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Abstract

We consider the semilinear Petrovsky equation

utt + Δ2u −
t∫

0

g(t − s)Δ2u(s)ds = |u|pu

in a bounded domain and prove the existence of weak solutions. Furthermore, we
show that there are solutions under some conditions on initial data which blow up
in finite time with non-positive initial energy as well as positive initial energy.
Estimates of the lifespan of solutions are also given.
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1 Introduction
In this article, we concerned with the problem

utt + Δ2u −
t∫

0

g(t − s)Δ2u(s)ds = |u|pu, x ∈ Ω, τ > 0

u(x, t) = ∂νu(x, t) = 0, x ∈ ∂Ω, t ≥ 0

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω

(1:1)

where Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω in order that the

divergence theorem can be applied. ν is the unit normal vector pointing toward the

exterior of Ω and p > 0. Here, g represents the kernel of the memory term satisfying

some conditions to be specified later.

In the absence of the viscoelastic term, i.e., (g = 0), we motivate our article by pre-

senting some results related to initial-boundary value Petrovsky problem

utt + Δ2
u = f (u, ut), x ∈ Ω, t > 0

u(x, t) = ∂νu(x, t) = 0, x ∈ ∂Ω, t ≥ 0

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω.

(1:2)

Tahamtani and Shahrouzi Boundary Value Problems 2012, 2012:50
http://www.boundaryvalueproblems.com/content/2012/1/50

© 2012 Tahamtani and Shahrouzi; licensee Springer. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:tahamtani@shirazu.ac.ir
http://creativecommons.org/licenses/by/2.0


Research of global existence, blow-up and energy decay of solutions for the initial

boundary value problem (1.2) has attracted a lot of articles (see [1-4] and references

there in).

Amroun and Benaissa [1] investigated (1.2) with f(u, ut) = b|u|p-2u-h(ut) and proved

the global existence of solutions by means of the stable set method in H2
0(Ω) com-

bined with the Faedo-Galerkin procedure. In [3], Messaoudi studied problem (1.2) with

f(u, ut) = b|u|p-2u-a|ut|
m-2ut. He proved the existence of a local weak solution and

showed that this solution blows up in finite time with negative initial energy if p >m.

In the presence of the viscoelastic terms, Rivera et al. [5] considered the plate model:

utt + Δ2u −
t∫

0

g(t − s)Δ2u(s)ds = 0

in a bounded domain Ω ⊂ RN and showed that the energy of solution decay expo-

nentially provided the kernel function also decay exponentially. For more related

results about the existence, finite time blow-up and asymptotic properties, we refer the

reader to [5-16].

In the present article, we devote our study to problem (1.1). We will prove the exis-

tence of weak solutions under some appropriate assumptions on the function g and

blow-up behavior of solutions. In order to obtain the existence of solutions, we use the

Faedo-Galerkin method and to get the blow-up properties of solutions with non-posi-

tive and positive initial energy, we modify the method in [17]. Estimates for the blow-

up time T* are also given.

2 Preliminaries
We define the energy function related with problem (1.1) is given by

E(t) =
1
2

⎡
⎣‖ut‖2 +

⎛
⎝1 −

t∫
0

g(s)ds

⎞
⎠ ‖Δu‖2 + (g � Δu)(t)

⎤
⎦ − 1

p + 2
‖u‖p+2p+2 , (2:1)

where

(g � v)(t) =

t∫
0

g(t − s)
∥∥v(t) − v(s)

∥∥2
2 ds.

We denote by ∥.∥k, the Lk-norm over Ω. In particular, the L2-norm is denoted ∥.∥2.
We use the familiar function spaces H2

0,H
4 and throughout this article we assume

u0 ∈ H2
0(Ω) ∩ H4(Ω) and u1 ∈ H2

0(Ω) ∩ L2(Ω).

In the sequel, we state some hypotheses and three well-known lemmas that will be

needed later.

(A1) p satisfies

0 < p ≤ ∞ (N ≤ 4),

0 < p ≤ 2(N − 2)
N − 4

(N ≥ 5).
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(A2) g is a positive bounded C1 function satisfying g(0) > 0, and for all t > 0

1 −
∞∫
0

g(t)ds = l > 0,

also there exists positive constants L0, L1 such that

(A3)

−L0 ≤ g′(t) ≤ 0, 0 ≤ g′′(t) ≤ L1.

Lemma 1 (Sobolev-Poincare’s inequality). Let p be a number that satisfies (A1), then

there is a constant C* = C(Ω, p) such that

‖u‖p ≤ C∗‖Δu‖2, u ∈ H2
0(Ω) (2:2)

Lemma 2 [4]. Let δ > 0 and B(t) Î C2(0, ∞) be a nonnegative function satisfying

B′′(t) − 4(δ + 1)B′(t) + 4(δ + 1)B(t) ≥ 0. (2:3)

If

B′(0) > r2B(0) + K0, (2:4)

with r2 = 2(δ + 1) − 2
√

δ(δ + 1), then B’(t) >K0 for t > 0, where K0 is a constant.

Lemma 3 [4]. If Y(t) is a non-increasing function on [t0, ∞) and satisfies the differen-

tial inequality

Y ′(t)2 ≥ a + bY(t)2+δ−1
for t ≥ t0 ≥ 0, (2:5)

where a > 0, δ > 0 and b Î R, then there exists a finite time T* such that

lim
t→T∗−

Y(t) = 0.

Upper bounds for T* is estimated as follows:

(i) If b < 0, then

T∗ ≤ t0 +
1√−b

ln

√−a

b√−a
b

− Y(t0)

.

(ii) If b = 0, then

T∗ ≤ t0 +
Y(t0)
Y ′(t0)

.

(iii) If b > 0, then

T∗ ≤ Y(t0)√
a

,
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or

T∗ ≤ t0 + 2
3δ+1
2δ

cδ√
a

{
1 − [1 + cY(t0)]

−1
2δ

}
,

where c =
(a
b

)2+1
δ .

3 Existence of solutions
In this section, we are going to obtain the existence of weak solutions to the problem

(1.1) using Faedo-Galerkin’s approximation.

Theorem 1 Let the assumptions (A1)-(A3) hold. Then there exists at least a solution

u of (1.1) satisfying

u ∈ L∞(0,∞;H2
0(Ω) ∩ H4(Ω)), u′ ∈ L∞(0,∞;H2

0(Ω) ∩ L2(Ω)),

u′′ ∈ L∞(0,∞; L2(Ω))
(3:1)

and

u(x, t) → u0(x) in H2
0(Ω) ∩ H4(Ω)

u′(x, t) → u1(x) in H2
0(Ω) ∩ L2(Ω)

as t ® 0.

Proof We choose a basis {ωk} (k = 1, 2, ...) in H2
0(Ω) ∩ H4(Ω) which is orthonormal

in L2(Ω) and ωk being the eigenfunctions of biharmonic operator subject to the homo-

geneous Dirichlet boundary condition.

Let Vm be the subspace of H2
0(Ω) ∩ H4(Ω) generated by the first m vectors. Define

um(t) =
m∑
k=1

dkm(t)ωk, (3:2)

where um(t) is the solution of the following Cauchy problem

(
u′′
m(t),ωk

)
+ (Δum(t),Δωk) −

t∫
0

(t − s)(Δum(s),Δωk)ds

−
(∣∣um(t)∣∣pum(t),ωk

)
= 0 ∀k = 1,m.

(3:3)

with the initial conditions (when m ® ∞){
um(0) =

∑m
k=1 (um(0),ωk)ωk → u0 in H2

0(Ω) ∩ H4(Ω)
u′
m(0) =

∑m
k=1

(
u′
m(0),ωk

)
ωk → u1 in H2

0(Ω) ∩ L2(Ω)
(3:4)

The approximate systems (3.3) and (3.4) are the normal one of differential equations

which has a solution in [0, Tm) for some Tm > 0. The solution can be extended to the

[0, T] for any given T > 0 by the first estimate below.

First estimation. Substituting u′
m(t) instead of ωk in (3.3), we find

d
dt

(
1
2

∥∥u′
m

∥∥2 + 1
2

‖Δum‖2 −
‖um‖p+2p+2

p + 2

)
−

t∫
0

g(t − s)(Δum(s),Δu′
m(t))ds = 0. (3:5)
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Simple calculation similar to [11] yield

−
t∫

0

g(t − s)(Δum(s),Δu′
m(t))ds = −

t∫
0

g(t − s)
∫
Ω

Δum(t)Δu′
m(t)dxds

−
t∫

0

g(t − s)
∫
Ω

(Δum(s) − Δum(t))Δu′
m(t)dxds

=
1
2

t∫
0

g(t − s)
d

dt

∥∥Δum(s) − Δum(t)
∥∥2ds − 1

2

t∫
0

g(t − s)
d

dt

∥∥Δum(t)
∥∥2ds

=
1
2
d
dt
(g � Δum)(t) − 1

2
(g′ � Δum)(t) − 1

2
d
dt

t∫
0

g(s)ds
∥∥Δum(t)

∥∥2ds
+
1
2
g(t)

∥∥Δum(t)
∥∥2.

(3:6)

Combining (3.5) and (3.6), we find

d
dt

⎛
⎝1
2

∥∥u′
m

∥∥2 + 1
2

⎛
⎝1 −

t∫
0

g(s)ds

⎞
⎠ ‖Δum‖2 + 1

2
(g � Δum)(t) −

‖um‖p+2p+2

p + 2

⎞
⎠

=
1
2
(g′ � Δum)(t) − 1

2
g(t)

∥∥Δum(t)
∥∥2,

(3:7)

integrating (3.7) over (0, t) and using assumption (A3) we infer that∥∥u′
m

∥∥2 + ‖Δum‖2 + (g � Δum)(t) − ‖um‖p+2p+2 ≤ C1, (3:8)

where C1 is a positive constant depending only on ∥u0∥, ∥u1∥, p, and l. It follows

from (3.8) that{ {um} is uniformly bounded in L∞(0,T;H2
0(Ω))

{u′
m} is uniformly bounded in L∞(0,T; L2(Ω))

(3:9)

Second estimation. Differentiating (3.3) with respect to t, we get

(
u′′′
m(t),ωk

)
+ (Δu′

m(t),Δωk) −
t∫

0

g′(t − s)(Δum(s),Δωk)ds

− g(0)(Δum(t),Δωk) − (p + 1)
(∣∣um(t)∣∣pu′

m(t),ωk

)
= 0.

(3:10)

If we substitute u′′
m(t) instead of ωk in (3.10), it holds that

d
dt

(
1
2

∥∥u′′
m

∥∥2 + 1
2

∥∥Δu′
m

∥∥2) − d
dt

t∫
0

g′(t − s)
(
Δum(s),Δu′

m(t)
)
ds

+

t∫
0

g′′(t − s)
(
Δum(s),Δu′

m(t)
)
ds + g′(0)

(
Δum(t),Δu′

m(t)
)

− g(0)
d
dt

(
Δum(t),Δu′

m(t)
)
+ g(0)

(
Δu′

m(t),Δu′
m(t)

)
− (p + 1)

(∣∣um(t)∣∣pu′
m(t), u

′′
m(t)

)
= 0.

(3:11)
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Since H2(Ω) ↪ L2p+2(Ω), using Lemma 2, Hölder and Young’s inequalities and (3.8)∣∣∣(p + 1)
(∣∣um(t)∣∣pu′

m(t), u
′′
m(t)

)∣∣∣ ≤ (p + 1)
∥∥um(t)∥∥p2p+2 .∥∥u′

m(t)
∥∥
2p+2.

∥∥u′′
m(t)

∥∥
2

≤ C(γ )
∥∥Δu′

m(t)
∥∥2 + γ

∥∥u′′
m(t)

∥∥2. (3:12)

Combining the relations (3.11), (3.12) and integrating over (0, t) for all t Î [0, T]

with arbitrary fixed T, we obtain

1
2

∥∥u′′
m

∥∥2 + 1
2

∥∥Δu′
m

∥∥2 ≤ 1
2

∥∥u′′
m(0)

∥∥2 +
t∫

0

g′(t − s)(Δum(s),Δu′
m(t))ds

+
1
2

∥∥Δu′
m(0)

∥∥2 −
t∫

0

τ∫
0

g′′(τ − s)(Δum(s),Δu′
m(τ ))dsdτ

−g′(0)
t∫

0

(
Δum(s),Δu′

m(s)
)
+ g(0)

(
Δum(t),Δu′

m(t)
)

−g(0)
(
Δum(0),Δu′

m(0)
) − g(0)

t∫
0

∥∥Δu′
m(s)

∥∥2ds

+C(γ )

t∫
0

∥∥Δu′
m(s)

∥∥2ds + γ

t∫
0

∥∥u′′
m(s)

∥∥2ds.

(3:13)

From (3.4) and (3.8), we deduce that

|1
2

∥∥Δu′
m(0)

∥∥2 − g(0)(Δum(0),Δu′
m(0))| ≤ L2, (3:14)

where L2 is a positive constant independent of m. In the following, we find the upper

bound for
∥∥u′′

m(0)
∥∥2. Again we substitute u′′

m(t) instead of ωk in (3.3), and choosing t =

0, we arrive at

(
u′′
m(0), u

′′
m(0)

)
+
(
Δum(0),Δu′′

m(0)
) −

(∣∣um(0)∣∣pum(0), u′′
m(0)

)
= 0,

which combined with the Green’s formula imply

∥∥u′′
m(0)

∥∥2 + (
Δ2um(0), u′′

m(0)
) −

(∣∣um(0)∣∣pum(0), u′′
m(0)

)
= 0. (3:15)

By using (A1), (3.4) and Young’s inequality, we deduce that∥∥u′′
m(0)

∥∥ ≤ L3, (3:16)

where L3 > 0 is a constant independent of m.
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Owing to (3.8), (3.5) and Young’s inequality with (A3), we deduce that∣∣∣∣∣∣
t∫

0

g′(t − s)(Δum(s),Δu′
m(t))ds)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
⎛
⎝Δu′

m(t),

t∫
0

g′(t − s)Δum(s)ds

⎞
⎠

∣∣∣∣∣∣
≤ γ

∥∥Δu′
m(t)

∥∥2 + 1
4γ

∫
Ω

⎛
⎝ t∫

0

g′(t − s)Δum(s)ds

⎞
⎠

2

dx

≤ γ
∥∥Δu′

m(t)
∥∥2 + L20

4γ

t∫
0

∥∥Δum(s)
∥∥2ds

≤ γ
∥∥Δu′

m(t)
∥∥2 + L4(T),

(3:17)

∣∣∣∣∣∣−
t∫

0

τ∫
0

g′′(τ − s)(Δum(s),Δu′
m(τ ))dsdτ

∣∣∣∣∣∣
=

t∫
0

⎛
⎝Δu′

m(τ ),

τ∫
0

g′′(τ − s)Δum(s)ds

⎞
⎠ dτ

≤ 1
2

t∫
0

∥∥Δu′
m(s)

∥∥2ds + 1
2

t∫
0

∫
Ω

⎛
⎝ τ∫

0

g′′(τ − s)Δum(s)ds

⎞
⎠

2

dxdτ

≤ 1
2

t∫
0

∥∥Δu′
m(s)

∥∥2ds + TL21
2

t∫
0

∥∥Δum(s)
∥∥2ds

≤ 1
2

t∫
0

∥∥Δu′
m(s)

∥∥2ds + L5(T),

(3:18)

∣∣∣∣∣∣−g′(0)

t∫
0

(Δum(s),Δu′
m(s))ds

∣∣∣∣∣∣ ≤ L0

t∫
0

∥∥Δu′
m(s)

∥∥2ds + L6(T), (3:19)

and ∣∣g(0)(Δum(t),Δu′
m(t))

∣∣ ≤ γ
∥∥Δu′

m(t)
∥∥2 + L7(γ ). (3:20)

Now we choose g > 0 small enough and combining (A3), (3.8), (3.13), (3.14), and

(3.16)-(3.20), we get

1
2

∥∥u′′
m

∥∥2 + 1
2

∥∥Δu′
m

∥∥2 ≤ L8

⎛
⎝ t∫

0

∥∥u′′
m(s)

∥∥2ds +
t∫

0

∥∥Δu′
m(s)

∥∥2ds
⎞
⎠ + L9. (3:21)

By using Gronwall’s lemma we arrive at

1
2

∥∥u′′
m

∥∥2 + 1
2

∥∥Δu′
m

∥∥2 ≤ L10, (3:22)

for all t Î [0, T], and L10 is a positive constant independent of m. Estimate (3.22)

implies{ {u′′
m} is uniformly bounded in L∞(0,T; L2(Ω))

{u′
m} is uniformly bounded in L∞(0,T;H2

0(Ω))
(3:23)
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By attention to (3.9) and (3.23), there exists a subsequence {ui} of {um} and a func-

tion u such that⎧⎨
⎩
ui ⇀ u weakly star in L∞(0,T;H2

0(Ω))
u′
i ⇀ u′ weakly star in L∞(0,T;H2

0(Ω))
u′′
i ⇀ u′′weakly star in L∞(0,T; L2(Ω))

(3:24)

By Aubin-Lions compactness lemma [18], it follows from (3.24) that{
ui → u strongly in C([0,T];H2

0(Ω))
u′
i → u strongly in C([0,T]); L2(Ω))

(3:25)

In the sequel we will deal with the nonlinear term. By (3.9) and Sobolev embedding

theorem, we obtain{|um|pum
}
is uniformly bounded in L∞(0,T; L2(Ω)), (3:26)

and therefore we can extract a subsequence {ui} of {um} such that

|ui|pui ⇀ |u|pu weakly star in L∞(0,T; L2(Ω)). (3:27)

Applying (3.24), (3.27) and letting i ® ∞ in (3.3), we see that u satisfies the equation.

For the initial conditions by using (3.4), (3.25) and the simple inequality

‖u − u0‖H2
0(Ω) ≤ ‖u − ui‖H2

0(Ω) +
∥∥ui − ui(0)

∥∥
H2

0(Ω) +
∥∥ui(0) − u0

∥∥
H2

0(Ω),

we get the first initial condition immediately. In the similar way, we can show the

second initial condition and the proof is complete.

4 Blow-up of solutions
In this section, we study blow-up property of solutions with non-positive initial energy

as well as positive initial energy, and estimate the lifespan of solutions. For this pur-

pose, we assume that g is positive and C1 function satisfying

(A4)

g(0) > 0, g′(s) ≤ 0, 1 −
∞∫
0

g(s)ds = l > 0,

and we make the following extra assumption on g

(A5)

∞∫
0

g(s)ds <
p

1 + p
.

From (2.1), (A4) and Lemma 1, we have

E(t) ≥ 1
2

⎡
⎣
⎛
⎝1 −

t∫
0

g(s)ds

⎞
⎠ ‖Δu‖2 + (g � Δu)(t)

⎤
⎦ − 1

p + 2
‖u‖p+2p+2

≥ 1
2

[
l‖Δu‖2 + g � Δu)(t)

] − Cp+2
1 l

p+2
2

p + 2
‖Δu‖p+2

≥ G
(√

l‖Δu‖2 + (g � Δu)(t)
)
, t ≥ 0,
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where G(λ) =
1
2

λ2 − Cp+2
1

p + 2
λp+2, C1 =

C∗√
l
. It is easy to verify that G(l) has a maxi-

mum at
λ1 = C

− p+2
p

1
and the maximum value is E1 =

p
2p + 4

C
−2p+4

p
1

.

Lemma 4 Let (A4) hold andu be a local solution of (1.1). Then E(t) is a non-increas-

ing function on [0, T] and

d
dt
E(t) =

1
2
(g′ � Δu)(t) − 1

2
g(t)‖Δu‖2 ≤ 0, (4:2)

for almost every t Î [0, T].

Proof Multiplying (1.1) by ut, integrating over Ω, and finally integrating by parts, we

obtain (4.2) for any regular solution. Then by density arguments, we have the result.

Lemma 5 Let (A4) hold and u be a local solution of (1.1) with initial data satisfying

E(0) <E1 and l
1
2 ‖Δu0‖ > λ1

. Then there exists l2 >l1 such that

l‖Δu‖2 + (g � Δu)(t) ≥ λ2
2. (4:3)

Proof See Li and Tsai [11].

The choice of the functional is standard (see [19])

ψ(t) = ‖u‖2. (4:4)

It is clear that

ψ ′(t) = 2(u, ut), (4:5)

and from (1.1)

ψ ′′(t) = 2‖ut‖2 − 2‖Δu‖2 + 2 ‖u‖p+2p+2 + 2

t∫
0

g(t − s)(Δu(t),Δu(s))ds. (4:6)

Lemma 6 Let u be a solution of (1.1) and (A4), (A5) hold, then we have

ψ ′′(t) − (4 + p)
∫
Ω

u2t dx ≥ m(l‖Δu‖2 + (g � Δu)(t)) − (4 + 2p)E(0), (4:7)

where m = (1 + p) − 1
l > 0.

Proof Using the Hölder and Young’s inequalities, we arrive at

t∫
0

g(t − s)(Δu(t),Δu(s))ds ≥ −
⎡
⎣1
2
(g � Δu)(t) +

1
2

t∫
0

g(s)ds‖Δu‖2
⎤
⎦

+

t∫
0

g(s)ds‖Δu‖2,
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therefore (4.6) becomes

ψ ′′(t) − (4 + p)‖ut‖2 ≥ −(2 + p)‖ut‖2 − 2‖Δu‖2 − (g � Δu)(t)

+

t∫
0

g(s)ds‖Δu‖2 + 2 ‖u‖p+2p+2 .

Then, using (4.2), we obtain

ψ ′′(t) − (4 + p)‖ut‖2 ≥ −(4 + 2p)E(0) + p‖Δu‖2 + (1 + p)(g � Δu)(t)

−(1 + p)

t∫
0

g(s)ds‖Δu‖2 − (2 + p)

t∫
0

(g′ � Δu)(s)ds,

and so by (2.5) and (A5), we deduce

ψ ′′(t) − (4 + p)‖ut‖2 ≥ −(4 + 2p)E(0) + (p − (1 + p)(1 − l))‖Δu‖2
+(1 + p)(g � Δu)(t),

(4:8)

if we set m := (1 + p) − 1
l
then inequality (4.8) yields the desired result.

Consequently, we have the following result.

Lemma 7 Assume that (A4) and (A5) hold. u be a local solution of (1.1) and that

either one of the following four conditions is satisfied:

(i) E(0) < 0

(ii) E(0) = 0 and ψ’(0) > 0

(iii) 0 < E(0) < m
p E1and l

1
2 ‖Δu0‖ > λ1

(iv) m
p E1 ≤ E(0)and ψ ′(0) > r2

[
ψ(0) +

(4 + 2p)E(0)
4 + p

]
.

Then ψ’ (t) > 0 for t >t*, where

in case (i)

t∗ = max
{
0,

ψ ′(0)
(4 + 2p)E(0)

}
, (4:9)

in cases (ii), (iv)

t∗ = 0, (4:10)

and in case (iii)

t∗ = max

⎧⎨
⎩0,

−ψ ′(0)

(4 + 2p)
(
m
p E1 − E(0)

)
⎫⎬
⎭ . (4:11)
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Proof Suppose that condition (i) is satisfied. Then from (4.5), we have

ψ ′(t) ≥ ψ ′(0) − (4 + 2p)E(0)t, t ≥ 0.

Thus ψ’(t) > 0 for t >t*, and it is easy to see that t* satisfies (4.9).

If E(0) = 0, then by using (4.3) we have ψ“ (t) ≥ 0, and since ψ’(0) > 0 we arrive at

ψ ′(t) > 0, for t > 0.

If 0 < E(0) < m
p E1 and l

1
2 ‖Δu0‖ > λ1

then by Lemma 4, we see that

m(l‖Δu‖2 + (g � Δu)(t)) − (4 + 2p)E(0) ≥ mλ2
2 − (4 + 2p)E(0)

> m
4 + 2p

p
E1 − (4 + 2p)E(0)

= (4 + 2p)
[
m
p
E1 − E(0)

]
.

Thus from (4.5), we have

ψ ′′(t) ≥ m(l‖Δu‖2 + (g � Δu)(t)) − (4 + 2p)E(0)

> (4 + 2p)
[
m
p
E1 − E(0)

]
> 0,

(4:12)

and integrating (4.12) from 0 to t gives

ψ ′(t) > 0, for t ≥ t∗,

where t* satisfies (4.11).

Let m
p E1 ≤ E(0), this assumption causes that

ψ ′′(t) − (4 + p)‖ut‖2 + (4 + 2p)E(0) ≥ 0,

and by using Hölder and Young’s inequalities, we get

‖ut‖2 ≥ ψ ′(t) − ψ(t),

thus

ψ ′′(t) − (4 + p)ψ ′(t) + (4 + p)ψ(t) + (4 + 2p)E(0) ≥ 0. (4:13)

We see that the hypotheses of Lemma 2 are fulfilled with

δ =
p

4
and B(t) = ψ(t) +

(4 + 2p)E(0)
4 + p

and the conclusion of Lemma 2.2 gives us

ψ ′(t) > 0, for t > 0.

Therefore the proof is complete.

To estimate the life-span of ψ(t), we define the following functional

Y(t) = ψ(t)−
p
4 , for t ≥ 0. (4:14)
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Then we have

Y ′(t) =
p
4
Y(t)

1+ 4p ψ ′(t), (4:15)

Y ′′(t) = − p
4
Y(t)

1+ 8p

[
ψ ′′(t)ψ(t) −

(
1 +

p
4

)
(ψ ′(t))2

]
. (4:16)

Using (4.4)-(4.6) and exploiting Holder’s inequality on ψ’(t), we get

ψ ′′(t)ψ(t) −
(
1 +

p
4

)
(ψ ′(t))2

≥ [(l‖Δu‖2 + (g � Δu)(t)) − (4 + 2p)E(0) + (4 + p)‖ut‖2]ψ(t)

−4
(
1 +

p
4

)
‖ut‖2ψ(t)

= [(l‖Δu‖2 + (g � Δu)(t)) − (4 + 2p)E(0)]Y(t)
−4
p .

Utilizing the last inequality into (4.16) yields

Y ′′(t) ≤ − p
4
[(l‖Δu‖2 + (g � Δu)(t)) − (4 + 2p)E(0)]Y(t)

1+ 4
p . (4:17)

Now we should assume different values for initial energy E(0).

(1) At first if E(0) ≤ 0 then from (4.17) we have

Y ′′(t) ≤ p
4
(4 + 2p)E(0)Y(t)

1+ 4
p , (4:18)

on the other hand by Lemma 7, Y’(t) < 0 for t >t*. Multiplying (4.18) by Y’(t) and

integrating from t* to t, we deduce that

Y ′(t)2 ≥ α + βY(t)
2+ 4p for t ≥ t∗,

where

α =
p2

16
Y(t∗)

2+8p

[
ψ ′(t∗)2 − 8E(0)Y(t∗)

−4
p

]
> 0, (4:19)

and

β =
p2

2
E(0). (4:20)

Then the hypotheses of Lemma 3 are fulfilled with δ = p
4 , t0 = t∗ and using the con-

clusion of Lemma 3, there exists a finite time T* such that limt→T∗−Y(t) = 0, i.e., in

this case some solutions blow up in finite time T*.

(2) If 0 < E(0) < m
p E1, then from (4.17) and (4.12) we have

Y ′′(t) ≤ − p
4
(4 + 2p)

[
m
p
E1 − E(0)

]
Y(t)

1+ 4
p .

Then using the same arguments as in (1), we get

Y ′(t)2 ≥ α1 + β1Y(t)
2+ 4

p for t ≥ t∗,
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where

α1 =
p2

16
Y(t∗)

2+8p (ψ ′(t∗)2 + 8
[
m
p
E1 − E(0)

]
Y(t∗)

−4
p ) > 0, (4:21)

and

β1 =
p2

2

[
E(0) − m

p
E1

]
. (4:22)

Thus by Lemma 3, there exists a finite time T* such that

lim
t→T∗−

ψ(t) = ∞.

(3) m
p E1 ≤ E(0). In this case, it is easy to see that by using (4.19) and (4.20) into dis-

cussion in part (1), we obtain

α > 0 if and only if E(0) <
ψ ′(t∗)2

8ψ(t∗)
.

Hence, Lemma 3 yields the blow-up property in this case.

Therefore, we proved the following theorem.

Theorem 2 Assume that (A4) and (A5) hold. u be a local solution of (1.1) and that

either one of the following four conditions is satisfied:

(i) E(0) < 0

(ii) E(0) = 0 and ψ’(0) > 0

(iii) 0 < E(0) < m
p E1and l

1
2 ‖Δu0‖ > λ1

(iv) m
p E1 ≤ E(0)and ψ ′(0) > r2

[
ψ(0) +

(4 + 2p)E(0)
4 + p

]
holds.

Then the solution u blows up at finite time T*. Moreover, the upper bounds for T*

can be estimated according to the sign of E(0):

in case (i)

T∗ ≤ t∗ − Y(t∗)
Y ′(t∗)

.

Furthermore, if Y(t∗) < min{1,
√

α
−β

}, then

T∗ ≤ t∗ +
1√−β

ln

√
α

−β√
α

−β
− Y(t∗)

in cases (ii)

T∗ ≤ t∗ − Y(t∗)
Y ′(t∗)

or T∗ ≤ t∗ +
Y(t∗)√

α
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in case (iii)

T∗ ≤ t∗ − Y(t∗)
Y ′(t∗)

.

Furthermore, if Y(t∗) < min{1,
√

α
−β

}, then

T∗ ≤ t∗ +
1√−β1

ln

√
α1

−β1√
α1

−β1
− Y(t∗)

and in case (iv)

T∗ ≤ Y(t∗)√
α

or T∗ ≤ t∗ + 2
3p+4
2p

pc

4
√

α

[
1 − (1 + cY(t∗))

−2
p

]
,

where d =
(

β

α

) p
p+8. Here a, b, a1, and b1 are given in (4.19)-(4.22), respectively. Note

that each t* in the above cases satisfy the same case in Lemma 7.
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