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Abstract

The unique continuation theorems for elliptic differential-operator equations with
variable coefficients in vector-valued Lp-space are investigated. The operator-valued
multiplier theorems, maximal regularity properties and the Carleman estimates for
the equations are employed to obtain these results. In applications the unique
continuation theorems for quasielliptic partial differential equations and finite or
infinite systems of elliptic equations are studied.
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1 Introduction
The aim of this article, is to present a unique continuation result for solutions of a dif-

ferential inequalities of the form:∥∥P(x, D) u (x)
∥∥E ≤ ∥∥V(x) u (x) ‖E, (1)

where

P(x;D)u =
n∑

i,j=1

aij
∂2u

∂xi∂xj
+ Au +

n∑
k=1

Ak
∂u

∂xk
,

here aij are real numbers, A = A (x), Ak = Ak (x) and V (x) are the possible linear

operators in a Banach space E.

Jerison and Kenig started the theory of Lp Carleman estimates for Laplace operator

with potential and proved unique continuation results for elliptic constant coefficient

operators in [1]. This result shows that the condition V Î Ln/2,loc is in the best possible

nature. The uniform Sobolev inequalities and unique continuation results for second-

order elliptic equations with constant coefficients studied in [2]. This was latter gener-

alized to elliptic variable coefficient operators by Sogge in [3]. There were further

improvement by Wolff [4] for elliptic operators with less regular coefficients and by

Koch and Tataru [5] who considered the problem with gradients terms. A comprehen-

sive introductions and historical references to Carleman estimates and unique conti-

nuation properties may be found, e.g., in [5]. Moreover, boundary value problems for
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differential-operator equations (DOEs) have been studied extensively by many

researchers (see [6-18] and the references therein).

In this article, the unique continuation theorems for elliptic equations with variable

operator coefficients in E-valued Lp spaces are studied. We will prove that if
1
p +

1
p| = 11

μ
= 1

p − 1
p′, 1p +

1
p| = 1, V Î Lμ (Rn; L(E)), p, μÎ (1, ∞) and u ∈ W2

p (R
n;E(A), E)

satisfies (1), then u is identically zero if it vanishes in a nonempty open subset, where

W2
p (R

n;E(A),E) is an E-valued Sobolev-Lions type space. We prove the Carleman esti-

mates to obtain unique continuation. Specifically, we shall see that it suffices to show

that if w (x) = x1 +
x21
2
, then

∥∥etwu ∥∥∥Lp| (Rn; E) ≤ C

∥∥∥∥etwL(εx, D)u

∥∥∥∥Lp(Rn;E),
1
p
+
1
p| = 1,

∑
|α|≤1

t(1+
1
n−|α|) ∥∥etwDαu

∥∥Lp(Rn;E)+
∥∥etwAu ∥∥Lp(Rn;E) ≤

C
∥∥etwL(εx, D) u

∥∥Lp(Rn;E).

In the Hilbert space L2 (R
n; H), we derive the following Carleman estimate

∑
|α|≤2

t
3
2

−|α| ∥∥etwDαu
∥∥L2(Rn;H)+

∥∥etwAu ∥∥L2(Rn;H) ≤ C
∥∥etwL0u ∥∥L2(Rn;H).

Any of these inequalities would follow from showing that the adjoint operator Lt (x;

D) = etwL (x; D) e-tw satisfies the following relevant local Sobolev inequalities

‖u
∥∥∥Lp| (Rn;E) ≤ C ‖Ltu

∥∥∥∥Lp(Rn;E),
1
p
+
1
p| = 1,

∑
|α|≤1

t
(
1+1n−|α|

) ∥∥Dαu
∥∥Lp(Rn;E)+ ‖Au ∥∥Lp(Rn;E) ≤ C ‖Ltu

∥∥Lp(Rn;E),

uniformly to t, where L0t = etwL0e
-tw. In application, putting concrete Banach spaces

instead of E and concrete operators instead of A, we obtain different results concerning

to Carleman estimates and unique continuation.

2 Notations, definitions, and background
Let R and C denote the sets of real and complex numbers, respectively. Let

Sϕ = {ξ ∈ C, | arg ξ | ≤ ϕ} ∪ {0}, ϕ ∈ [0, π).

Let E and E1 be two Banach spaces, and L (E, E1) denotes the spaces of all bounded

linear operators from E to E1. For E1 = E we denote L (E, E1) by L (E). A linear opera-

tor A is said to be a �-positive in a Banach space E with bound M >0 if D (A) is dense

on E and∥∥∥(A + ξ I)−1
∥∥∥L(E) ≤ M(1 + |ξ |)−1

with l Î S�, � Î (0, π], I is identity operator in E. We will sometimes use A + ξ or

Aξ instead of A + ξI for a scalar ξ and (A + ξI)-1 denotes the inverse of the operator

A + ξI or the resolvent of operator A. It is known [19, §1.15.1] that there exist frac-

tional powers Aθ of a positive operator A and
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E(Aθ ) = {u ∈ D(Aθ ), ‖u‖E(Aθ ) =
∥∥Aθu

∥∥
E + ‖u‖ < ∞, −∞ < θ < ∞}.

We denote by Lp (Ω; E) the space of all strongly measurable E-valued functions on

Ω with the norm

‖u‖Lp = ‖u‖Lp(	;E) =
(∫

	

∥∥u(x)∥∥pEdx
)1/p

, 1 ≤ p < ∞.

By Lp,q (Ω) and Wl
p,q(	) let us denoted, respectively, the (p, q)-integrable function

space and Sobolev space with mixed norms, where 1 ≤ p, q < ∞, see [20].

Let E0 and E be two Banach spaces and E0 is continuously and densely embedded E.

Let l be a positive integer.

We introduce an E-valued function space Wl
p(	;E0,E) (sometimes we called it Sobo-

lev-Lions type space) that consist of all functions u Î Lp (Ω; E0) such that the general-

ized derivatives Dl
ku = ∂ lu

∂xlk
∈ Lp(	;E) are endowed with the

‖u‖Wl
p(	;E0,E) = ‖u‖Lp(	;E0) +

n∑
k=1

∥∥∥Dl
ku
∥∥Lp(	;E) < ∞, 1 ≤ p < ∞.

The Banach space E is called an UMD-space if the Hilbert operator

(Hf )(x) = lim
ε→0

∫
|x−y|>ε

f (y)
x−ydy is bounded in Lp (R, E), p Î (1, ∞) (see e.g., [21,22]). UMD

spaces include, e.g., Lp, lp spaces and Lorentz spaces Lpq, p, q Î (1, ∞).

Let E1 and E2 be two Banach spaces. Let S (Rn; E) denotes a Schwartz class, i.e., the

space of all E-valued rapidly decreasing smooth functions on Rn. Let F and F-1denote

Fourier and inverse Fourier transformations, respectively. A function Ψ Î Cm (Rn; L

(E1, E2)) is called a multiplier from Lp (Rn; E1) to Lq (Rn; E2) for p, q Î (1, ∞) if the

map u ® Ku = F-1 Ψ (ξ) Fu, u Î S (Rn; E1) is well defined and extends to a bounded

linear operator

K : Lp(Rn;E1) → Lq(Rn;E2).

We denote the set of all multipliers from Lp (Rn; E1) to Lq (Rn; E2) by Mq
p(E1, E2).

For E1 = E2 = E and q = p we denote Mq
p(E1, E2) by Mp (E). The Lp-multipliers of the

Fourier transformation, and some related references, can be found in [19, § 2.2.1-§

2.2.4]. On the other hand, Fourier multipliers in vector-valued function spaces, have

been studied, e.g., in [23-28].

A set K ⊂ L (E1, E2) is called R-bounded [22,23] if there is a constant C such that for

all T1, T2, . . . , Tm Î K and u1,u2, . . . , um Î E1, m Î N

1∫
0

∥∥∥∥∥
m∑
j=1

rj(y)Tjuj

∥∥∥∥∥
E2

dy ≤ C
1∫
0

∥∥∥∥∥
m∑
j=1

rj(y)uj

∥∥∥∥∥
E1

dy,

where {rj} is a sequence of independent symmetric {-1, 1}-valued random variables

on [0,1]. The smallest C for which the above estimate holds is called a R-bound of the

collection K and denoted by R (K).
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Let

Un = {β = (β1, β2, . . . , βn), βi ∈ {0, 1}, i = 1, 2, . . . , n},
ξβ = ξ

β1
1 ξ

β2
2 . . . ξβn

n , |ξβ | = |ξ1|β1 |ξ2|β2 . . . |ξn|βn .

For any r = (r1, r2, . . . , rn), ri Î [0, ∞) the function (iξ)r, ξ Î Rn will be defined such

that

(iξ)r =
{
(iξ1)

r1 . . . (iξn)
rn , ξ1, ξ2, . . . , ξn 	= 0,

0, ξ1, ξ2, . . . , ξn = 0,

where

(it)ν = |t|ν exp
(
iπ
2
sign t

)
, t ∈ (−∞, ∞), ν ∈ [0, ∞).

Definition 2.1. The Banach space E is said to be a space satisfying a multiplier con-

dition with respect to p, q Î (1, ∞) (with respect to p if q = p) when for Ψ Î C(n) (Rn;

L (E1, E2)) if the set

{
ξ

|β|+ 1p− 1
q Dβ�(ξ) : ξ ∈ Rn\0, β ∈ Un

}

is R-bounded, then � ∈ Mq
p(E1, E2).

Definition 2.2. The �-positive operator A is said to be a R-positive in a Banach

space E if there exists � Î [0, π) such that the set

LA = {ξ(A + ξ I)−1 : ξ ∈ Sϕ}

is R-bounded.

Remark 2.1. By virtue of [29] or [30] UMD spaces satisfy the multiplier condition

with respect to p Î (1, ∞).

Note that, in Hilbert spaces every norm bounded set is R-bounded. Therefore, in Hil-

bert spaces all positive operators are R-positive. If A is a generator of a contraction

semigroup on Lq, 1 ≤ q ≤ ∞ [31], A has the bounded imaginary powers with

ν < π
2, ν < π

2 or if A is a generator of a semigroup with Gaussian bound in E Î UMD

then those operators are R-positive (see e.g., [24]).

It is well known (see e.g., [32]) that any Hilbert space satisfies the multiplier condi-

tion with respect to p Î (1, ∞). By virtue of [33] Mikhlin conditions are not sufficient

for operator-valued multiplier theorem. There are however, Banach spaces which are

not Hilbert spaces but satisfy the multiplier condition (see Remark 2.1).

Let Hk = {�h ∈ Mq
p(E1, E2), h = (h1, h2, . . . , hn) ∈ K} be a collection of multipliers

in Mq
p(E1, E2). We say that Hk is a uniform collection of multipliers if there exists a

constant M >0, independent on h Î K, such that∥∥F−1�hFu
∥∥
Lq(Rn;E2)

≤ M‖u‖Lp(Rn;E1)

for all h Î K and u Î S (Rn; E1).
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We set

Cb(	;E) =
{
u ∈ C(	;E), lim

|x|→∞
u(x) exists

}
.

In view of [17, Theorem A0], we have

Theorem 2.0. Let E1 and E2 be two UMD spaces and let

� ∈ C(n)(Rn\0; L(E1, E2)) for p, q ∈ (1, ∞).

If

R
{
ξ

|β|+1p −1
q Dβ

ξ �h(ξ) : ξ ∈ Rn\0, β ∈ Un

}
≤ Kβ < ∞

uniformly with respect to h Î K then Ψh (ξ) is a uniformly collection of multipliers

from Lp (Rn; E1) to Lq (R
n; E2).

Let

χ =
|α| + n

(
1
p − 1

q

)
l

, α = (α1, α2, . . . , αn).

Embedding theorems in Sobolev-Lions type spaces were studied in [13-18,32,34]. In a

similar way as [17, Theorem 3] we have

Theorem 2.1. Suppose the following conditions hold:

(1) E is a Banach space satisfying the multiplier condition with respect to p, q Î (1,

∞) and A is a R-positive operator on E;

(2) l is a positive and ak are nonnegative integer numbers such that 0 ≤ μ ≤ 1 - ϰ,

t and h are positive parameters.

Then the embedding

DαWl
p(R

n;E(A), E) ⊂ Lq(Rn;E(A1−χ−μ))

is continuous and there exists a positive constant Cµ such that for

u ∈ Wl
p(R

n;E(A), E)

the uniform estimate holds

∥∥Dαu
∥∥
Lq(Rn;E(A1−χ−μ)) ≤ Cμ

[
hμ‖u‖Wl

p(Rn;E(A),E) + h−(1−μ)‖u‖Lp(Rn;E)

]
.

Moreover, for u ∈ Wl
p(R

n;E(A), E) the following uniform estimate holds

∥∥A1−χ−μu
∥∥
Lp(Rn;E) ≤ Cμ

[
hμ‖u‖Wl

p(Rn;E(A),E) + h−(1−μ)‖u‖Lp(Rn;E)

]
.

3 Carleman estimates for DOE
Consider at first the equation with constant coefficients

L0u =
n∑

k=1

D2
ku + Au = f (x), (2)
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where Dk = ∂
i∂k

and A is the possible unbounded operator in a Banach space E.

Let w(x) = x1 +
x21
2
and t is a positive parameter.

Remark 3.1. It is clear to see that

etwL0[e−twu] = L0t(x, D)u = etw
(

n∑
k=1

D2
k (e

−twu) + e−twAu

)

=
n∑

k=1

D2
ku + Au + 2tw1

∂u
∂x1

+ [−t2w2
1 + t]u,

(3)

where w1 = ∂w
∂x1

. Let L0t (x, ξ) is the principal operator symbol of L0t (x, D) on the

domain B0, i.e.,

L0t(x, ξ) = ξ21 − 2iξ1w1t + A + |ξ ||2 − t2w2
1 = Gt(x, ξ)Bt(x, ξ),

where

Gt(x, ξ) = ξ1 − i
[(
A + |ξ ||2) 12 + tw1

]
,

Bt(x, ξ) = ξ1 + i
[(
A + |ξ ||2) 12 − tw1

]
, | ξ ||2 =

n∑
k=2

ξ2k .

Our main aim is to show the following result:

Remark 3.2. Since Q(ξ) Î S (�) for all � Î [0, π) due to positivity of A, the operator

function A + |ξ||2, ξ Î Rn is uniformly positive in E. So there are fractional powers of

A+|ξ||2 and the operator function (A + |ξ ||2)12 is positive in E (see e.g., [19, §1. 15.1]).

First, we will prove the following result.

Theorem 3.1. Suppose A is a positive operator in a Hilbert space H. Then the fol-

lowing uniform Sobolev type estimate holds for the solution of Equation (3)

∑
|α|≤2

t
3
2

−|α| ∥∥etwDαu
∥∥L2(Rn;H)+

∥∥etwAu ∥∥L2(Rn;H) ≤ C
∥∥etwL0u ∥∥L2(Rn;H). (4)

By virtue of Remark 3.1 it suffices to prove the following uniform coercive estimate

∑
|α|≤2

t
3
2

−|α| ∥∥Dαu
∥∥L2(Rn;H)+ ‖Au ∥∥L2(Rn;H) ≤ C ‖L0tu

∥∥L2(Rn;H) (5)

for u ∈ W2
2(R

n;H(A), E).

To prove the Theorem 3.1, we shall show that L0t (x, D) has a right parametrix T,

with the following properties.

Lemma 3.1. For t >0 there are functions K = Kt and R = Rt so that

L0t(x, D)K(x, y) = δ(x − y) + R(x, y), x, y ∈ B0, (6)

where δ denotes the Dirac distribution. Moreover, if we let T = Tt be the operator

with kernel K, i.e.,

Tf (x) =
∫
B0

K(x, y)f (y)dy, f ∈ C∞
0 (B0;E),
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and R is the operator with kernel R (x, y), then for large t >0, the adjoint of these

operators satisfy the following estimates∑
|α|≤2

t2−|α| ∥∥DαT∗f
∥∥L2(B0;H) ≤ C

∥∥f ∥∥L2(B0;H),
∥∥AT∗f

∥∥L2(B0;H) ≤ C
∥∥f ∥∥L2(B0;H), (7)

t
1
2
∥∥R∗f

∥∥L2(B0;H) ≤ C
∥∥f ∥∥L2(B0;H), (8)

t−
1
2
∥∥DνR∗f

∥∥L2(B0;H) ≤ C
∑

|α|≤|ν|−1

∥∥Dαf
∥∥L2(B0;H) , 1 ≤ |ν| ≤ 2. (9)

Proof. By Remark 3.2 the operator function (A + |ξ ||2)12 is positive in E for all ξ Î Rn.

Since tw1 + iξ1 Î S(�), due to positivity of A, for ϕ ∈ [π
2 ,π) the factor

Gt(x, ξ) = −i
[(
A + |ξ ||2)12 + w1t + iξ1

]
has a bounded inverse G−1

t (x, ξ)for all ξ Î Rn, t

> 0 and

∥∥G−1
t (x, ξ)

∥∥∥B(H) ≤ C(1 + |tw1 + iξ1|)−1. (10)

Therefore, we call Gt (x, ξ) the regular factor. Consider now the second factor

Bt(x, ξ) = i
[(
A + |ξ ||2) 12 − (w1t + iξ1)

]
.

By virtue of operator calculus and fractional powers of positive operators (see e.g.,

[19, §1.15.1] or [35]) we get that - [tw1 + iξ1] ∉ S (�) for ξ1 = 0 and tw1 = |ξ||, i.e., the

operator Bt (x, ξ) does not has an inverse, in the following set

�t = {(x, ξ) ∈ B0 × Rn : ξ1 = 0, |ξ || = tw1}.

So we will called Bt the singular factor and the set Δt call singular set for the opera-

tor function Bt. The operator B−1
t cannot be bounded in the set Δt. Nevertheless, the

operator B−1
t , and hence L−1

0t , can be bounded when (x, ξ) is sufficiently far from Δt.

For instance, if we define

�t =
{
(x, ξ) ∈ B0 × Rn : |ξ || ∈

[
t
4
, 4t

]
, |ξ1| ≤ t

4

}
,

by properties of positive operators we will get the same estimate of type (10) for the

singular factor Bt. Hence, using this fact and the resolvent properties of positive opera-

tors we obtain the following estimate

∥∥L−1
0t (x, ξ)

∥∥∥B(E) ≤ C(1 + |ξ |2 + t2)
−1

when (x, ξ) ∈ c�t, (11)

where the constant C is independent of x, ξ, t and cΓt denotes the complement of Γt.

Let β ∈ C∞
0 (R) such that, b(ξ) = 0 if |ξ | ∈ [ 14 , 4] and b (ξ) = 0 near the origin. We

then define

β0(ξ) = β0t(ξ)β0(ξ) = 1 − β(|ξ ||/t)β(1 − ξ1/t)
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and notice that b0 (ξ) = 0 on Γt. Hence, if we define

K0(x, y) = (2π)−n
∫
Rn

β0(ξ)ei((x−y),ξ)L−1
0t (y, ξ)dξ (12)

and recall (11), then by [31] it follows from standard microlocal arguments that

L0t(x, D)K0(x, y) = (2π)−n
∫
Rn

β0(ξ)ei((x−y),ξ)dξ + R0t(x, y),

where R0t belongs to a bounded subset of S-1 which is independent of t. Since opera-

tor R∗
0t also has the same property, it follows that for all f ∈ C∞

0 (B0;H)∥∥DνR∗
0t f
∥∥L2(B0;H) ≤ C

∑
|α|≤|ν|−1

∥∥Dαf
∥∥L2(B0;H) , 1 ≤ |ν | ≤ 2.

By reasoning as in [31] we get that tR0t belongs to a bounded subset of S0. So, we

have the following estimate

t
∥∥DνR∗

0tf
∥∥L2(B0;H) ≤ C

∥∥f ∥∥L2(B0;H).

Moreover, the Remark 3.2, positivity properties of A and, (11) and (12) imply that,

the operator functions
∑
|α|≤2

β0(ξ)t2−|α|ξαL−1
0t (x, ξ) and β0(ξ)AL−1

0t (x, ξ) are uniformly

bounded. Then, if we let T0 be the operator with kernel K0 (x, y), by using the Min-

kowski integral inequality and Plancherel’s theorem we obtain∑
|α|≤2

t2−|α| ∥∥DαT0f
∥∥L2(B0;H) ≤ C

∥∥f ∥∥L2(B0;H),
∥∥AT0f ∥∥L2(B0;H) ≤ C

∥∥f ∥∥L2(B0;H).

For inverting L0t (x, D) on the set Γt we will require the use of Fourier integrals with

complex phase. Let b1 (ξ) = 1 - b0 (ξ). We will construct a Fourier integral operator T1

with kernel

K1(x, y) = (2π)−n
∫
Rn

β1(ξ)ei�(x,y,ξ)L−1
0t (y, ξ) dξ (13)

so that the analogs of (16) and the estimates (7)-(9) are satisfied. Since G−1
t (x, ξ) is

uniformly bounded on Γt, we should expect to construct the phase function F in (13)

using the factor Bt (x, ξ). Specifically, we would like F to satisfy the following equation

Bt(x, �x) = Bt(y, ξ), y ∈ B0, (x, ξ ∈ �t). (14)

The Equation (14) leads to complex eikonal equation (i.e., a non-linear partial differ-

ential equation with complex coefficients).

(A + |�x|(x, y, ξ)|2) 12 − [w1(x)t + i�x1(x, y, ξ)] =(
A + |ξ ||2) 12 − (w1(y)t + iξ1).

(15)

Since w1 (x) = 1 + x1, w1 (y) = 1 + y1, we have

� = (x − y, ξ) +
(x1 − y1)

2ξ1

2(1 + y1)
+
i(x1 − y1)

2|ξ ||
2(1 + y1)

(16)
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is a solution of (15). To use this we get

L0t(x, D) ei�(x,y,ξ) = ei�L0t(x, �x) + ei�
∂2�

∂x21
.

Next, if we set

r(x, y, ξ) = Gt(y, ξ) − Gt(x, ξ) = −i [w1(y) − w1(x)]t (17)

then it follows from L0t (x, ξ) = Gt (x, ξ)Bt (x, ξ) and (14) that

L0t(x, �x) = L0t(y, ξ) + Bt(y, ξ)r(x, y, ξ). (18)

Consequently, (16)-(18) imply that

(2π)nL0t(x, D)K1(x, y) =
∫
Rn

β1(ξ)ei�dξ +
∫
Rn

β1(ξ)r(x, y, ξ)G−1
t (y, ξ)ei�dξ

∫
Rn

β1(ξ)AL
−1
0t (y, ξ)ei�dξ +

∫
Rn

β1(ξ)
∂2�

∂x21
L−1
0t (y, ξ)ei�dξ .

(19)

By reasoning as in [3] we obtain that the first and second summands in (19) belong

to a bounded subset of S0. So, we see that the equality (5) must hold. Now we let K (x,

y) = K0 (x, y) + K1 (x, y) and R (x, y) = R0 (x, y) + R1 (x, y), where

R1(x, y) = R10(x, y) + R11(x, y),R10(x, y) =
∫
Rn

β1(ξ)r(x, y, ξ)G−1
t (y, ξ)ei�dξ ,

R11(x, y) =
∫
Rn

β1(ξ)
∂2�

∂x21
L−1
0t (y, ξ)ei�dξ , T0f (x) =

∫
B0

K0(x, y)f (y)dy, T1f (x) =
∫
B0

K1(x, y)f (y)dy.

Due to regularity of kernels, by using of Minkowski and Hölder inequalities we get

the analog estimate as (7) and (9) for the operators T0 and R10. Thus, in order to finish

the proof, it suffices to show that for f ÎL2 (B0; E) one has∑
|α|≤2

t2−|α| ∥∥DαT∗
1f
∥∥L2(B0;H)+

∥∥AT∗
1f
∥∥L2(B0;H) ≤ C

∥∥f ∥∥L2(B0;H), (20)

t
1
2
∥∥R∗

11f
∥∥L2(B0;H) ≤ C

∥∥f ∥∥L2(B0;H), (21)

t−
1
2 ||DνR∗

11f
∥∥L2(B0;H) ≤ C

∑
|α|≤|ν|−1

∥∥Dαf
∥∥L2(B0;H) , 1 ≤ |ν| ≤ 2. (22)

However, since R1,1 ≈ tT1, we need only to show the following

t3/2
∥∥T∗

1f
∥∥L2(B0;H) ≤ C

∥∥f ∥∥L2(B0;H). (23)

By using the Minkowski inequalities we get

∥∥T∗
1f
∥∥
L2(Rn−1;E) ≤

1
4∫

−1
4

∥∥∥∥∥∥
∫
B0

K∗
1(x, y)f (y)dy

|

∥∥∥∥∥∥ dy1,
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where K∗
1(x, y) = K̄1(y, x). The estimates (13) and (16) imply that

K∗
1(x, y) = (2π)−n

∫
Rn−1

ei(x
′−y′)m(x1, y1, ξ |)dξ |,

where

m(x1, y1, ξ |) =
∞∫

−∞
β1(ξ)e

i
[
(x1−y1)ξ1+(x1−y1)

2(i|ξ ||−ξ1)/2(1+x1)
]
L−1
0t (y, ξ)dξ1.

Consequently, it follows from Plancherel’s theorem that

∥∥∥∥∥∥
∫

Rn−1

K∗
1(x, y)f (y)dy

|

∥∥∥∥∥∥ ≤ sup
ξ |

|m(x1, y1, ξ |)|
⎛
⎝ ∫
Rn−1

|f (y)|2dy|
⎞
⎠

1
2

. (24)

Note that for every N we have

ei[(x1−y1)
2|ξ ||/2(1+x1)] ≤ CN[1 + t(x1 − y1)2]−Non supp β1.

Since A is a positive operator in E, we have∥∥L−1
0t (x, ξ)

∥∥B(E) ≤ 1 + | − 2iξ1w1t + |ξ |2 − t2w2
1|−1

when −2iξ1w1t + A + |ξ |2 − t2w2
1 ∈ S(ϕ). Then by using the above estimate it not

easy to check that

∞∫
−∞

β1(ξ)e
iξ1
[
(x1−y1)−(x1−y1)

2/2(1+x1)
]
L−1
0t (y, ξ)dξ1 = O(t−1),

i.e.,

|m(x1, y1, ξ |)| ≤ Ct−1[1 + t(x1 − y1)2]−1.

Moreover, it is clear that

∞∫
−∞

(1 + tx1)
−1dx1 = O

(
t−

1
2

)
.

Thus from (24) by using the above relations and Young’s inequality we obtain the

desired estimate

∥∥T∗
1f
∥∥
L2(B0;H) ≤ Ct−1

∫ ∣∣∣∣
∫ [

1 + t(x1 − y1)
2
] ∥∥f (y1, ·)∥∥L2dy1

∣∣∣∣ dx1
≤ Ct−3/2

∥∥f∥∥L2(Rn;H).

Moreover, by using the estimate (10) and the resolvent properties of the positive

operator A we have∥∥AT∗
1f
∥∥
L2(B0;H) ≤ C

∥∥f∥∥L2(B0;H).

The last two estimates then, imply the estimates (20)-(22).

Proof of Theorem 3.1: The estimates (7)-(9) imply the estimate (5), i.e., we obtain

the assertion of the Theorem 3.1.
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4 Lp-Carleman estimates and unique continuation for equation with variable
coefficients
Consider the following DOE

L(x, D)u =
n∑

i,j=1

aij(x)D2
iju + Au = f (x), x ∈ Rn, (25)

where Dk = ∂
i∂k

and A is the possible unbounded operator in a Banach space E and aij

are

real-valued smooth functions in Bε = {x Î Rn, |x| < ε}.

Condition 4.1. There is a positive constant g such that
n∑

i,j=1
aij(x)ξiξj ≥ γ |ξ |2 for all ξ

Î Rn, x Î B0 = {x ∈ Rn, |x| < 1
4 }.

The main result of the section is the following

Theorem 4.1. Let E be a Banach space satisfies the multiplier condition and A be a

R-positive operator in E. Suppose the Condition 4.1 holds, n ≥ 3, p = 2n
n+2and p’ is the

conjugate of p, w = x1 +
x21
2
and aij Î C∞ (Bε). Then for u ∈ C∞

0 ( Bε; E(A)) and

∈> 0, 1t < 1
2 the following estimates are satisfied:

∥∥etwu∥∥Lp| (Rn;E) ≤ C
∥∥etwL(εx, D)u

∥∥
Lp(Rn;E),

1
p
+
1
p| = 1, (26)

∑
|α|≤1

t
(
1+ 1n−|α|

)∥∥etwDαu
∥∥
Lp(Rn;E) +

∥∥etwAu∥∥Lp(Rn;E) ≤ (27)

C
∥∥etwL(εx, D)u

∥∥
Lp(Rn;E).

Proof. As in the proof of Theorem 3.1, it is sufficient to prove the following esti-

mates

‖v‖Lp| (Rn;E) ≤ C‖Lt (εx, D) v ‖Lp(Rn;E),
1
p
+
1
p| = 1, (28)

∑
|α|≤1

t(1+
1
n−|α|)∥∥Dαv

∥∥
Lp(Rn;E) + ‖Av‖Lp(Rn;E) ≤ C

∥∥Lt(εx, D)v
∥∥
Lp(Rn;E) (29)

where,

Lt (εx,D) = etwL (εx, D) e−tw = L (εx, D) + 2tw1
∂

∂x1
− (tw1)2 − t2, w1 =

∂w
∂x1

.

Consequently, since w1 ≃ 1 on Bε, it follows that, if we let Qt (εx, D) be the differen-

tial operator whose adjoint equals
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Q∗
t (εx, D) = w−2

1 L(εx, D) + 2tw−1
1

∂

∂x1
− t2,

then it suffices to prove the following

‖v‖Lp| (Rn;E) ≤ C
∥∥Qt(εx, D)v

∥∥
Lp(Rn;E),

1
p
+
1
p| = 1,

∑
|α|

t(1+
1
n−|α|)||Dαv||Lp(Rn;E) + ||Av||Lp(Rn;E) ≤ C||Qt(εx,D)v||Lp (Rn;E),

v ∈ C∞
0 (Bε;E(A)).

(30)

The desired estimates will follow if we could constrict a right operator-valued para-

metrix T, for Qt* (εx, D) satisfying Lp estimates. these are contained in the following

lemma.

Lemma 4.1. For t >0 there are functions K = Kt and R = Rt, so that

Q∗
t (εx, D)K

(
x, y
)
= δ
(
x − y

)
+ R
(
x, y
)
, x, y ∈ Bε, (31)

where δ denotes the Dirac distribution. Moreover, if we let T = Tt be the operator

with kernel K (x, y) and R be the operator with kernel R (x, y), then if ε and 1
t are suffi-

ciently small, the adjoint of these operators satisfy the following uniform estimates

∥∥T∗f
∥∥
Lp1 (R

n;E) ≤ C
∥∥f∥∥Lp(Rn;E),

1
p
+
1
p| = 1, (32)

∑
|α|≤1

t(1+
1
n−|α|)∥∥DαT∗f

∥∥
Lp(Rn;E) ≤ C

∥∥f∥∥Lp(Rn;E), (33)

∥∥AT∗f
∥∥
Lp(Rn;E) ≤ C

∥∥f∥∥Lp(Rn;E),

t
1
n
∥∥R∗ f

∥∥
Lq(Rn; E)

≤ C
∥∥f∥∥Lq(Rn; E) , q = p, p| , (34)

t−1+ 1n
∥∥∇R∗f

∥∥
Lp(Rn; E)

≤ C
∥∥f∥∥Lp(Rn;E)

, f ∈ C∞
0 (Bε;E) . (35)

Proof. The key step in the proof is to find a factorization of the operator-valued

symbol Q∗
t (εx, ξ) that will allow to microlocally invert Q∗

t (εx, D) near the set where

Q∗
t (εx, ξ) vanishes. Note that, after making a suitable choice of coordinates, it is

enough to show that if L (x, D) is of the form

L (x,D) = D2
1 +

n∑
i,j=2

aijDiDj,Dj =
1
i

∂

∂xj

therefore, we can expressed Q∗
t (εx, ξ) as

Q∗
t (εx, ξ) = Bt (εx, ξ)Gt (εx, ξ) , (36)
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where

Bt (x, ξ) = w−1
1 ξ1 + i

[(
A + w−1

1 a
(
εx, ξ |))− t

]
,

Gt (x, ξ) = w−1
1 ξ1 − i

[(
A + w−1

1 a
(
εx, ξ |)) + t

]
,

where

a
(
x, ξ |) = n∑

i, j=2

aij (x) ξiξj.

The ellipticity of Q(x, D) and the positivity of the operator A, implies that the factor

Gt (x, ξ) never vanishes and as in the proof of Theorem 3.1 we get that

∥∥G−1
t (εx, ξ)

∥∥
B(H)

≤ C

⎛
⎝1 + |w−1

1 a
(
εx, ξ |) |

1
2 + |t + w−1

1 ξ1|
⎞
⎠

−1

, (37)

x ∈ Bε, ξ ∈ Rn,

i.e., the operator function Gt (εx, ξ) has uniformly bounded inverse for (x, ξ) Î Bε

×Rn. One can only investigate the factor Bt (εx, ξ). In fact, if we let

�t =
{
(x, ξ) ∈ Bε × Rn : ξ1 = 0, |ξ || = tw1

}
,

then the operator function Bt (x, ξ) is not invertible for (x, ξ) Î Δt. Nonetheless, Bt

(εx, ξ) and Q∗
t (εx, ξ) can be have a bounded inverse when (x, ξ) is sufficiently far

away. For instance, if we define

�t =
{
(x, ξ) ∈ Bε × Rn : |ξ || ∈

[
t
4
, 4t
]
, |ξ1| ≤ t

4

}
,

by properties of positive operators we will get the same estimate of type (37) for the

singular factor Bt. Hence, we using this fact and the resolvent properties of positive

operators we obtain the following estimate∥∥∥(Q∗
t

)−1
(εx, ξ)

∥∥∥
B(E)

≤ C
(
1 + |ξ || + |t + w−1

1 ξ1 |)−1
when (x, ξ) ∈ c�t. (38)

As in § 3, we can use (38) to microlocallity invert Q∗
t (εx, D) away from Γt . To do

this, we first fix β ∈ C∞
0 (R) as in § 3. We then define

β0 = β0t = 1 − β
(∣∣ξ |∣∣ /t)β (1 − ξ1/t

)
.

It is clear that b0 (ξ) = 0 on Γt. Consequently, if we define

K0
(
x, y
)
= (2π)−n

∫
Rn

β0 (ξ) ei((x−y),ξ)
(
Q∗

t

)−1 (
εy, ξ

)
dξ (39)

and recall (37), then we can conclude that standard microlocal arguments give that

Q∗
t (εx,D)K0

(
x, y
)
= (2π)−n

∫
Rn

β0 (ξ) ei((x−y),ξ)dξ + R0
(
x, y
)
, (40)

where R0 belongs to a bounded subset of S-1 that independent of t. Since the adjoint

operator R∗
0 also is abstract pseudodifferential operator with this property, by reasoning
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as in [31, Theorem 6] it follows that∥∥∇R∗
0f
∥∥
Lp(Rn;E)

≤ C
∥∥f∥∥Lp(Rn;E)

, f ∈ C∞
0 (Bε;E) , (41)

t
∥∥R∗

0f
∥∥
Lq(Rn;E)

≤ C
∥∥f∥∥Lq(Rn;E)

, f ∈ C∞
0 (Bε;E) , (42)

q = p, p′,
1
p
+
1
p′ = 1.

Moreover, the positivity properties of A and the estimate (38) imply that the operator

functions
∑

|α| ≤ 2

β0 (ξ) t2−|α| ξα
(
Q∗

t

)−1
(εx, ξ) andβ0 (ξ) A

(
Q∗

t

)−1
(εx, ξ) are uniformly

bounded. Next, let T0 be the operator with kernel K0. Then in a similar way as in [31]

we obtain that∑
|α|≤1

t(2−|α|)∥∥DαT∗
0f
∥∥
Lp(Rn;E)

≤ C
∥∥f∥∥Lp(Rn;E)

, (43)

∥∥AT∗
0f
∥∥
Lp(Rn;E)

≤ C
∥∥f∥∥Lp(Rn;E)

which also the first estimate is stronger than the corresponding inequality in Lemma

4.1. Finally, since T0 Î S-2 and 1
p − 1

p| = 2
n it follows from imbedding theorem in

abstract Sobolev spaces [17] that∥∥T∗
0 f
∥∥
Lp| (Rn ; E)

≤ C
∥∥f∥∥Lp(Rn ; E)

, f ∈ C∞
0 (Bε; E) . (44)

Thus, we have shown that the microlocal inverse corresponding to cΓt, satisfies the

desired estimates.

Let b1 (ξ) = 1-b0 (ξ). To invert Q∗
t (εx, D) for (x, ξ) Î Γt, we have to construct a

Fourier integral operator T1, with kernel

K1
(
x, y
)
= (2π)−n

∫
Rn

β1 (ξ) ei�(x,y,ξ)Q∗−1

0t

(
εy, ξ

)
dξ , (45)

such that the analogs of (39) and (32)-(35) are satisfied. For this step the factoriza-

tion (36) of the symbol Q∗
t

(
εy, ξ

)
will be used. Since the factor Gt (εx, ξ) has a

bounded inverse for (x, ξ) Î Γt, the previous discussions show that we should try to

construct the phase function in (46) using the factor Bt (εx, ξ). We would like F (x, y,

ξ) to solve the complex eikonal equation

Bt (εx,�x) = Bt
(
εy, ξ

)
, x, y ∈ Bε , ξ ∈ supp β1, (46)

Since Bt (εx, Fx) - Bt (εy, ξ) is a scalar function (it does not depend of operator A ),

by reasoning as in [3, Lemma 3.4] we get that

�(x, y, ξ) = φ(x′, y, ξ ′) + ψ (x, y, ξ),

where j is real and defined as

φ
(
x′, y, ξ ′) = (x1 − y1

)
ξ1 +O

(∣∣x′ − y′
∣∣2 ∣∣ξ ′∣∣) ,
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while

ψ
(
x, y, ξ

)
=
(
x1 − y1

)
ξ1 +O

(∣∣x1 − y1
∣∣2 ∣∣ξ ′∣∣)

and

Im ψ
(
x, y, ξ

) ≥ c
(
x1 − y1

)2 ∣∣ξ ′∣∣ , c > 0. (47)

Then we obtain from the above that

Q∗
t (εx,D) ei�(x,y,ξ) = ei�Q∗

t (εx,�x) + ei�w−2
1 L (εx,D) �.

Next, if we set

r
(
x, y, ξ

)
= Gt

(
εy, ξ

) − Gt (εx, ξ) = w−1
1

(
y
) [

ξ1 − ia
(
εy, ξ ′)]

−w−1
1 (x)

[
ξ1 − ia

(
εx, ξ ′)] (48)

then it follows from (36) and (48) that

ei�Q∗
t (εx,�x) = ei�Q∗

t

(
εy, ξ

)
+ ei�Bt

(
εy, ξ

)
r
(
x, y, ξ

)
+O

(
t−N) (49)

for every N when b1 (ξ) ≠ 0. Consequently, (49), (50) imply that

(2π)nQ∗
t (εx,D)K1

(
x, y
)
=
∫

β1 (ξ) ei�dξ +
∫

β1 (ξ) r
(
x, y, ξ

)
G−1
t

(
εy, ξ

)
ei�dξ

w−2
1

∫
β1(ξ)Q∗−1

t (εy, ξ) (L(εx,D)�)ei�dξ +O(t−N). (50)

By reasoning as in Theorem 3.1 we obtain from (51) that

Q∗
t (εx,D)K1(x, y) = (2π)−n

∫
β1(ξ)ei(x−y,ξ)dξ + R10(x, y) + R11(x, y),

where

R11(x, y) = (2π)−nw−2
1

∫
β1(ξ)Q∗−1

t (εy, ξ) (L(εx,D)�)ei�dξ (51)

while R10 belongs to a bounded subset of S-1 and tR10 belongs to a bounded subset

of S0. In view of this formula, we see that if we let K (x, y) = K0 (x, y) + K1 (x, y) and

R (x, y) = R0 (x, y)+R1 (x, y), where R1 = R10 +R11, then we obtain (31). Moreover,

since R10 satisfies the desired estimates, we see from Minkowski inequality that, in

order to finish the proof of Lemma 4.1, it suffices to show that for f ∈ C∞
0 (Bε;E)∥∥T∗

1f
∥∥∥Lp| (Rn;E) ≤ C

∥∥f ∥∥Lp(Rn;E), (52)

∑
|α|≤1

t(1+
1
n−|α|) ∥∥DαT∗

1f
∥∥Lp(Rn;E) ≤ C

∥∥f ∥∥Lp(Rn;E), (53)

t
1
n
∥∥R∗

11f
∥∥Lq(Rn;E) ≤ C

∥∥f ∥∥Lq(Rn;E), q = p, p|, (54)
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t−1+ 1n
∥∥∇R∗

11f
∥∥Lp(Rn;E) ≤ C

∥∥f ∥∥Lp(Rn;E), (55)

where 1
p +

1
p| = 1.

To prove the above estimates we need the following prepositions for oscillatory inte-

gral in E-valued Lp spaces which generalize the Carleson and Sjolin result [36].

Preposition 4.1. Let E be Banach spaces and A ∈ C∞
0 (Rn, L(E)). Moreover, suppose

F Î C∞ satisfies | ∇F| ≥ g >0 on supp A. Then for all l >1 the following holds∥∥∥∥
∫

eiλ�(x)A(x)dx

∥∥∥∥
L(E)

≤ CNλ−N , N = 1, 2, . . .

where CN-depends only on g if F and A (x) belong to a bounded subset of C∞ and

C∞ (Rn, L (E)) and A is supported in a fixed compact set.

Proof. Given x0 Î supp A. There is a direction ν Î Sn-1 such that |(ν, ∇F)| ≥ γ

2 on

some ball centered at x0. Thus, by compactness, we can choose a partition of unity
ϕj ∈ C∞

0 consisting of a finite number of terms and corresponding unit vectors νj such

that
m∑
j=1

ϕj(x) = 1 on supp A and |(νj,∇�)| ≥ γ

2 on supp �j. For Aj = �jA it suffices to

prove that for each j∥∥∥∥
∫

eiλ�(x)Aj(x)dx

∥∥∥∥
L(E)

≤ CNλ−N,N = 1, 2, . . . .

After possible changing coordinates we may assume that νj = (1, 0, . . . , 0) which

means that
∣∣∣ ∂�
∂x1

∣∣∣ ≥ γ

2 on supp �j. If let L(x;D) =
(

∂�
∂x1

)−1
1
iλ

∂
∂x1

, then

L(x;D)eiλ�(x) = eiλ�(x). Consequently, if L∗ = ∂
∂x1

(
1
iλ

(
∂�
∂x1

)−1
)
is a adjoint, then

∫
eiλ�(x)A(x)dx =

∫
eiλ�(x)(L∗)NAj(x)dx.

Since our assumption imply that (L*)N Aj (x) = O (l-N), the result follows.

Preposition 4.2. Suppose F Î C∞ is a phase function satisfying the non-degeneracy

condition det

[
∂2�

∂xi∂xj

]
	= 0on the support of

A(x, y) ∈ C∞
0 (Rn × Rn, L(E)).

Then for Tλf =
∫
Rn

eiλ�(x,y)A(x, y)f (y)dx, λ > 0 the following estimates hold

∥∥Tλf
∥∥
Lp(Rn;E) ≤ Cλ

− n−1
p′ ∥∥f∥∥Lp(Rn;E), 1 ≤ p ≤ 2,

∥∥Tλf
∥∥
Lp(Rn;E) ≤ Cλ

− n
p′ ∥∥f∥∥Lp(Rn;E),

1
p
+
1
p′ = 1.

Proof. In view of [3, Remark 2.1] we have

|∇x[�(x, y) − �(x, z)]| � |y − z| (56)

where |y - z| is small. By using a smooth partition of unity we can decompose A (x,

y) into a finite number of pieces each of which has the property that (57) holds on its
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support. So, by (57) we can assume

|∇x[�(x, y) − �(x, z)]| ≥ C|y − z| (57)

on supp A for same C >0. To use this we notice that

∥∥Tλf
∥∥2
2 =
∫ ∫

Kλ(y, z)f (y)f̄ (z)dydz,

where

Kλ(y, z) =
∫
Rn
eiλ[�(x,y)−�(x,z)]A(x, y)Ā(x, z)dx. (58)

Hence, by virtue of Preposition 4.1 and by (58) we obtain that∥∥Kλ(y, z)
∥∥
L(E) ≤ CN

(
1 + |λ| |y − z|−N) , for all N.

Consequently, by Young’s inequality, the operator with kernel Kl acts

Lp(Rn;E) to Lp(Rn;E).

By (59) we get that∥∥Tλf
∥∥
L2(Rn;E) ≤ Cλ−n

∥∥f∥∥L2(Rn;E).

Moreover, it is clear to see that∥∥Tλf
∥∥
L∞(Rn;E) ≤ Cλ−n

∥∥f∥∥L1(Rn;E).

Therefore, by applying Riesz interpolation theorem for vector-valued Lp spaces (see e.

g., [19, § 1.18]) we get the assertion.

In a similar way as in [3, Preposition 3.6] we have.

Preposition 4.3. The kernel K1 (x, y) can be written as

K1(x, y) =
∑
j=0,1

Aj(x, y)
tn−2eitϕj(x′,y)

|t(x′ − y′)|(n−2)/2|t(x − y)| ,

where, for every fixed N, the operator functions Aj satisfy∥∥DαAj(x, y)
∥∥∥≤ Cα(1 + t(x1 − y1)

2)
−N|x′ − y′|−|α|,

and moreover, the phase functions �j are real and the property that when ε is small

enough, 0 < δ ≤ ε and y1 Î [-ε, ε] is fixed, the dilated functions

(x′, y′) → (−1)jδ−1ϕj(δx′, y1, δy′)

in the some fixed neighborhood of the function ϕ0(x′, y′) = |x′ − y′| in the C∞ topol-

ogy. Then, the following estimates holds

|K1(x, y)| ≤ Ctn−2(1 + t|x1 − y1|)−1. (59)

Proof. By representation of K1 (x, y) and F (x, y, ξ) we have

K1(x, y) � tn−2
∫
Rn

β1(tξ)eit�(x,y,ξ)Q∗−1
0t (εy, ξ) dξ .
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Then, by using (36) in view of positivity of operator A, by reasoning as in [3, Preposi-

tion 3.6] we obtain the assertion.

Let us now show the end of proof of Lemma 4.1. Let η ∈ C∞
0 (R) be supported in[ 1

4 , 4
]
such that

∞∑
ν = −∞

η(2νs) = 1, s > 0 and set η0(s) = 1 −
0∑

ν = −∞
η(2νs). Then we

define kernels K1,ν, ν = 0, 1, 2, . . . , as follows

K1,ν =

{
η(t2−ν |x′ − y′|)K1(x, y), ν > 0

η0(t|x′ − y′|)K1(x, y), ν = 0.

Let T1,ν denotes the operators associated to these kernels. Then, by positivity proper-

ties of the operator A and by Prepositions 4.2, 4.3 we obtain for f ∈ C∞
0 (Bε;E) the fol-

lowing estimates

∥∥T∗
1,ν f

∥∥∥Lp′ (Rn;E) ≤ C2−2ν/n ||f ||Lp(Rn;E),
1
p
+

1
p1

= 1, (60)

||T∗
1,ν f

∥∥∥∥Lp(Rn;E) ≤ C (t2−ν)−1/p′
t
−
(
1+1n

) ∥∥f ∥∥Lp(Rn;E). (61)

By summing a geometric series one sees that these estimates imply (52) and (53) for

case of a = 0.

Let us first to show (60). One can check that the estimate (59) implies that the Lr
norm of K∗

10 is O (tn-2t -n/r). But, if we let r = n/n - 2, it is follows from Young inequal-

ity and the fact that 1
p − 1

p′ = 2
n that

∥∥T∗
1,0f

∥∥∥Lp| (Rn;E) ≤ Ctn−2t−n/r
∥∥f ∥∥Lp(Rn;E) = C

∥∥f ∥∥Lp(Rn;E)

as desired. To prove the result for ν >0, set B′
ε = {x′ ∈ Rn−1, |x′| < ε} and let K∗

1ν be

the kernel of the operator T∗
1,ν. Then, if we fix x1 and y1, it follows that the

Lp(B′
ε;E) → Lp(B′

ε;E) norm of the operator

T
′∗
1,vg(x

′) =
∫
B′

ε

K∗
1ν(x, y)g(y

′)dy′

equal (2ν t−1)(n−1)

(
1− 1

p +
1
p′
)
times the norm of the dilated operator

T̃∗
1,νg(x

′) =
∫
B′

ε

K∗
1ν(x1, δx

′, y1, δy′)g(y′)dy′,

where δ = 2ν t-1. By Preposition 4.3, the kernel in last integral equals the complex

conjugate of

tn−2η(t2−−ν |x′ − y′|)
∑
j=0,1

Aj(y1, δy′, x1, δx′)
ei(tδ)δ

−1ϕj(δy′,x1,δx′)

|t(x′ − y′)|(n−2)/2|t(x1, δx′, y1, δy′)| ,

and, consequently by using the Proposition 4.2, for 0 < δ ≤ ε and for supp g ⊂ B′
ε we

obtain that
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∥∥∥T̃∗
1,νg(x

′)
∥∥∥Lp| (Rn;E) ≤

C(tδ)−(n−2)/p′
tn−2(tδ)−(n−2)/2t−1[(x1 − y1)2 + δ2]−1/2

∥∥g ∥∥Lp(Rn;E).

This estimate implies∥∥∥∥∥∥
∫
B′

ε

K∗
1ν(x, y) g (y

′) dy′

∥∥∥∥∥∥
Lp(B′

ε ;E)

≤ Ct−
2
n [(x1 − y1)2 + (2ν/t)2]−1/2

∥∥g ∥∥Lp(B′
ε ;E).

For r = n
n−2 we set

⎛
⎝ ∞∫

−∞

[
(x1 − y1)

2 + (2ν/t)2
]−r/2

dx1

⎞
⎠

1/r

= C(t/2ν)2/n.

Then, the desired estimate (60) follows from the above estimate and Young’s

inequality. The other inequality (61), follows from a similar argument.

Preposition 4.4. The estimates (32)-(34) imply (30).

Proof. Indeed, (31) implies that

v(x) = T∗(Qt(εx,D)v) − R∗v(x),

and so Minkowski’s inequality, (32) and (34) give that

‖v ∥∥p′ ,E ≤ ∥∥T∗(Qt(εx,D)v)
∥∥p′,E+

∥∥R∗v
∥∥p′,E ≤∥∥Qt(εx,D)v

∥∥∥∥p,E + Ct−
1
n ‖v ∥∥p′,E

which implies that the first inequality in (30) for sufficiently large t. Moreover, in a

similar way, using (32) and (33) we get (30) for a = 0. To prove (30) for |a| = 1, we

use (33), (34) and obtain

‖∇v
∥∥p,E ≤ ∥∥∇T∗(Qt(εx,D)v)

∥∥p,E+ ∥∥∇R∗v
∥∥p,E ≤

Ct−
1
n
∥∥Qt(εx,D)v

∥∥∥∥p,E + Ct1− 1
n ‖v ∥∥p,E.

Hence, the result follows.

Now we can show the end of the proof of Theorem 4.1. Really, we obtain the esti-

mate (30), which implies the estimates (26) and (27). That is the assertion of Theorem

4.1 is hold.

Theorem 4.2. Assume all conditions of Theorem 4.1 are satisfied, then for

u ∈ W2
p,1oc(B0;E(A),E) if

∥∥L(x,D)u ‖E ≤ ‖Vu ‖E and V ∈ L n
2 ,1oc

(B0;E) then u is identi-

cally 0 if it vanishes in a nonempty open subset.

Proof. Suppose∥∥L(x,D) u ‖E ≤ ‖Vu ‖E +
∥∥V ′.∇u ‖E (62)

in a connected open set G, where V ∈ L n
2 ,1oc

(G;E),V ′ ∈ L∞,1oc(G;E) and

u ∈ W2
p,1oc(G;E(A),E). Then, after the possibly change of variables, one sees that Theo-

rem 4.2 would follow if we could show that if

Shakhmurov Boundary Value Problems 2012, 2012:46
http://www.boundaryvalueproblems.com/content/2012/1/46

Page 19 of 25



supp u ∩ {x ∈ Bε, x1 ≥ 0} ⊂ {0} (63)

then 0 ∉supp u. Moreover, by making a proper choice of geodesic coordinate system,

we may assume L (x, D) as

L (x,D) = D2
1 +

n∑
i,j=2

aijDiDj, Dj =
1
i

∂

∂xj
.

Then argue as in [29], first set uε (x) = u (εx) where ε is chosen small enough so that

(26) and (27) hold for Bε. Let η ∈ C∞
0 (Bε) be equal to one when |x| <ε

2 and set Uε =

huε. Then if Vε (x) = V (εx) and

L(εx,D)Uε = ε2η(Lu)(εx) +
∑

0<|α|≤2

1
α!

Dαη(L(α)(εx,D))uε

which implies that∥∥L(εx,D)Uε

∥∥E ≤ C0(1+ ‖Vε ‖E ) ‖Uε ‖E + C0 ‖∇Uε ‖E , x ∈ Bε/2. (64)

Let

Sδ = {x ∈ Bε : −δ ≤ x1 ≤ 0, δ > 0}.

If the condition (63) holds, then we can always choose δ to be small enough that

Sδ ∩ supp u ⊂ Bε/2,

and so that if C is as in (26), (27) and C0 is as in (64) then

CC0

⎛
⎝∫
Sδ0

(1 + ‖Vε ‖E )n/2dx
⎞
⎠

2/n

<
1
2
.

Next, (26), (27) imply

∥∥etwUε

∥∥∥Lp′ (Sδ ;E) + t1/n
∥∥etw∇Uε

∥∥Lp(Sδ ;E)

≤ ∥∥etwL(εx,D)Uε

∥∥Lp(Bε ;E)

≤ C
∥∥etwL(εx,D)Uε

∥∥Lp(Sδ ;E) + C
∥∥etwL(εx,D)Uε

∥∥Lp(c Sδ ;E).

If we recall that 1
p − 1

p′ = n
2, then we see that (64) and Hölder’s inequality imply

C
∥∥etwL(εx,D)Uε

∥∥Lp(Sδ ;E) ≤ CC0
∥∥0(1 + ‖Vε ‖E )etwUε

∥∥Lp(Sδ ;E) + CC0
∥∥etw∇Uε

∥∥Lp(Sδ ;E)

≤ 1
2

∥∥etwUε

∥∥∥Lp′ (Sδ ;E) + CC0
∥∥etw∇Uε

∥∥Lp(Sδ ;E).

Thus, by (63) for sufficiently large t >0 and B̃δ = {x ∈ Bε : x1 < −δ} we can conclude

that

∥∥etwUε

∥∥∥Lp′ (Sδ ;E)+
∥∥etw∇Uε

∥∥Lp(Sδ ;E) ≤ 2C
∥∥etwL(εx,D)Uε

∥∥Lp(Sδ ;E).

finally, since w’ (x) = 1 + x1>0 on Bε , this forces Uε (x) = 0 for x Î Sδ and so 0 ∉
supp u which completes the proof.
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Consider the differential operator

P(x,D)u =
n∑

i,j=1

aijDiDju + Au +
n∑

k=1

AkDku,

where aij are real-valued functions numbers, A = A (x), Ak = Ak (x), V (x) are the

possible linear operators in a Banach space E.

By using Theorem 4.2 and perturbation theory of linear operators we obtain the fol-

lowing result

Theorem 4.3. Assume:

(1) all conditions of Theorem 4.1 are satisfied;

(2) AkA
( 1
2−μk

)
∈ L∞(B0; L(E)) for 0 < μk < 1

2 .

Then, for Dau Î Lp,loc (B0; E) if ||P (x, D) u||E ≤ ||Vu||E and V ∈ Ln
2 ,loc

(B0;E), then

u is identically 0 if it vanishes in a nonempty open subset.

Proof. By condition (2) and by Theorem 2.1, for all ε >0 there is a C (ε) such that

n∑
k=1

∥∥∥∥Ak
∂u

∂xk

∥∥∥∥
Lp(B0;E)

≤ ε ‖u
∥∥∥W2

p (B0;E(A),E) + C(ε) ‖u ∥∥Lp(B0;E).

Then, by using (29) and the above estimate we obtain the assertion.

5 Carleman estimates and unique continuation property for quasielliptic PDE
Let Ω ⊂ Rl be an open connected set with compact C2m-boundary ∂Ω. Let us consider

the BVP for the following elliptic equation

Lu =
n∑

i,j=1

aij(x)DiDju +
n∑

k=1

dk(x, y)Dku

+
∑

|α|≤2m

aα(y)Dα
y u = f (x, y), x ∈ Rn, y ∈ 	 ⊂ Rl,

(65)

Bju =
∑

|β|≤mj

bjβ(y)Dβ
y u(x, y) = 0, x ∈ Rn, y ∈ ∂	, j = 1, 2, . . . ,m, (66)

where u = (x, y), Dj = −i
∂

∂τj
, T = (T1, . . . ,Tn+l). Let 	̃ = Rn × 	.

Let Q denotes the operator generated by the problem (64), (65).

Theorem 5.1. Let the following conditions be satisfied;

(1) aα ∈ C(	̄) for each |a| = 2m and aα ∈ [L∞ + Lrk ](	) for each |a| = k <2m with

rk ≥ q and 2m − k > 1
rk
;

(2) bjb Î C2m-mj (∂Ω) for each j, b and mj <2m,
m∑
j=1

bjβ(y|)σj 	= 0, for |b| = mj, y
|Î

∂G, where s = (s1, s2, . . . , sn) Î Rm is a normal to ∂G ;

(3) for y ∈ 	̄, ξ ∈ Rl,λ ∈ S(ϕ),ϕ ∈ (0, π
2 ), |ξ | + |λ| 	= 0 let λ +

∑
|α|=2m

aα(y)ξα 	= 0;
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(4) for each y0 Î ∂Ω local BVP in local coordinates corresponding to y0

λ +
∑

|α|=2m
aα(y0)Dαϑ(y) = 0,

Bj0ϑ =
∑

|β|=mj

bjβ(y0)Dβu(y) = hj, j = 1, 2, . . . ,m

has a unique solution ϑ ÎC0 (R+) for all h = (h1, h2, . . . , hm) Î Rm, and for ξ1 Î Rl-1

with

|ξ || + |λ| 	= 0;

(5) Condition 4.1 holds, aij Î C∞ (Bε), n ≥ 3, p = 2n
n+2and p’ is the conjugate of p and

w = x1 +
x21
2 ;

(6) dk Î L∞ (Rn × Ω).

Then:

(a) for sufficiently large b >0, t ≥ t0 and for n
(
1
p − 1

p′

)
≤ 2, p ∈ (1,∞) the Carle-

man type estimate

∥∥e−twu
∥∥∥Lp1q(	̃) ≤ C

∥∥e−tw(Q + b)u
∥∥∥Lp2q(	̃)

holds for u ∈ W2
p1q(	̃).

(b) for V ∈ Lμ(	̃) and 1
μ
= 1

p − 1
p′ the differential inequality∥∥(Q + b)u(x, .)

∥∥Lq(	) ≤ ∥∥V(x)u(x, .) ∥∥Lq(	)

has a unique continuation property.

Proof. Let E = Lq (Ω). Consider the following operator A which is defined by

D(A) = W2m
q (	;Bju = 0), Au =

∑
|α|≤2m

aα(y)Dαu(y).

For x Î Rn also consider operators

Ak(x)u = dk(x, y)u(y), k = 1, 2, . . . ,n.

The problem (5.1), (5.2) can be rewritten in the form (4.1), where u (x) = u (x, .), f

(x) = f (x, .) are functions with values in E = Lq (Ω). Then by virtue of [24, Theorems

3.6 and 8.2] the (1) condition of Theorem 4.1 is satisfied. Moreover, by using the

embedding W2m
q (	) ⊂ Lq(	) and interpolation properties of Sobolev spaces (see e.g.,

[19, §4]) we get that there is ε >0 and a continuous function C (ε) such that∥∥∥∥dk ∂u
∂xk

∥∥∥∥
Lq

≤ ε ‖u
∥∥∥W2m

q
+ C(ε) ‖u ∥∥Lq .
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Due to positive of the operator A, then we obtain that∥∥∥∥dk ∂u
∂xk

∥∥∥∥
Lq

≤ ε ‖Au ∥∥Lq + C(ε) ‖u ∥∥Lq .
Then it is easy to get from the above estimate that (2) condition of the Theorem 4.3

is satisfied. By virtue of (5) condition, (2) condition of the Theorem 4.1 is fulfilled too.

Hence, by virtue of Theorems 4.1 and 4.3 we obtain the assertions.

6 Carleman estimates and unique continuation property for infinite systems
of elliptic equations
Consider the following infinity systems of PDE

n∑
k=1

ak(x)D2
kum(x) + (dm(x) + λ)um(x)

+
n∑

k=1

∞∑
j=1

dkjm(x)Dkuj(x) = fm(x), x ∈ Rn,m = 1, 2, . . . .

(67)

Let

D(x) = {dm(x)}, dm > 0, u = {um}, Du = {dmum}, m = 1, 2, . . . ,

lq(D) =

⎧⎪⎪⎨
⎪⎪⎩u : u ∈ lq, ‖u

∥∥lq(D) = ‖Du
∥∥lq =

( ∞∑
m=1

|dmum|q
)1
q

< ∞

⎫⎪⎪⎬
⎪⎪⎭ ,

x ∈ Rn, 1 < q < ∞.

Let O denotes the operator generated by the problem (66).

Theorem 6.1. Let the following conditions are satisfied:

(1) ak Î Cb (R
n), ak (x) ≠ 0, x Î Rn, k = 1, 2, . . . , n and the Condition 4.1 holds;

(2) there are 0 < ν <1
2 such that

sup
m

N∑
j=1

bmj(x)d
−( 12−ν)

kjm (x) < M,

a.e. for x Î Rn.

Then:

(a) for sufficiently large b >0, t ≥ t0 and for n( 1p − 1
p| ) ≤ 2, 1 < p ≤ p| < ∞ the

Carleman type estimate

∥∥e−twu
∥∥∥Lp| (Rn;lq) ≤ C

∥∥e−tw(O + b)u
∥∥Lp(Rn; lq)

holds for u ∈ W2
p (R

n; lq(D), lq).
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(b) for V ∈ Lμ

(
	̃; L(E)

)
and 1

μ
= 1

p − 1
p| the differential inequality

∥∥(O + b)u(x)
∥∥lq ≤ ∥∥V(x)u(x) ∥∥lq

has a unique continuation property.

Proof. Let E = lq and A, Ak (x) be infinite matrices, such that

A = [dm(x)δjm], Ak(x) = [dkjm(x)], m, j = 1, 2, . . . ,∞.

It is clear to see that this operator A is R-positive in lq and all other conditions of

Theorems 4.1 and 4.3 are hold. Therefore, by virtue of Theorems 4.1 and 4.3 we obtain

the assertions.
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