , we have

v1(x, 0) = z(0)ϕl(x) = z1ϕ
l(x) ≤ z1(K∗)l ≤ u0(x). (3:13)

The inequalities (3.10)-(3.13) show that v1(x, t) is a subsolution of problem (1.1).

Since v1(x, t) blows up in finite time, u(x, t) also blows up in finite time by comparison

principle.

Proof of Theorem 1.3. Let z(t) be the solution of the following ODE

z′(t) = b2f (z(t))z(t), t > 0,

z(0) = z2.
(3:14)

where 0 <b2 <a |Ω|. If u0(x) is large enough, we can set 1 < z2 < minx∈�u0(x) .

Then, z (t) is increasing and satisfies z (t) ≥ z2 > 1. Moreover, z (t) of problem (3.14)

blows up in finite time.

Set s (x, t) = z (t), then we have for x Î Ω, t > 0,

st − f (s)(�s + a
∫

�

s(x, t)dx)

= z′(t) − af (z(t)) |�| z(t) = (b2 − a |�|) f (z(t))z(t) < 0.
(3:15)

For x Î ∂Ω, t > 0,

s(x, t) = z(t) ≤
∫

�

g(x, y)z(t)dy <

∫
�

g(x, y)zl(t)dy =
∫

�

g(x, y)sl(y, t)dy. (3:16)

s(x, 0) = z(0) = z2 < u0(x), x ∈ �. (3:17)

From (3.14)-(3.17), we see that s (x, t) is a subsolution of (1.1). Hence, u (x, t) ≥ s (x,

t) by comparison principle, which implies u (x, t) blows up in finite time. This com-

pletes the proof.

Proof of Theorem 1.4. Consider the following equation

vt = f (v)(�v + a
∫

�

vdx) , x ∈ �, t > 0,

v(x, t) = 0, x ∈ ∂�, t > 0,

v(x, 0) = v0(x), x ∈ �,

(3:18)

and let v (x, t) be the solution to problem (3.18). It is obvious that v (x, t) is a subso-

lution of (1.1). By Theorem 1 in [5], we can obtain the result immediately.

4. Blow-up rate estimate
Now, we consider problem (1.1) with f (u) = up, 0 <p ≤ 1 and l = 1, i.e.,

ut = up(�u + a
∫

�

u(x, t)dx) , x ∈ �, t > 0,

u(x, t) =
∫

�

g(x, y)u(y, t)dy , x ∈ ∂�, t > 0,

u(x, 0) = u0(x), x ∈ �,

(4:1)
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where
∫

�

g(x, y)dy ≤ 1 for all x Î ∂Ω, and suppose that the solution of (4.1) blows

up in finite time T*.

Set U(t) = max
x∈�

u(x, t) , then U(t) is Lipschitz continuous.

Lemma 4.1. Suppose that u0 satisfies (H1), (H2), and (H4), then there exists a posi-

tive constant c0 such that

U(t) ≥ c0(T∗ − t)−1/p. (4:2)

Proof. By the first equation in (4.1), we have (see [22])

U′(t) ≤ a |�|U1+p(t), a.e. t ∈ (0,T∗), (4:3)

Hence,

−(U−p(t))′ ≤ ap |�| . (4:4)

Integrating (4.3) over (t, T*), we can get

U(t) ≥ (ap |�|)−1/p(T∗ − t)−1/p. (4:5)

Setting c0 = (ap |Ω| p)-1/p, then we draw the conclusion.

Lemma 4.2. Under the conditions of Lemma 4.1, there exists a constant ε1, which

will be given below, such that

ut − ε1up+1 ≥ 0, (x, t) ∈ � × (0,T∗). (4:6)

Proof. Let J(x, t) = ut-ε1u
p+1 for (x, t) ÎΩ × (0, T*), a series of computations yields

Jt − up�J − 2pε1upJ − aup
∫

�

Jdx

= pu−1J2 + ε1(p + 1)pu2p−1|∇u|2 + pε12u2p+1 + aε1up
∫

�

up+1dx − aε1(p + 1)u2p
∫

�

udx

≥ pε12u2p+1 + aε1up
∫

�

up+1dx − aε1(p + 1)u2p
∫

�

udx.

(4:7)

By virtue of Hölder inequality, we have∫
�

udx ≤ |�|p/(p+1)(
∫

�

up+1dx)1/(p+1).

Furthermore, by Young’s inequality, for any θ > 0, the following inequality holds

u2p
∫

�

udx ≤ |�|p/(p+1)up · up(
∫

�

up+1dx)1/(p+1)

≤ |�|p/(p+1)up(p/(p + 1)(θup)(p+1)/p + 1
/
(p + 1)θ−(p+1)

∫
�

up+1dx)

= (1
/
(p + 1))|�|p/(p+1)(pθ (p+1)/pu2p+1 + θ−(p+1)up

∫
�

up+1dx).

(4:8)

Using (4.8) and taking θ = |�|p
/
(p+1)2 , ε1 = a|Ω|, then (4.7) becomes

Jt − up�J − 2pε1upJ − aup
∫
�
Jdx ≥ pε1(ε1 − a |�|)u2p+1 = 0, (4:9)
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Fix (x, t) Î∂Ω × (0, T*), then we have

J(x, t) = ut − ε1up+1 =
∫
�
g(x, y)ut(y, t)dy − ε1(

∫
�
g(x, y)u(y, t)dy )p+1.

Since ut (y, t) = J(y, t) + ε1u
p+1 (y, t), we have

∫
�

g(x, y)ut(y, t)dy − ε1

(∫
�

g(x, y)u(y, t)dy
)p+1

=
∫

�

g(x, y)J(y, t)dy + ε1

(∫
�

g(x, y)up+1(y, t)dy −
(∫

�

g(x, y)u(y, t)dy
)p+1

)
.

Noticing that p > 0, 0 < F(x) =
∫

�

g(x, y)dy ≤ 1 , x ∈ ∂� , we can apply Jensen’s

inequality to the last integral in the above inequality,∫
�

g(x, y)up+1(y, t)dy − (
∫

�

g(x, y)u(y, t)dy )p+1

≥ F(x)
(∫

�

g(x, y)u(y, t)dy
/

F(x)
)p+1

−
(∫

�

g(x, y)u(y, t)dy
)p+1

≥ 0.

Hence, for (x, t) Î∂Ω × (0, T*), we have

J(x, t) ≥ ∫
�
g(x, y)J(y, t)dy . (4:10)

On the other hand, (H4) implies that

J(x, 0) > 0, x ∈ �. (4:11)

Owing to u(x, t) is a positive continuous function for (x, t) ∈ � × [0,T∗) , it follows

from (4.9)-(4.11) and Lemma 2.2 that J(x, t) ≥ 0 for (x, t) ∈ � × [0,T∗) , i.e., ut ≥ ε1u
p

+1. This completes the proof.

Integrating (4.6) from t to T*, we conclude that

u(x, t) ≤ c2(T∗ − t)−1/p, (4:12)

where c2 = (ε1p)
-1/p is a positive constant independent of t. Combining (4.2) with

(4.12), we obtain the following result.

Theorem 4.3. Under the conditions of Lemma 4.1, if u (x, t) is the solution of (4.1)

and blows up in finite time T*, then there exist positive constants c1, c2, such that

c1(T∗ − t)−1/p ≤ max
x∈�

u(x, t) ≤ c2(T∗ − t)−1/p.

Lemma 4.4. Assume that u0(x) satisfies (H1), (H2), and (H4), Δu0 ≤ 0 in Ω. u(x, t) is

the solution of problem (4.1). Then, Δu ≤ 0 in any compact subsets of Ω × (0, T*).

The proof is similar to that of Lemma 1.1 in [14].

Denote

g(t) = a
∫
�
udx, G(t) =

∫ t
0 g(s)ds.

Lemma 4.5. Under the conditions of Lemma 4.4, it holds that

lim
t→T∗ g(t) = ∞, lim

t→T∗ G(t) = ∞ . (4:13)
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Proof. From Lemma 4.3, we have

ut ≤ upg(t), a.e. t ∈ [0,T∗). (4:14)

Integrating (4.14) over (0, t), we obtain

1
1 − p

u1−p(x, t) ≤ ∫ t
0 g(s)ds +

1
1 − p

u01−p(x), 0 < p < 1, (4:15)

ln u(x, t) ≤ ∫ t
0 g(s)ds + ln u0(x), p = 1. (4:16)

In view of lim
t→T∗

u(x, t) = ∞ , lim
t→T∗

G(t) = ∞ . Noting that ut ≥ 0 by the assumption of

the initial function, then we see that g(t) is monotone nondecreasing. Therefore,

lim
t→T∗

g(t) = ∞ .

Lemma 4. 6. Under the conditions of Lemma 4.4, then we have

(1) lim
t→T∗

u1−p(x, t)
(1 − p)G(t)

= lim
t→T∗

∥∥u(·, t)∥∥1−p
∞

(1 − p)G(t)
= 1, 0 < p < 1, (4:17)

(2) lim
t→T∗

ln u(x, t)
G(t)

= lim
t→T∗

∥∥ln u(·, t)∥∥∞
G(t)

= 1, p = 1, (4:18)

uniformly on any compact subsets of Ω.

Proof. Let l > 0 be the principal eigenvalue of -Δ in Ω with the null Dirichlet

boundary condition, and j(x) be the corresponding eigenfunction satisfying j(x) > 0,∫
�

φ(x)dx = 1 .

In case of (1). Define z1(x, t) = G (t) - u1-p/(1-p), γ1(t) =
∫
�
z1(y, t)φ(y)dy . A direct

computation shows

γ ′
1(t) =

∫
�

(g(t) − u−p(y, t)ut(y, t))φ(y)dy = −
∫

�

�u(y, t)φ(y)dy

= λ

∫
�

φ(y)u(y, t)dy +
∫

∂�

u(∂φ
/
∂n)dS

≤ λ

∫
�

(G(t) − z1(y, t))
1/(1−p)φ(y)dy

≤ C1(G1/(1−p)(t) +
∫

�

(z−1 (y, t))
1/(1−p)

φ(y)dy),

where z−1 = max{−z1, 0} and using the equality
∫

∂�

(∂φ
/
∂n)dS = −λ < 0 . From

(4.15), we know that

inf
�

z1(y, t) ≥ −C′, (4:19)

which means z−1 ≤ C′ . Then,

γ ′
1(t) ≤ C2G1/(1−p)(t) + C3, (4:20)
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Integrate (4.20) from 0 to t,

γ1(t) ≤ C4(1 +
∫ t
0 G

1/(1−p)(s)ds), (4:21)

Thus, (4.19) and (4.21) imply∫
�

∣∣z1(y, t)∣∣ φ(y)dy ≤ C5(1 +
∫ t
0 G

1/(1−p)(s)ds).

Define Kr = {yÎ Ω: dist(y, ∂Ω)≥ r}. Since -Δz1 ≤ 0 in Ω × (0, T*). Using Lemma 4.5

in [1], we obtain

sup
Kρ

z1(x, t) ≤ C6

ρN+1
(1 +

∫ t
0 G

1/(1−p)(s)ds). (4:22)

It follows from (4.22) and (4.15) that

− k1
G(t)

≤ 1 − u1−p(x, t)
(1 − p)G(t)

≤ K1

ρN+1

1 +
∫ t
0 G

1/(1−p)(s)ds

G(t)
, (4:23)

for any xÎ Kr and t Î (0,T*), where k1 and K1 are positive constants.

We know from Theorem 4.3 that

∫ t
0 G

1/(1−p)(s)ds ≤ C7
∫ t
0 (T

∗ − s)−1/pds. (4:24)

In view of (4.15) and Theorem 4.3, it follows that

G(t) ≥ C8u1−p ≥ C9(T∗ − t)−(1−p)/p. (4:25)

From (4.23)-(4.25), we get

− k1
G(t)

≤ 1 − u1−p(x, t)
(1 − p)G(t)

≤ C10

ρN+1

1 +
∫ t
0 (T

∗ − s)−1/pds

(T∗ − t)−(1−p)/p
. (4:26)

It is obvious that

lim
t→T∗

∫ t
0 (T

∗ − s)−1/pds

(T∗ − t)−(1−p)/p
= 0.

Thus,

lim
t→T∗

u1−p(x, t)
(1 − p)G(t)

= lim
t→T∗

∥∥u(·, t)∥∥1−p
∞

(1 − p)G(t)
= 1.

In case of (2). We define z2 (x, t) = G (t) - ln u(x, t), γ2(t) =
∫
�
z2(y, t)φ(y)dy . Then,

γ ′
2(t) =

∫
�

(g(t) − u−1(y, t)ut(y, t))φ(y)dy = −
∫

�

�u(y, t)φ(y)dy

= λ

∫
�

φ(y)u(y, t)dy +
∫

∂�

u(∂φ
/
∂n)dS

≤ λ

∫
�

exp{G(t) − z2(y, t)}φ(y)dy.
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From (4.16), we know that

inf
�

z2(y, t) ≥ −C′′, (4:27)

Then,

γ ′
2(t) ≤ C11 exp{G(t)}, (4:28)

Integrate (4.28) from 0 to t yields

γ2(t) ≤ C12(1 +
∫ t
0 exp{G(s)}ds), (4:29)

Thus, (4.29) and (4.27) imply∫
�

∣∣z2(y, t)∣∣ φ(y)dy ≤ C13(1 +
∫ t
0 exp{G(s)}ds).

Define Kζ = {yÎ Ω: dist(y, ∂Ω)≥ ζ}. Since -Δz2 ≤ 0 in Ω × (0, T*), we obtain

sup
Kζ

z2(x, t) ≤ C14

ζN+1
(1 +

∫ t
0 exp{G(s)}ds). (4:30)

It follows from (4.30) and (4.27) that

− k2
G(t)

≤ 1 − ln u(x, t)
G(t)

≤ K2

ζN+1

1 +
∫ t
0 exp{G(s)}ds
G(t)

, (4:31)

for any xÎ Kζ and t Î (0,T*).

By Theorem 4.3, we have

G(t) =
∫ t

0
g(s)ds ≤ a

∫ t

0
(
∫

�

∣∣U(s)
∣∣dx)ds

≤ a |�| (ε1)−1
∫ t

0
(T∗ − s)−1ds ≤ ln (T∗ − t)−1 + lnT∗.

(4:32)

On the other hand, we know form (4.16) and Theorem 4.3 that

G(t) ≥ C16
∣∣ln(T∗ − t)

∣∣ . (4:33)

From (4.31)-(4.33), we get

− k2
G(t)

≤ 1 − ln u(x, t)
G(t)

≤ C17

ζN+1

1 + T∗ ∫ t
0 (T

∗ − s)−1ds∣∣ln(T∗ − t)
∣∣ .

It is easy to derive

lim
t→T∗

1 + T∗ ∫ t
0 (T

∗ − s)−1ds∣∣ln(T∗ − t)
∣∣ = 0.

Thus,

lim
t→T∗

ln u(x, t)
G(t)

= lim
t→T∗

∥∥ln u(·, t)∥∥∞
G(t)

= 1.

This completes the proof.
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Proof of Theorem 1.5. Case 1: 0 <p < 1. Form (4.17), we have

u(x, t) ∼ ((1 − p)G(t))1/(1−p) as t → T∗,

where the notation u ~ v means lim
t→T∗

u(t)
/
v(t) = 1 .

Furthermore,

G′(t) = g(t) = a
∫
�
udx ∼ a |�| ((1 − p)G(t))1/(1−p) as t → T∗. (4:34)

Integrating (4.34) over (t, T*) yields

G(t) ∼ (1 − p)−1(ap |�| (T∗ − t))−(1−p)/p as t → T∗. (4:35)

So, we can get our conclusion by using (4.17) and (4.35).

Case 2: p = 1. In this case, for any given s: 0 <s ≪ 1. By (4.18), there exists 0 <t0
<T* such that

(1 − σ )G(t) ≤ ln u(x, t) ≤ (1 + σ )G(t), x ∈ �, t ∈ [t0,T∗).

Therefore,

a |�| exp{(1−σ )G(t)} ≤ G′(t) = a
∫
�
udx ≤ a |�| exp{(1+σ )G(t)}, t0 ≤ t ≤ T∗. (4:36)

In view of the right-hand side of the (4.36), we have

exp{−(1 + σ )G(t)}dG(t) ≤ a |�| dt, t0 ≤ t ≤ T∗.

Integrating the above inequality from t to T* yields that

exp{−(1 + σ )G(t)} ≤ a(1 + σ ) |�| (T∗ − t), t0 ≤ t ≤ T∗.

Namely,

G(t) ≥ (−1
/
(1 + σ )) ln[a(1 + σ ) |�| (T∗ − t)], t0 ≤ t ≤ T∗. (4:37)

Similar arguments to the left-hand side of (3.36) yield that

G(t) ≤ (−1
/
(1 − σ )) ln[a(1 − σ ) |�| (T∗ − t)], t0 ≤ t ≤ T∗. (4:38)

Consequently, (4.37) and (4.38) guarantee that for t0 ≤ t ≤ T*,

(−1
/
(1 + σ )) ln[a(1+σ ) |�| (T∗−t)] ≤ G(t) ≤ (−1

/
(1 − σ )) ln[a(1−σ ) |�| (T∗−

t)].
(4:39)

Letting s ® 0, we have

lim
t→T∗ G(t)

∣∣ln(T∗ − t)
∣∣−1

= 1, (4:40)

because of lim
t→T∗

G(t) = ∞ . Due to ln u(x, t) ~ G(t) uniformly on any compact subset

of Ω, the proof is complete.
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