
RESEARCH Open Access

Positive solution for boundary value problems
with p-Laplacian in Banach spaces
Dehong Ji1* and Weigao Ge2

* Correspondence: jdh200298@163.
com
1College of Science, Tianjin
University of Technology, Tianjin
300384, China
Full list of author information is
available at the end of the article

Abstract

In this article, by using the fixed point theorem of strict-set-contractions operator, we
discuss the existence of positive solution for boundary value problems with p-
Laplacian{(

φp (u′ (t))) ′ + f (u (t)) = θ , 0 < t < 1,
u′ (0) = θ , u (1) = θ ,

in Banach spaces E, where: θ is the zero element of E. Although the fixed point
theorem of strict-set-contractions operator is used extensively in yielding positive
solutions for boundary value problems in Banach spaces, this method has not been
used to study those boundary value problems with p-Laplacian in Banach spaces. So
this article may be regarded as an illustration of fixed point theorem of strict-set-
contractions operator in a new area.
MSC: 34B18.
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1 Introduction
In the last ten years, the theory of ordinary differential equations in Banach spaces has

become an important new branch, so boundary value problems in Banach Space has

been studied by some researchers, we refer the readers to [1-9] and the references

therein.

For abstract space, it is here worth mentioning that Guo and Lakshmikantham [10]

discussed the multiple solutions of the following two-point boundary value problems

(BVP for short) of ordinary differential equations in Banach space
{
u′′ (t) + f (u (t)) = θ , 0 < t < 1,
u′ (0) = θ , u (1) = θ .

Very recently, by using the fixed-point principle in cone and the fixed-point index

theory for strict-set-contraction operator, Zhang et al. [11] investigated the existence,

nonexistence, and multiplicity of positive solutions for the following nonlinear three-

point boundary value problems of nth-order differential equations in ordered Banach

spaces

Ji and Ge Boundary Value Problems 2012, 2012:51
http://www.boundaryvalueproblems.com/content/2012/1/51

© 2012 Ji and Ge; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

mailto:jdh200298@163.com
mailto:jdh200298@163.com
http://creativecommons.org/licenses/by/2.0


⎧⎪⎪⎨
⎪⎪⎩
x(n) (t) + f (t, x(t), x′(t), · · · , x(n−2)(t)) = θ , t ∈ (0, 1),

x(i)(0) = θ , i = 0, 1, 2, · · · ,n − 2,

x(n−2)(1) = ρx(n−2)(η).

On the other hand, boundary value problems with p-Laplacian have received a lot of

attention in recent years. They often occur in the study of the n-dimensional p-Lapla-

cian equation, non-Newtonian fluid theory, and the turbulent flow of gas in porous

medium [12-19]. Many studies have been carried out to discuss the existence of solu-

tions or positive solutions and multiple solutions for the local or nonlocal boundary

value problems.

However, to the authors’ knowledge, this is the first article can be found in the litera-

ture on the existence of positive solutions for boundary value problems with p-Lapla-

cian in Banach spaces. As is well known, the main difficulty that appears when passing

from p = 2 to p ≠ 2 is that, when p = 2, we can change the differential equation into a

equivalent integral equation easily and therefore a Green’s function exists, so we can

easily prove the equivalent integral operator is a strict-set-contractions operator, which

is a very important result for discussing positive solution for boundary value problems

in Banach space. However, for p ≠ 2, it is impossible for us to find a Green’s function

in the equivalent integral operator since the differential operator (jp(u’))’ is nonlinear.

To authors’ knowledge, this is the first article to use the fixed point theorem of strict-

set-contractions to deal with boundary value problems with p-Laplacian in Banach

spaces. Such investigations will provide an important platform for gaining a deeper

understanding of our environment.

Basic facts about an ordered Banach space E can be found in [1,4]. Here we just

recall a few of them. Let the real Banach spaces E with norm || ·|| be partially ordered

by a cone P of E, i.e., x ≤ y if and only if y - x Î P , and P* denotes the dual cone of

P. P is said to be normal if there exists a positive constant N such that θ ≤ x ≤ y

implies ||x|| ≤ N||y||, where θ denotes the zero element of E, and the smallest N is

called the normal constant of P (it is clear, N ≥ 1). Set I = 0 [1], (C[I, E], ||·|| C) is a

Banach space with ||x||C = maxtÎI ||x(t)||. Clearly, Q = {x Î C[I, E]|x(t) ≥ θ for t Î I}

is a cone of the Banach space C[I, E].

For a bounded set S in a Banach space, we denote by a(S) the Kuratowski measure

of noncompactness. In this article, we denote by a(·) the Kuratowski measure of non-

compactness of a bounded set in E and in C[I, E].

The operator T : D ® E(D ⊂ E) is said to be a k-set contraction if T : D ® E is con-

tinuous and bounded and there is a constant k ≥ 0 such that a(T (S)) ≤ ka(S) for any
bounded S ⊂ D; a k-set contraction with k <1 is called a strict set contraction.

In this article, we will consider the boundary value problems with p-Laplacian

(φp(u′(t)))′ + f (u(t)) = θ , 0 < t < 1, (1)

u′(0) = θ , u(1) = θ , (2)

in Banach spaces E, where jp(s) = sp-1, p > 1, (jp)
-1 = jq,

1
p + 1

q= 1 , θ is the zero ele-

ment of E, f Î C(P, P).
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A function u is called a positive solution of BVP (1) and (2) if it satisfies (1) and (2)

and u Î Q, u(t) ≢ Q.

The main tool of this article is the following fixed point Theorems.

Theorem 1. [5] Let K be a cone in a Banach space E and Kr, R = {x Î K, r ≤ ||x|| ≤

R}, R > r >0. Suppose that A : Kr, R ® K is a strict-set contraction such that one of

the following two conditions is satisfied:

(a) ‖Ax‖ ≥ ‖x‖ ,∀x ∈ K, ‖x‖ = r; ‖Ax‖ ≤ ‖x‖ ,∀x ∈ K, ‖x‖ = R.

(b) ‖Ax‖ ≤ ‖x‖ ,∀x ∈ K, ‖x‖ = r; ‖Ax‖ ≥ ‖x‖ ,∀x ∈ K, ‖x‖ = R.

Then, A has a fixed point x Î Kr, R such that r ≤ ||x|| ≤ R.

2 Preliminaries
Lemma 2.1. If y Î C[I, E], then the unique solution of

(φp(u′(t)))′ + y(t) = θ , 0 < t < 1, (3)

u′(0) = θ , u(1) = θ , (4)

is

u(t) =

1∫
t

φq

⎛
⎝

s∫
0

y(τ )d τ

⎞
⎠ ds.

Lemma 2.2. If y Î Q, then the unique solution u of the problem (3) and (4) satisfies u

(t) ≥ θ, t Î I, that is u Î Q.

Lemma 2.3. Let δ ∈ (0, 12 ) , Jδ = [δ, 1-δ], then for any y Î Q, the unique solution u of

the problem (3) and (4) satisfies u(t) ≥ δu(s), t Î Jδ, s Î I.

Lemma 2.4. We define an operator T by

(Tu)(t) =

1∫
t

φq

⎛
⎝

s∫
0

f (u(τ ))dτ

⎞
⎠ ds. (5)

Then u is a solution of problem (1) and (2) if and only if u is a fixed point of T.

In the following, the closed balls in spaces E and C[I, E] are denoted by Tr = {x Î
E|||x|| ≤ r} (r >0) and Br = {x Î C[I, E]|||x||c ≤ r}, M = sup {||f(u)||: u Î Q ⋂ Br}.

Lemma 2.5. Suppose that, for any r >0, f is uniformly continuous and bounded on P

⋂ Tr and there exists a constant Lr with

(q − 1)Mq−2Lr < 1, (6)

such that

α(f (D)) ≤ Lr α(D), ∀D ⊂ P ∩ Tr . (7)

Then, for any r >0, operator T is a strict-set-contraction on D ⊂ P ⋂ Tr.

Proof. Since f is uniformly continuous and bounded on P ⋂ Tr, we see from Lemma

2.4 that T is continuous and bounded on Q ⋂ Br. Now, let S ⊂ Q ⋂ Br be given arbi-

trary, there exists a partition S = ∪m
i=1Si. We set a{y : y Î S} = a(S)·
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By virtue of Lemma 2.4, it is easy to show that the functions {Ty|y Î S} are uni-

formly bounded and equicontinuous, and so by [11],

α(T(S)) = sup
t∈I

α(T(S(t))), (8)

where T (S(t)) = {Tu(t)|u Î S, t is fixed}⊂ P ⋂ Tr for any t Î I.

Let u1,u2 Î Si,

|(Tu1−Tu2)(t)| =

∣∣∣∣
∫ 1

t

[
φq

(∫ s

0
f (u1(τ ))dτ

)
− φq

(∫ s

0
f (u2(τ ))dτ

)]
ds

∣∣∣∣
≤

∫ 1

t

∣∣∣∣φq

(∫ s

0
f (u1(τ ))dτ

)
− φq

(∫ s

0
f (u2(τ ))dτ

)∣∣∣∣ ds
≤ (q − 1)Mq−2

∫ 1

t

(∫ s

0

∣∣f (u1(τ )) − f (u2(τ ))
∣∣ dτ

)
ds

≤ (q − 1)Mq−2
∫ 1

t

∫ s

0
dτds max

0≤t≤1

∣∣f (u1(t)) − f (u2(t))
∣∣

≤ 1
2 (q − 1)Mq−2 max

0≤t≤1

∣∣f (u1(t)) − f (u2(t))
∣∣

So, we have

α(Tu) ≤ 1
2
(q − 1)Mq−2α(f (S)) ≤ 1

2
(q − 1)Mq−2Lrα(B),

where B = {y(s)| s Î I, y Î S}⊂ P ⋂ Tr. Similarly, to the proof of [10], we have a(B) ≤
2a(S)·It follows from (6), (7), and (8), that

α(T(S)) < (q − 1)Mq−2Lrα(S) < α(S), ∀S ⊂ Q ∩ Br,

and consequently T is a strict-set-contraction on S ⊂ Q ⋂ Br because of (q-1)Mq-2 Lr
<1. □

3 Existence of positive solution to BVP (1) and (2)
In the following, for convenience, we set

f β = lim sup
‖u‖→β

∥∥f (u)∥∥
φp (‖u‖)

, fβ lim inf
‖u‖→β

∥∥f (u)∥∥
φp (‖u‖) , (ψf )β = lim inf

‖u‖→β

ψ
(
f (u)

)
φp (‖u‖)

,

where b = 0 or ∞, ψ Î P* and ||ψ|| = 1.

Furthermore, we list some condition:

(H1): For any r >0, f is uniformly continuous and bounded on P ⋂ Tr and there exists

a constant Lr with (q - 1)Mq-2Lr < 1 such that

α(f (D)) ≤ Lrα(D), ∀D ⊂ P ∩ Tr .

Theorem 3.1. Let (H1) hold, cone P be normal. If

φq(f 0) < 1 < 1
2δφq

[(1
2 − δ

) (
ψf

)
∞

]
, then BVP (1) and (2) has at least one positive

solution.

Proof. Set

K = {u ∈ Q|u(t) ≥ δu(s),∀t ∈ Jδ , s ∈ I}.
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It is clear that K is a cone of the Banach space C[I, E] and K ⊂ Q. By Lemma 2.4, we

know T (Q) ⊂ K, and so

T (K) ⊂ K.

We first assume that jq(f
0) < 1 Then, there exists a constant r̄1 > 0 such that, for

any u Î K, ‖u‖ ≤ r̄1, we have ||f(u)|| ≤ (f0+ε1)jp(||u||), where ε1 >0 satisfies jq(f
0 +

ε1) ≤ 1. Let r1 ∈ (0, r̄1), then for any t Î I, u Î K, ||u||C = r1, we have

∥∥(Tu)(t)∥∥ ≤
∫ 1

0
φq

(∫ s

0

∥∥f (u (τ ))
∥∥dτ

)
ds

≤ φq

∫ 1

0

((
f 0 + ε1

)
φp (‖u‖) ds)

≤ φq
(
f 0 + ε1

) ‖u‖C ≤ ‖u‖C,

(9)

i.e., u Î K, ||u||C = r1 implies ||Tu||C ≤ ||u||C·

On the other hand, since 1 < 1
2 δφq

[(1
2 − δ

) (
ψf

)
∞

]
, there exists r̄2 > 0 such that

ψ
(
f
(
u(t)

)) ≥ (
(ψf )∞ − ε2

)
φp (‖u‖) ,∀t ∈ I, x ∈ K, ‖u‖ ≥ r̄2,

where ε2 >0 satisfies 1
2δφq

[(1
2 − δ

) (
(ψf )∞ − ε2

)] ≥ 1 .

Choose r2 = max{2r1, r̄2δ } , then, for any t Î Jδ, u Î K, ||u||C = r2, we have

∥∥u(t)∥∥ ≥ δ‖u‖C ≥ δr2 ≥ r̄2,

then,

∥∥(Tu) (1
2

)∥∥ ≥ ψ
(
(Tu)

( 1
2

))
=

∫ 1

1
2

φq

[∫ s

0
ψ(f (u(τ )))dτ

]
ds

≥
∫ 1

1
2

φq

⎡
⎣∫ 1

2

δ

ψ(f (u(τ )))dτ

⎤
⎦ds

≥
∫ 1

1
2

φq

⎡
⎣∫ 1

2

δ

((ψf )∞ − ε2) φp (‖u‖) dτ
⎤
⎦ ds

≥
∫ 1

1
2

φq

⎡
⎣∫ 1

2

δ

((ψf )∞ − ε2) φp (δ‖u‖C) dτ

⎤
⎦ ds

= 1
2δφq

[( 1
2 − δ

) (
(ψf )∞ − ε2)

)] ‖u‖C
≥ ‖u‖C,

(10)

i.e., for any u Î K, ||u||C = r2, we have

‖Tu‖C ≥ ‖u‖C.

On the other hand, by Lemma 2.5, T is a strict set contraction from B(1)
r into B(1)

r .

Consequently, Theorem 1 implies that T has a fixed point in B(1)
r , and the proof is

complete. □
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