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Abstract

We consider the following complementary Lidstone boundary value problem

(−1)my(2m+1)(t) = λF(t, y(t), y′(t)), t ∈ (0, 1)

y(0) = 0, y(2k−1)(0) = y(2k−1)(1) = 0, 1 ≤ k ≤ m

where l > 0. The values of l are characterized so that the boundary value problem
has a positive solution. Moreover, we derive explicit intervals of l such that for any l
in the interval, the existence of a positive solution of the boundary value problem is
guaranteed. Some examples are also included to illustrate the results obtained. Note
that the nonlinear term F depends on y’ and this derivative dependence is seldom
investigated in the literature.
AMS Subject Classification: 34B15.

Keywords: eigenvalues, positive solutions, complementary Lidstone boundary value
problems

1 Introduction
In this article, we shall consider the complementary Lidstone boundary value problem

(−1)my(2m+1)(t) = λF(t, y(t), y′(t)), t ∈ (0, 1)

y(0) = 0, y(2k−1)(0) = y(2k−1)(1) = 0, 1 ≤ k ≤ m
(1:1)

where m ≥ 1, l > 0, and F is continuous at least in the interior of the domain of

interest. Note that the nonlinear term F involves a derivative of the dependent vari-

able–this is seldom studied in the literature and most research articles on boundary

value problems consider nonlinear terms that involve y only.

We are interested in the existence of a positive solution of (1.1). By a positive solu-

tion y of (1.1), we mean a nontrivial y Î C(2m+1)(0, 1) satisfying (1.1) and y(t) ≥ 0 for t

Î (0, 1). If, for a particular l the boundary value problem (1.1) has a positive solution

y, then l is called an eigenvalue and y is a corresponding eigenfunction of (1.1). We

shall denote the set of eigenvalues of (1.1) by E, i.e.,

E = {λ > 0|(1.1) has a positive solution}.

The focus of this article is eigenvalue problem, as such we shall characterize the

values of l so that the boundary value problem (1.1) has a positive solution. To be spe-

cific, we shall establish criteria for E to contain an interval, and for E to be an interval
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(which may either be bounded or unbounded). In addition explicit subintervals of E are

derived.

The complementary Lidstone interpolation and boundary value problems are very

recently introduced in [1], and studied by Agarwal et. al. [2,3] where they consider an

odd order ((2m+ 1)th order) differential equation together with boundary data at the

odd order derivatives

y(0) = a0, y(2k−1)(0) = ak, y(2k−1)(1) = bk, 1 ≤ k ≤ m. (1:2)

The boundary conditions (1.2) are known as complementary Lidstone boundary con-

ditions, they naturally complement the Lidstone boundary conditions [4-7] which

involve even order derivatives. To be precise, the Lidstone boundary value problem

comprises an even order (2mth order) differential equation and the Lidstone boundary

conditions

y(2k)(0) = ak, y(2k)(1) = bk, 0 ≤ k ≤ m − 1. (1:3)

There is a vast literature on Lidstone interpolation and boundary value problems.

The Lidstone interpolation has a long history from 1929 when Lidstone [8] introduced

a generalization of Taylor’s series that approximates a given function in the neighbor-

hood of two points instead of one. Further characterization can be found in the study

of [9-16]. More research on Lidstone interpolation as well as Lidstone spline is seen in

[1,17-23]. On the other hand, the Lidstone boundary value problems and several of its

particular cases have been the subject matter of numerous investigations, see

[4,18,24-37] and the references cited therein. It is noted that in most of these studies

the nonlinear terms considered do not involve derivatives of the dependent variable,

only a handful of articles [30,31,34,35] tackle nonlinear terms that involve even order

derivatives. In the present study, our study of the complementary Lidstone boundary

value problem (1.1) where F depends on a derivative certainly extends and comple-

ments the rich literature on boundary value problems and in particular on Lidstone

boundary value problems.

The plan of the article is as follows. In Section 2, we shall state a fixed point theorem

due to Krasnosel’skii [38], and develop some inequalities for certain Green’s function

which are needed later. The characterization of the set E is presented in Section 3.

Finally, in Section 4, we establish explicit subintervals of E.

2 Preliminaries
Theorem 2.1. [38] Let B be a Banach space, and let C(⊂ B) be a cone. Assume Ω1, Ω2

are open subsets of B with 0 ∈ �1, �̄1 ⊂ �2, and let S : C ∩ (�̄2\�1) → C be a com-

pletely continuous operator such that, either

(a) ∥Sy∥ ≤ ∥y∥, y Î C∩∂Ω1, and ∥Sy∥ ≥ ∥y∥, y Î C ∩ ∂Ω2, or

(b) ∥Sy∥ ≥ ∥y∥, y Î C∩∂Ω1, and ∥Sy∥ ≤ ∥y∥, y Î C ∩ ∂Ω2.

Then, S has a fixed point in C ∩ (�̄2\�1).

To tackle the complementary Lidstone boundary value problem (1.1), let us review

certain attributes of the Lidstone boundary value problem. Let gm(t, s) be the Green’s

function of the Lidstone boundary value problem
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x(2m)(t) = 0, t ∈ (0, 1)

x(2k)(0) = x(2k)(1) = 0, 0 ≤ k ≤ m − 1.
(2:1)

The Green’s function gm(t, s) can be expressed as [4,5]

gm(t, s) =

1∫
0

g(t, u)gm−1(u, s)du (2:2)

where

g1(t, s) = g(t, s) =
{
t(s − 1), 0 ≤ t ≤ s ≤ 1
s(t − 1), 0 ≤ s ≤ t ≤ 1.

(2:3)

Further, it is known that∣∣gm(t, s)∣∣ = (−1)mgm(t, s) and gm(t, s) = gm(s, t), (t, s) ∈ (0, 1) × (0, 1). (2:4)

We also have the inequality

2
π2

sinπ t ≤ t(1 − t) ≤ 1
π
sinπ t, t ∈ [0, 1]. (2:5)

The following two lemmas give the upper and lower bounds of |gm(t, s)|, they play

an important role in subsequent development.

Lemma 2.1. For (t, s) Î [0, 1] × [0, 1], we have

∣∣gm(t, s)∣∣ ≤ 1
π2m−1

sinπ s. (2:6)

Proof. For (t, s) Î [0, 1] × [0, 1], it is clear from (2.3) that∣∣g(t, s)∣∣ ≤ s(1 − s). (2:7)

Using (2.7), (2.4), and (2.5) in (2.2) yields for (t, s) Î [0, 1] × [0, 1],

∣∣gm(t, s)∣∣ =
1∫

0

∣∣g(t, u)∣∣ · ∣∣gm−1(u, s)
∣∣du ≤

1∫
0

∣∣gm−1(u, s)
∣∣ u(1 − u)du

≤ 1
π

1∫
0

∣∣gm−1(s, u)
∣∣ sinπudu.

(2:8)

By induction, we can show that

1∫
0

∣∣gm(t, s)∣∣ sinπ sds =
1

π2m
sinπ t, t ∈ [0, 1]. (2:9)

Now (2.6) is immediate by applying (2.9) to (2.8).

Lemma 2.2. Let δ ∈
(
0,

1
2

)
be given. For (t, s) Î [δ, 1-δ] × [0, 1], we have

∣∣gm(t, s)∣∣ ≥ 2δ

π2m
sinπ s. (2:10)
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Proof. For (t, s) Î [δ, 1-δ] × [0, 1], from (2.3) we find

∣∣g(t, s)∣∣ ≥
{

δ(1 − s), 1 ≤ s
[1 − (1 − δ)]s, s ≤ t

}
≥ δs(1 − s). (2:11)

Then, using (2.11), (2.4), and (2.5) in (2.2), we get for (t, s) Î [δ, 1 - δ ] × [0, 1],

∣∣gm(t, s)∣∣ =
1∫

0

∣∣g(t, u)∣∣ · ∣∣gm−1(u, s)
∣∣ du ≥ δ

1∫
0

∣∣gm−1(u, s)
∣∣ u(1 − u)du

≥ 2δ

π2

1∫
0

∣∣gm−1(s, u)
∣∣ sinπudu,

which, in view of (2.9), gives (2.10) immediately.

Remark 2.1. The bounds in Lemmas 2.1 and 2.2 are sharper than those given in the

literature [4,5,35,37].

3 Eigenvalues of (1.1)
To tackle (1.1) we first consider the initial value problem

y′(t) = x(t), t ∈ (0, 1)

y(0) = 0
(3:1)

whose solution is simply

y(t) =

t∫
0

x(s)ds. (3:2)

Taking into account (3.1) and (3.2), the complementary Lidstone boundary value pro-

blem (1.1) reduces to the Lidstone boundary value problem

(−1)mx(2m)(t) = λF

⎛
⎝t,

t∫
0

x(s)ds, x(t)

⎞
⎠ , t ∈ (0, 1)

x(2k−2)(0) = x(2k−2)(1) = 0, 1 ≤ k ≤ m.

(3:3)

If (3.3) has a positive solution x*, then by virtue of (3.2), y∗(t) =
∫ t
0 x

∗(s)ds is a posi-

tive solution of (1.1). Hence, the existence of a positive solution of the complementary

Lidstone boundary value problem (1.1) follows from the existence of a positive solution

of the Lidstone boundary value problem (3.3). It is clear that an eigenvalue of (3.3) is

also an eigenvalue of (1.1), thus

E = {λ > 0|(1.1) has a positive solution} = {λ > 0|(3.3) has a positive solution}.

With the lemmas developed in Section 2 and a technique to handle the nonlinear

term F, we shall study the eigenvalue problem (1.1) via (3.3).

For easy reference, we list below the conditions that are used later. In these condi-

tions, f, a, and b are continuous functions with f : (0, ∞) × (0, ∞) ® (0, ∞) and a, b :

(0, 1) ® [0, ∞).

(A1) f is nondecreasing in each of its arguments, i.e., for u, u1, u2, v, v1, v2 Î (0, ∞)

with u1 ≤ u2 and v1 ≤ v2, we have

Agarwal and Wong Boundary Value Problems 2012, 2012:49
http://www.boundaryvalueproblems.com/content/2012/1/49

Page 4 of 21



f (u1, v) ≤ f (u2, v) and f (u, v1) ≤ f (u, v2);

(A2) for t Î (0, 1) and u, v Î (0, ∞),

α(t)f (u, v) ≤ F(t, u, v) ≤ β(t)f (u, v);

(A3) a(t) is not identically zero on any nondegenerate subinterval of (0, 1) and there

exists a0 Î (0, 1] such that a(t) ≥ a0b(t) for all t Î (0, 1);

(A4) 0 <
1∫
0

β(t) sinπ tdt < ∞;

(A5) for t Î (0, 1) and u, u1, u2, v, v1, v2 Î (0, ∞) with u1 ≤ u2 and v1 ≤ v2, we have

F(t, u1, v) ≤ F(t, u2, v) and F(t, u, v1) ≤ F(t, u, v2).

We shall consider the Banach space B = C[0, 1] equipped with the norm

‖x‖ = sup
t∈[0,1]

∣∣x(t)∣∣ , x ∈ B.

For a given δ ∈
(
0,

1
2

)
, let the cone Cδ be defined by

Cδ =
{
x ∈ B

∣∣x(t) ≥ 0, t ∈ [0, 1] ; min
t∈[δ,1−δ]

x(t) ≥ γ ‖x‖
}

where γ =
2δ

π
a0 (a0 is defined in (A3)). Further, let

Cδ(M) = {x ∈ Cδ | ‖x‖ ≤ M}.

Let the operator S : Cδ ® B be defined by

Sx(t) = λ

1∫
0

(−1)mgm(t, s)F

⎛
⎝s,

s∫
0

x(τ )dτ , x(s)

⎞
⎠ ds

= λ

1∫
0

∣∣gm(t, s)∣∣F
⎛
⎝s,

s∫
0

x(τ )dτ , x(s)

⎞
⎠ ds, t ∈ [0, 1].

(3:4)

To obtain a positive solution of (3.3), we shall seek a fixed point of the operator S in

the cone Cδ.

Further, we define the operators U, V : Cδ ® B by

Ux(t) = λ

1∫
0

∣∣gm(t, s)∣∣α(s)f
⎛
⎝ s∫

0

x(τ )dτ , x(s)

⎞
⎠ ds

and

Vx(t) = λ

1∫
0

∣∣gm(t, s)∣∣β(s)f
⎛
⎝ s∫

0

x(τ )dτ , x(s)

⎞
⎠ ds.

If (A2) holds, then

Ux(t) ≤ Sx(t) ≤ Vx(t), t ∈ [0, 1]. (3:5)

Lemma 3.1. Let (A1)-(A4) hold. Then, the operator S is compact on the cone Cδ.
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Proof. Let us consider the case when a(t) is unbounded in a deleted right neighbor-

hood of 0 and also in a deleted left neighborhood of 1. Clearly, b(t) is also unbounded

near 0 and 1.

For n Î {1, 2, 3, ...}, let an, bn : [0, 1] ® [0, ∞) be defined by

αn(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α

(
1

n + 1

)
, 0 ≤ t ≤ 1

n + 1

α(t),
1

n + 1
≤ t ≤ n

n + 1
α
( n
n + 1

)
,

n
n + 1

≤ t ≤ 1

and

βn(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β

(
1

n + 1

)
, 0 ≤ t ≤ 1

n + 1

β(t),
1

n + 1
≤ t ≤ n

n + 1
β
( n
n + 1

)
,

n
n + 1

≤ t ≤ 1.

Also, we define the operators Un, Vn : Cδ ® B by

Unx(t) = λ

1∫
0

∣∣gm(t, s)∣∣αn(s)f

⎛
⎝ s∫

0

x(τ )dτ , x(s)

⎞
⎠ ds

and

Vnx(t) = λ

1∫
0

∣∣gm(t, s)∣∣βn(s)f

⎛
⎝ s∫

0

x(τ )dτ , x(s)

⎞
⎠ ds.

It is standard that for each n, both Un and Vn are compact operators on Cδ. Let M >

0 and x Î Cδ(M). For t Î [0, 1], we get

∣∣Vnx(t) − Vx(t)
∣∣ ≤

1∫
0

∣∣gm(t, s)∣∣ ∣∣βn(s) − β(s)
∣∣ f
⎛
⎝ s∫

0

x(τ )dτ , x(s)

⎞
⎠ ds

=

1
n + 1∫
0

∣∣gm(t, s)∣∣ ∣∣βn(s) − β(s)
∣∣ f
⎛
⎝ s∫

0

x(τ )dτ , x(s)

⎞
⎠ ds

+

1∫
n

n + 1

∣∣gm(t, s)∣∣ ∣∣βn(s) − β(s)
∣∣ f
⎛
⎝ s∫

0

x(τ )dτ , x(s)

⎞
⎠ ds.

By the monotonicity of f (see (A1)), we have

f

⎛
⎝ s∫

0

x(τ )dτ , x(s)

⎞
⎠ ≤ f

⎛
⎝ 1∫

0

Mdτ ,M

⎞
⎠ = f (M,M) (3:6)
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Coupling with Lemma 2.1, it follows that

∣∣Vnx(t) − Vx(t)
∣∣ ≤ f (M,M)

⎡
⎢⎢⎢⎢⎢⎣

1
n + 1∫
0

1
π2m−1

∣∣∣∣β
(

1
n + 1

)
− β(s)

∣∣∣∣ sinπ sds

+

1∫
n

n + 1

1
π2m−1

∣∣∣β ( n
n + 1

)
− β(s)

∣∣∣ sinπ sds

⎤
⎥⎥⎥⎥⎥⎦ .

The integrability of b(t) sin πt (see (A4)) ensures that Vn converges uniformly to V

on Cδ(M). Hence, V is compact on Cδ. By a similar argument, we see that Un con-

verges uniformly to U on Cδ(M) and therefore U is also compact on Cδ. It follows

immediately from inequality (3.5) that the operator S is compact on Cδ.

Remark 3.1. From the proof of Lemma 3.1, we see that if the functions a and b are

continuous on the close interval [0, 1], then the conditions (A1) and (A4) are not

needed in Lemma 3.1.

The first result shows that E contains an interval.

Theorem 3.1. Let (A1)-(A4) hold. Then, there exists c > 0 such that the interval (0,

c] ⊆ E.

Proof. Let M > 0 be given. Define

c =
M

f (M,M)

⎡
⎣ 1∫

0

1
π2m−1

β(s) sinπ sds

⎤
⎦

−1

. (3:7)

Let l Î (0, c]. We shall prove that S(Cδ(M)) ⊆ Cδ(M). Let x Î Cδ (M). First, we shall

show that Sx Î Cδ. It is clear from (3.5) that

Sx(t) ≥ λ

1∫
0

∣∣gm(t, s)∣∣α(s)f
⎛
⎝ s∫

0

x(τ )dτ , x(s)

⎞
⎠ ds ≥ 0, t ∈ [0, 1]. (3:8)

Further, from (3.5) and Lemma 2.1 we get

Sx(t) ≤ λ

1∫
0

∣∣gm(t, s)∣∣β(s)f
⎛
⎝ s∫

0

x(τ )dτ , x(s)

⎞
⎠ ds

≤ λ

1∫
0

1
π2m−1

β(s)f

⎛
⎝ s∫

0

x(τ )dτ , x(s)

⎞
⎠ sinπ sds, t ∈ [0, 1]

which leads to

‖Sx‖ ≤ λ

1∫
0

1
π2m−1

β(s)f

⎛
⎝ s∫

0

x(τ )dτ , x(s)

⎞
⎠ sinπ sds. (3:9)
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Now, applying (3.5), Lemma 2.2, (A3) and (3.9) successively, we find for t Î [δ, 1-δ],

Sx(t) ≥ λ

1∫
0

∣∣gm(t, s)∣∣α(s)f
⎛
⎝ s∫

0

x(τ )dτ , x(s)

⎞
⎠ ds

≥ λ

1∫
0

2δ

π2m
α(s)f

⎛
⎝ s∫

0

x(τ )dτ , x(s)

⎞
⎠ sinπ sds

≥ λ

1∫
0

2δ

π2m
a0β(s)f

⎛
⎝ s∫

0

x(τ )dτ , x(s)

⎞
⎠ sinπ sds

≥ 2δ

π
a0 ‖Sx‖ = γ ‖Sx‖ .

Therefore,

min
t∈[δ,1−δ]

Sx(t) ≥ γ ‖Sx‖ . (3:10)

Inequalities (3.8) and (3.10) imply that Sx Î Cδ.

Next, we shall verify that ∥Sx∥ ≤ M. For this, an application of (3.5), Lemma 2.1, (3.6)

and (3.7) provides

Sx(t) ≤ c

1∫
0

∣∣gm(t, s)∣∣β(s)f
⎛
⎝ s∫

0

x(τ )dτ , x(s)

⎞
⎠ ds

≤ cf (M,M)

1∫
0

1
π2m−1

β(s) sinπ sds = M, t ∈ [0, 1]

or equivalently

‖Sx‖ ≤ M.

Hence, S(Cδ(M)) ⊆ Cδ(M). Also, the standard arguments yield that S is completely

continuous. By Schauder fixed point theorem, S has a fixed point in Cδ(M). Clearly,

this fixed point is a positive solution of (3.3) and therefore l is an eigenvalue of (3.3).

Since l Î (0, c] is arbitrary, it follows immediately that the interval (0, c] ⊆ E.

Remark 3.2. From the proof of Theorem 3.1, we see that (A2) and (A3) lead to S :

Cδ ® Cδ.

Theorem 3.2. Let (A1)-(A5) hold. Suppose that l* Î E, for any l Î (0, l*), we have

l Î E, i.e., (0, l*] ⊆ E.

Proof. Let x* be the eigenfunction corresponding to the eigenvalue l*. Thus, we have

x∗(t) = Sx∗(t) = λ∗
1∫

0

∣∣gm(t, s)∣∣ F
⎛
⎝s,

s∫
0

x∗(τ )dτ , x∗(s)

⎞
⎠ ds, t ∈ [0, 1]. (3:11)

Define

K∗ =
{
x ∈ B

∣∣0 ≤ x(t) ≤ x∗(t), t ∈ [0, 1]
}
.
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Let l Î (0, l*) and x Î K*. Using (A5), we get

0 ≤ Sx(t) = λ

1∫
0

∣∣gm(t, s)∣∣ F
⎛
⎝s,

s∫
0

x(τ )dτ , x(s)

⎞
⎠ ds

≤ λ∗
1∫

0

∣∣gm(t, s)∣∣ F
⎛
⎝s,

s∫
0

x∗(τ )dτ , x∗(s)

⎞
⎠ ds

= Sx∗(t), t ∈ [0, 1]

where the last equality follows from (3.11). This immediately implies that the opera-

tor S maps K* into K*. Moreover, the operator S is continuous and completely contin-

uous. Schauder’s fixed point theorem guarantees that S has a fixed point in K*, which

is a positive solution of (3.3). Hence, l is an eigenvalue, i.e., l Î E.

The following result shows that E is an interval.

Corollary 3.1. Let (A1)-(A5) hold. If E �= ∅, then E is an interval.

Proof. Suppose E is not an interval. Then, there exist λ0,λ′
0 ∈ E(λ0 < λ′

0) and

τ ∈ (λ0,λ′
0) with τ ∉ E. However, this is not possible as Theorem 3.2 guarantees that τ

Î E. Hence, E is an interval.

The following two results give the upper and lower bounds of an eigenvalue in terms

of some parameters of the corresponding eigenfunction.

Theorem 3.3. Let (A1) and (A2) hold. Assume that m is odd. Let l be an eigenvalue

of (3.3) and x Î Cδ be a corresponding eigenfunction. If x(i) (0) = bi, i = 1, 3, ..., 2m -

1, where b2m-1 > 0, then l satisfies

M1 ≤ λ ≤ M2 (3:12)

where

M1 = max
0≤k≤m−1

[
m−1∑
i=k

b2i+1
(2(i − k) + 1)!

]⎡
⎣f (D,D)

1∫
0

(1 − s)2(m−k)−1

(2(m − k) − 1)!
β(s)ds

⎤
⎦

−1

,

M2 = min
0≤k≤m−1

[
m−1∑
i=k

b2i+1
(2(i − k) + 1)!

]⎡⎣f (0, 0)
1∫

0

(1 − s)2(m−k)−1

(2(m − k) − 1)!
α(s)ds

⎤
⎦

−1

and

D = max
t∈[0,1]

m−1∑
i=0

b2i+1
t2i+1

(2i + 1)!
.

Proof. For n Î {1, 2, 3, ...}, we define fn = f * ωn, where ωn is a standard mollifier

[25] such that fn is Lipschitz and converges uniformly to f.

For a fixed n, let ln be an eigenvalue and xn(t), with x(i)n (0) = bi, i = 1, 3, . . . , 2m − 1

be a corresponding eigenfunction of the following boundary value problem

(−1)mx(2m)
n (t) = λnFn

⎛
⎝t,

t∫
0

xn(s)ds, xn(t)

⎞
⎠ , t ∈ [0, 1] (3:13)
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x(2i)n (0) = x(2i)n (1) = 0, 0 ≤ i ≤ m − 1 (3:14)

where Fn converges uniformly to F, and for u, v Î (0, ∞),

αn(t)fn(u, v) ≤ Fn(t, u, v) ≤ βn(t)fn(u, v), t ∈ (0, 1) (3:15)

(see the proof of Lemma 3.1 for the definitions of an(t) and bn(t)).
It is clear that xn(t) is the unique solution of the initial value problem (3.13),

x(i)n (0) = 0, i = 0, 2, . . . , 2m − 2

x(i)n (0) = bi, i = 1, 3, . . . , 2m − 1.
(3:16)

First, we shall establish an upper bound for xn. Since

(−1)mx(2m)
n (t) = λnFn

⎛
⎝t,

t∫
0

xn(s)ds, xn(t)

⎞
⎠ ≥ λnαn(t)fn

⎛
⎝ t∫

0

xn(s)ds, xn(t)

⎞
⎠ ≥ 0,

we have x(2m−1)
n (t) is nonincreasing and hence

x(2m−1)
n (t) ≤ x(2m−1)

n (0) = b2m−1, t ∈ [0, 1]. (3:17)

In view of the initial conditions (3.16) and also (3.17), we find

x(2m−2)
n (t) =

t∫
0

x(2m−1)
n (s)ds ≤ b2m−1t, t ∈ [0, 1]. (3:18)

Next, an application of (3.18) gives

x(2m−3)
n (t) = b2m−3 +

t∫
0

x(2m−2)
n (s)ds ≤ b2m−3 + b2m−1

t2

2!
, t ∈ [0, 1].

By repeating the process, we get

xn(t) ≤ b1t + b3
t3

3!
+ · · · + b2m−1

t2m−1

(2m − 1)!
≤ D, t ∈ [0, 1]. (3:19)

By the monotonicity of fn, we have

fn

⎛
⎝ t∫

0

xn(s)ds, xn(t)

⎞
⎠ ≤ fn

⎛
⎝ 1∫

0

Dds,D

⎞
⎠ = fn(D,D)

and

fn

⎛
⎝ t∫

0

xn(s)ds, xn(t)

⎞
⎠ ≥ fn

⎛
⎝ t∫

0

0ds, 0

⎞
⎠ = fn(0, 0).

Coupling with (3.13) and (3.15), it follows that

λnαn(t)fn(0, 0) ≤ (−1)mx(2m)
n (t) ≤ λnβn(t)fn(D,D), t ∈ [0, 1]. (3:20)

Once again, using the initial conditions (3.16), repeated integration of (3.20) from 0

to t provides
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φ1,k(t) ≤ x(2k)n (t) ≤ φ2,k(t), t ∈ [0, 1], 0 ≤ k ≤ m − 1 (3:21)

where

φ1,k(t) =
m−1∑
i=k

b2i+1
t2(i−k)+1

(2(i − k) + 1)!
− λnfn(D,D)

t∫
0

(t − s)2(m−k)−1

(2(m − k) − 1)!
βn(s)ds

and

φ2,k(t) =
m−1∑
i=k

b2i+1
t2(i−k)+1

(2(i − k) + 1)!
− λnfn(0, 0)

t∫
0

(t − s)2(m−k)−1

(2(m − k) − 1)!
αn(s)ds.

In order to satisfy the boundary conditions x(2k)n (1) = 0, 0 ≤ k ≤ m − 1, from

inequality (3.21) it is necessary that

φ1,k(1) ≤ 0 and φ2,k(1) ≥ 0, 0 ≤ k ≤ m − 1.

This readily implies

M1,n ≤ λn ≤ M2,n (3:22)

where

M1,n = max
0≤k≤m−1

[
m−1∑
i=k

b2i+1
(2(i − k) + 1)!

]⎡
⎣fn(D,D)

1∫
0

(1 − s)2(m−k)−1

(2(m − k) − 1)!
βn(s)ds

⎤
⎦

−1

and

M2,n = min
0≤k≤m−1

[
m−1∑
i=k

b2i+1
(2(i − k) + 1)!

]⎡
⎣fn(0, 0)

1∫
0

(1 − s)2(m−k)−1

(2(m − k) − 1)!
αn(s)ds

⎤
⎦

−1

.

From (3.20) it is observed (by using the initial conditions (3.16) and repeated integra-

tion) that {x(i)n }∞n=1, 0 ≤ i ≤ 2m − 1 is a uniformly bounded sequence on [0, 1]. Thus,

there exists a subsequence, which can be relabeled as {xn}∞n=1, that converges uniformly

(in fact, in C(2m-1)-norm) to some x on [0, 1]. We note that each xn(t) can be expressed

as

xn(t) = λn

1∫
0

∣∣gm(t, s)∣∣ Fn
⎛
⎝s,

s∫
0

xn(τ )dτ , xn(s)

⎞
⎠ ds, t ∈ [0, 1]. (3:23)

Since {λn}∞n=1 is a bounded sequence (from (3.22)), there is a subsequence, which can

be relabeled as {λn}∞n=1, that converges to some l. Then, letting n ® ∞ in (3.23) yields

x(t) = λ

1∫
0

∣∣gm(t, s)∣∣ F
⎛
⎝s,

s∫
0

x(τ )dτ , x(s)

⎞
⎠ ds, t ∈ [0, 1].

This means that x(t) is an eigenfunction of (3.3) corresponding to the eigenvalue l.
Further, x(i)(0) = bi, i = 1, 3, ..., 2m - 1 and inequality (3.12) follows from (3.22)

immediately.
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Theorem 3.4. Let (A1)-(A4) hold. Let l be an eigenvalue of (3.3) and x Î Cδ be a

corresponding eigenfunction. Further, let ∥x∥ = p. Then,

λ ≥ p
f (p, p)

⎡
⎣ 1

π2m−1

1∫
0

β(s) sinπ sds

⎤
⎦

−1

(3:24)

and

λ ≤ p

f (γ p( 12 − δ), γ p)

⎡
⎢⎢⎣

1−δ∫
1
2

∣∣gm(t1, s)∣∣α(s)ds
⎤
⎥⎥⎦

−1

(3:25)

where t1 is any number in (0, 1) such that x(t1) ≠ 0.

Proof. Let t0 Î [0, 1] be such that

p = ‖x‖ = x(t0).

Then, using (3.5), Lemma 2.1 and the monotonicity of f, we find

p = x(t0) = Sx(t0) ≤ λ

1∫
0

∣∣gm(t0, s)∣∣β(s)f
⎛
⎝ s∫

0

x(τ )dτ , x(s)

⎞
⎠ ds

≤ λ

1∫
0

1
π2m−1

β(s)f

⎛
⎝ 1∫

0

pdτ , p

⎞
⎠ sinπ sds

= λ
f (p, p)
π2m−1

1∫
0

β(s) sinπ sds

which gives (3.24) readily.

Next, we employ (3.5), the monotonicity of f and the fact that mintÎ[δ, 1-δ] x(t) ≥ gp
to get

p ≥ x(t1) ≥ λ

1∫
0

∣∣gm(t1, s)∣∣α(s)f
⎛
⎝ s∫

0

x(τ )dτ , x(s)

⎞
⎠ ds

≥ λ

1−δ∫
1
2

∣∣gm(t1, s)∣∣α(s)f
⎛
⎝ s∫

0

x(τ )dτ , x(s)

⎞
⎠ ds

≥ λ

1−δ∫
1
2

∣∣gm(t1, s)∣∣α(s)f
⎛
⎜⎜⎝

1
2∫

0

x(τ )dτ , x(s)

⎞
⎟⎟⎠ ds

≥ λ

1−δ∫
1
2

∣∣gm(t1, s)∣∣α(s)f
⎛
⎜⎜⎝

1
2∫

δ

x(τ )dτ , x(s)

⎞
⎟⎟⎠ ds

≥ λ

1−δ∫
1
2

∣∣gm(t1, s)∣∣α(s)f
⎛
⎜⎜⎝

1
2∫

δ

γ p dτ , γ p

⎞
⎟⎟⎠ ds

= λf
(

γ p
(
1
2

− δ

)
, γ p

) 1−δ∫
1
2

∣∣gm(t1, s)∣∣α(s)ds
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from which (3.25) is immediate.

The following result gives the criteria for E to be a bounded/unbounded interval.

Theorem 3.5. Define

WB =
{
f

∣∣∣∣ u
f (u, u)

is bounded for u ∈ (0,∞)
}
,

W0 =
{
f

∣∣∣∣ limu→∞
u

f (u, u)
= 0

}
,

W∞ =
{
f

∣∣∣∣ limu→∞
u

f (u, u)
= ∞

}
.

(a) Let (A1)-(A5) hold. If f Î WB, then E = (0, c) or (0, c] for some c Î (0, ∞).

(b) Let (A1)-(A5) hold. If f Î W0, then E = (0, c] for some c Î (0, ∞).

(c) Let (A1)-(A4) hold. If f Î W∞, then E = (0, ∞).

Proof. (a) This is immediate from (3.25) and Corollary 3.1.

(b) Since W0 ⊆ WB, it follows from Case (a) that E = (0, c) or (0, c] for some c Î
(0, ∞).

In particular,

c = sup E.

Let {λn}∞n=1 be a monotonically increasing sequence in E which converges to c, and let
{xn}∞n=1 be a corresponding sequence of eigenfunctions in the context of (3.3). Further,

let pn = ∥xn∥. Then, (3.25) together with f Î W0 implies that no subsequence of {pn}∞n=1
can diverge to infinity. Thus, there exists R > 0 such that pn ≤ R for all n. So {xn}∞n=1 is
uniformly bounded. This implies that there is a subsequence of {xn}∞n=1, relabeled as the

original sequence, which converges uniformly to some x, where x(t) ≥ 0 for t Î [0, 1].

Clearly, we have Sxn = xn, i.e.,

xn(t) = λn

1∫
0

∣∣gm(t, s)∣∣ F
⎛
⎝s,

s∫
0

xn(τ )dτ , xn(s)

⎞
⎠ ds, t ∈ [0, 1]. (3:26)

Since xn converges to x and ln converges to c, letting n ® ∞ in (3.26) yields

x(t) = c

1∫
0

∣∣gm(t, s)∣∣ F
⎛
⎝s,

s∫
0

x(τ )dτ , x(s)

⎞
⎠ ds, t ∈ [0, 1].

Hence, c is an eigenvalue with corresponding eigenfunction x, i.e., c = sup E Î E.

This completes the proof for Case (b).

(c) Let l > 0 be fixed. Choose ε > 0 so that

λ

π2m−1

1∫
0

β(s) sinπ sds ≤ 1
ε
. (3:27)
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By definition, if f Î W∞, then there exists M = M(ε) > 0 such that

f (u, u) < ε u, u ≥ M. (3:28)

We shall prove that S(Cδ(M)) ⊆ Cδ(M). Let x Î Cδ (M). As in the proof of Theorem

3.1, we have (3.8) and (3.10) and so Sx Î Cδ. Thus, it remains to show that ∥Sx∥ ≤ M.

Using (3.5), Lemma 2.1, (3.6), (3.28), and (3.27), we find for t Î [0, 1],

Sx(t) ≤ λ

1∫
0

∣∣gm(t, s)∣∣β(s)f
⎛
⎝ s∫

0

x(τ )dτ , x(s)

⎞
⎠ ds

≤ λf (M,M)

1∫
0

1
π2m−1

β(s) sinπ sds

≤ λεM

1∫
0

1
π2m−1

β(s) sinπ sds ≤ M.

It follows that ∥Sx∥ ≤ M and hence S(Cδ(M)) ⊆ Cδ(M). Also, S is continuous and

completely continuous. Schauder’s fixed point theorem guarantees that S has a fixed

point in Cδ(M). Clearly, this fixed point is a positive solution of (3.3) and therefore l is

an eigenvalue of (3.3). Since l > 0 is arbitrary, we have proved that E = (0, ∞).

Example 3.1. Consider the complementary Lidstone boundary value problem

y(5) = λ

(
t5

10
+
t4

4
− t3 +

t2

4
+

t
2
+ 2

)−q[
y + y′

2
+ 2

]q
, t ∈ (0, 1)

y(0) = y′(0) = y′′′(0) = y′(1) = y′′′(1) = 0

(3:29)

where l > 0 and q ≥ 0.

Here, m = 2 and

F(t, y, y′) =
(
t5

10
+
t4

4
− t3 +

t2

4
+

t
2
+ 2

)−q(
y + y′

2
+ 2

)q

.

Clearly, F(t, u, v) is nondecreasing in u and v, thus (A5) is satisfied.

Choose

α(t) = β(t) =
(
t5

10
+
t4

4
− t3 +

t2

4
+

t
2
+ 2

)−q

and

f (u, v) =
(u + v

2
+ 2

)q
.

We see that (A1)-(A4) are satisfied.

Case 1. 0 ≤ q < 1. Clearly f Î W∞. It follows from Theorem 3.5(c) that the set E = (0,

∞). As an example, when l = 24, the boundary value problem (3.29) has a positive

solution given by y(t) = t5

5 − t4

2 + t2

2
.

Case 2. q = 1. Here f Î WB. By Theorem 3.5(a) the set E is an open or a half-closed

interval. Further, from Case 1 and Theorem 3.2 we note that E contains the interval

(0, 24].
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Case 3. q > 1. Clearly f Î W0. By Theorem 3.5(b) the set E is a half-closed interval.

Again, as in Case 2 we note that (0, 24] ⊆ E.

4 Eigenvalue intervals
In this section, we shall establish explicit subintervals of E. Here, the functions a and b
in (A2)-(A4) are assumed to be continuous on the closed interval [0, 1]. Hence, noting

Remark 3.1, we shall not require conditions (A1) and (A4) to show the compactness of

the operator S. For the function f in (A2), we define

f̄0 = lim sup
u→0, v→0

f (u, v)
v

, f
−
0
= lim inf

u→0, v→0

f (u, v)
v

,

f̄∞ = lim sup
u→∞, v→∞

f (u, v)
v

, f
−∞

= lim inf
u→∞, v→∞

f (u, v)
v

.

Let δ ∈ (0, 12 ) be given. Define t∗, t̂ ∈ [0, 1] by

1−δ∫
1
2

∣∣gm(t∗, s)∣∣α(s)ds = sup
t∈[0,1]

1−δ∫
1
2

∣∣gm(t, s)∣∣α(s)ds,
1−δ∫
δ

∣∣gm(t̂, s)∣∣α(s)ds = sup
t∈[0,1]

1−δ∫
δ

∣∣gm(t, s)∣∣α(s)ds,
(4:1)

Theorem 4.1. Let (A2)-(A4) hold. Then, l Î E if l satisfies

1
f
−∞

⎡
⎢⎢⎣γ

1−δ∫
1
2

∣∣gm(t∗, s)∣∣α(s)ds
⎤
⎥⎥⎦

−1

< λ <
1

f̄0

⎡
⎣ 1

π2m−1

1∫
0

β(s) sinπ sds

⎤
⎦

−1

. (4:2)

Proof. We shall use Theorem 2.1. Let l satisfy (4.2) and let ε > 0 be such that

1
f
−∞

− ε

⎡
⎢⎢⎣γ

1−δ∫
1
2

∣∣gm(t∗, s)∣∣α(s)ds
⎤
⎥⎥⎦

−1

≤ λ ≤ 1

f̄0 + ε

⎡
⎣ 1

π2m−1

1∫
0

β(s) sinπ sds

⎤
⎦

−1

.(4:3)

First, we pick p > 0 so that

f (u, v) ≤ (f̄0 + ε)v, 0 < u ≤ p, 0 < v ≤ p. (4:4)

Let x Î Cδ be such that ∥x∥ = p. Note that for s Î [0, 1],

s∫
0

x(τ )dτ ≤
1∫

0

p dτ = p.
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Then, using (3.5), Lemma 2.1, (4.4) and (4.3) successively, we find for t Î [0, 1],

Sx(t) ≤ λ

1∫
0

1
π2m−1

β(s)f

⎛
⎝ s∫

0

x(τ )dτ , x(s)

⎞
⎠ sinπ sds

≤ λ

1∫
0

1
π2m−1

β(s)(f̄0 + ε)x(s) sinπ sds

≤ λ

1∫
0

1
π2m−1

β(s)(f̄0 + ε) ‖x‖ sinπ sds ≤ ‖x‖ .

Hence,

‖Sx‖ ≤ ‖x‖ . (4:5)

If we set Ω1 = {x Î B |∥x∥ <p}, then (4.5) holds for x Î Cδ ∩ ∂ Ω1.

Next, let q > 0 be such that

f (u, v) ≥ (f
−∞

− ε)v, u ≥ q, v ≥ q. (4:6)

Let x Î Cδ be such that

‖x‖ = max

{
p + 1,

q
γ
,
q
γ

(
1
2

− δ

)−1
}
= max

{
p + 1,

q
γ

(
1
2

− δ

)−1
}

≡ q0.

It is clear that⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x(s) ≥ γ ‖x‖ ≥ q, s ∈

[
1
2
, 1 − δ

]
1
2∫
δ

x(τ )dτ ≥
1
2∫
δ

γ ‖x‖ dτ =
(
1
2

− δ

)
γ ‖x‖ ≥ q.

(4:7)

Then, an application of (3.5), (4.7), and (4.6) gives for t Î [0, 1],

Sx(t) ≥ λ

1−δ∫
1
2

∣∣gm(t, s)∣∣α(s)f
⎛
⎝ s∫

0

x(τ )dτ , x(s)

⎞
⎠ ds

≥ λ

1−δ∫
1
2

∣∣gm(t, s)∣∣α(s)f
⎛
⎜⎜⎝

1
2∫

δ

x(τ )dτ , x(s)

⎞
⎟⎟⎠ ds

≥ λ

1−δ∫
1
2

∣∣gm(t, s)∣∣α(s)(f−∞
− ε)x(s)ds

≥ λ

1−δ∫
1
2

∣∣gm(t, s)∣∣α(s)(f−∞
− ε)γ ‖x‖ ds.

Taking supremum both sides and using (4.3) then provides (see (4.1) for the defini-

tion of t*)
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‖Sx‖ ≥ λ

1−δ∫
1
2

∣∣gm(t∗, s)∣∣α(s)ds · (f
−∞

− ε)γ ‖x‖ ≥ ‖x‖ .

Therefore, if we set Ω2 = {x Î B| ∥x∥ <q0}, then for x Î Cδ ∩ ∂ Ω2 we have

‖Sx‖ ≥ ‖x‖ . (4:8)

Now that we have obtained (4.5) and (4.8), it follows from Remark 3.2 and Theorem

2.1 that S has a fixed point x ∈ Cδ ∩ (�̄2\�1) such that p ≤ ∥x∥ ≤ q0. Obviously, this x

is a positive solution of (3.3) and hence l Î E. □
Theorem 4.2. Let (A2)-(A4) hold. Then, l Î E if l satisfies

1
f
−
0

⎡
⎣γ

1−δ∫
δ

∣∣gm(t̂, s)∣∣α(s)ds
⎤
⎦

−1

< λ <
1

f̄∞

⎡
⎣ 1

π2m−1

1∫
0

β(s) sinπ sds

⎤
⎦

−1

. (4:9)

Proof. We shall apply Theorem 2.1 again. Let l satisfy (4.9) and let ε > 0 be such

that

1
f
−
0

− ε

⎡
⎣γ

1−δ∫
δ

∣∣gm(t̂, s)∣∣α(s)ds
⎤
⎦

−1

≤ λ ≤ 1

f̄∞ + ε

⎡
⎣ 1

π2m−1

1∫
0

β(s) sinπ sds

⎤
⎦

−1

.(4:10)

First, we choose r > 0 so that

f (u, v) ≥ (f
−
0

− ε)v, 0 < u ≤ r, 0 < v ≤ r. (4:11)

Let x Î Cδ be such that ∥x∥ = r. Then, on using (3.5), (4.11), and (4.10) successively,

we have for t Î [0, 1],

Sx(t) ≥ λ

1∫
0

∣∣gm(t, s)∣∣α(s)f
⎛
⎝ s∫

0

x(τ )dτ , x(s)

⎞
⎠ ds

≥ λ

1∫
0

∣∣gm(t, s)∣∣α(s)(f−
0

− ε)x(s)ds

≥ λ

1−δ∫
δ

∣∣gm(t, s)∣∣α(s)(f−
0

− ε)γ ‖x‖ ds.

Taking supremum both sides and using (4.10) then yields (see (4.1) for the definition

of t̂)

‖Sx‖ ≥ λ

1−δ∫
δ

∣∣gm(t̂, s)∣∣α(s)ds · (f
−
0

− ε)γ ‖x‖ ≥ ‖x‖ .

Hence, if we set Ω1 = {y Î B| ∥x∥ <r}, then (4.8) holds for x Î Cδ ∩ ∂ Ω1.

Next, pick w > 0 such that

f (u, v) ≤ (f̄∞ + ε)v, u ≥ w, v ≥ w. (4:12)
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We shall consider two cases - when f is bounded and when f is unbounded.

Case 1. Suppose that f is bounded. Then, there exists some M > 0 such that

f (u, v) ≤ M, u, v ∈ (0,∞). (4:13)

Let x Î Cδ be such that

‖x‖ = max

⎧⎨
⎩r + 1,

λM
π2m−1

1∫
0

β(s) sinπ sds

⎫⎬
⎭ ≡ w0.

From (3.5), Lemma 2.1 and (4.13), it is clear for t Î [0, 1] that

Sx(t) ≤ λ

1∫
0

1
π2m−1

β(s)f

⎛
⎝ s∫

0

x(τ )dτ , x(s)

⎞
⎠ sinπ sds

≤ λ

1∫
0

1
π2m−1

β(s)M sinπ sds ≤ w0 = ‖x‖ .

Hence, (4.5) holds.

Case 2. Suppose that f is unbounded. Then, there exists w0 > max {r + 1, w} such

that

f (u, v) ≤ f (w0,w0), 0 < u ≤ w0, 0 < v ≤ w0. (4:14)

Let x Î Cδ be such that ∥x∥ = w0. Then, applying (3.5), Lemma 2.1, (4.14), (4.12), and

(4.10) successively gives for t Î [0, 1],

Sx(t) ≤ λ

1∫
0

1
π2m−1

β(s)f

⎛
⎝ s∫

0

x(τ )dτ , x(s)

⎞
⎠ sinπ sds

≤ λ

1∫
0

1
π2m−1

β(s)f (w0,w0) sin π sds

≤ λ

1∫
0

1
π2m−1

β(s)(f̄∞ + ε)w0 sinπ sds

= λ

1∫
0

1
π2m−1

β(s)(f̄∞ + ε) ‖x‖ sinπ sds ≤ ‖x‖ .

Thus, (4.5) follows immediately.

In both Cases 1 and 2, if we set Ω2 = {x Î B| ∥x∥ <w0}, then (4.5) holds for x Î Cδ ∩
∂Ω2.

Now that we have obtained (4.8) and (4.5), it follows from Remark 3.2 and Theorem

2.1 that S has a fixed point x ∈ Cδ ∩ (�̄2\�1) such that r ≤ ∥x∥ ≤ w0. It is clear that

this x is a positive solution of (3.3) and hence l Î E.

Remark 4.1. In (4.2) and (4.9), although t* and t̂ can be computed from (4.1), we can

circumvent the computation by giving further bounds. Indeed, applying Lemma 2.2 we

find
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1−δ∫
1
2

∣∣gm(t∗, s)∣∣α(s)ds ≥ sup
t∈[δ,1−δ]

1−δ∫
1
2

∣∣gm(t, s)∣∣α(s)ds ≥ 2δ

π2m

1−δ∫
1
2

α(s) sin π sds

and

1−δ∫
δ

∣∣gm(t̂, s)∣∣α(s)ds ≥ sup
t∈[δ,1−δ]

1−δ∫
δ

∣∣gm(t, s)∣∣α(s)ds ≥ 2δ

π2m

1−δ∫
δ

α(s) sin π sds.

The following corollary is immediate from Theorems 4.1, 4.2 and Remark 4.1.

Corollary 4.1. Let (A2)-(A4) hold. Then,

E ⊇

⎛
⎜⎜⎝ 1
f
−∞

⎡
⎢⎢⎣γ

1−δ∫
1
2

∣∣gm(t∗, s)∣∣α(s)ds
⎤
⎥⎥⎦

−1

,
1

f̄0

⎡
⎣ 1

π2m−1

1∫
0

β(s) sinπ sds

⎤
⎦

−1
⎞
⎟⎟⎠

⊇

⎛
⎜⎜⎝ 1
f
−∞

⎡
⎢⎢⎣2γ δ

π2m

1−δ∫
1
2

α(s) sin π sds

⎤
⎥⎥⎦

−1

,
1

f̄0

⎡
⎣ 1

π2m−1

1∫
0

β(s) sinπ sds

⎤
⎦

−1
⎞
⎟⎟⎠

and

E ⊇

⎛
⎜⎝ 1
f
−
0

⎡
⎣γ

1−δ∫
δ

∣∣gm(t̂, s)∣∣α(s)ds
⎤
⎦

−1

,
1

f̄∞

⎡
⎣ 1

π2m−1

1∫
0

β(s) sinπ sds

⎤
⎦

−1
⎞
⎟⎠

⊇

⎛
⎜⎝ 1
f
−
0

⎡
⎣2γ δ

π2m

1−δ∫
δ

α(s) sin π sds

⎤
⎦

−1

,
1

f̄∞

⎡
⎣ 1

π2m−1

1∫
0

β(s) sinπ sds

⎤
⎦

−1
⎞
⎟⎠ .

Remark 4.2. If f is superlinear (i.e., f̄0 = 0 and f
−∞

= ∞) or sublinear (i.e., f−
0
= ∞ and

f̄∞ = 0), then we conclude from Corollary 4.1 that E = (0, ∞), i.e., the boundary value

problem (3.3) (or (1.1)) has a positive solution for any l > 0.

Example 4.1. Consider the complementary Lidstone boundary value problem

y(5) = λ

[
a
(
t5 − 5t4

2
+
5t2

2

)
+ b(5t4 − 10t3 + 5t) + c

]−r

(ay + by′ + c)r , t ∈ (0, 1)

y(0) = y′(0) = y′′′(0) = y′(1) = y′′′(1) = 0

(4:15)

where l, a, b, c > 0 and r ≤ 1.

Here, m = 2. It is clear that (A2)-(A4) are satisfied with

α(t) = β(t) =
[
a
(
t5 − 5t4

2
+
5t2

2

)
+ b(5t4 − 10t3 + 5t) + c

]−r

and f (u, v) = (au + bv + c)r .

Case 1. r < 1. It is clear that f is sublinear. Therefore, by Remark 4.2 the boundary

value problem (4.15) has a positive solution for any l > 0. In fact, we note that when

l = 120, (4.15) has a positive solution given by x(t) = t5 − 5t4
2 + 5t2

2
.
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Case 2. r = 1, a = b = 0.5, c = 10. Here, f−
0
= ∞ and f̄∞ = 1. It follows from Corollary

4.1 that

E ⊇

⎛
⎜⎝0,

π3

f̄∞

⎡
⎣ 1∫

0

β(s) sinπ sds

⎤
⎦

−1
⎞
⎟⎠ = (0, 528.99).

Once again we note that when l = 120 Î (0,528.99), the corresponding eigenfunc-

tion is given by x(t) = t5 − 5t4
2 + 5t2

2
.
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