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Abstract

In this article, we establish some blow-up results for a modified two-component
Camassa-Holm system in Sobolev spaces. We also obtain the existence of the weak
solutions of this system in Hs × Hs-1, s > 5/2.
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1. Introduction
The well-known two-component Camassa-Holm equations [1]{

mt + 2uxm + umx + σρρx = 0,

ρt + (uρ)x = 0,
(1:1)

where m = u - uxx and s = ± 1. Constantin and Ivanov [2] derived this system in the

context of shallow water theory. u can be interpreted as the horizontal fluid velocity

and r is related to the water elevation in the first approximation [2,3]. They showed

that while small initial data develop into global solutions, for some initial data wave

breaking occurs. They also discussed the solitary wave solutions. In Vlasov plasma

models, system (1.1) describes the closure of the kinetic moments of the single-particle

probability distribution for geodesic motion on the simplectomorphisms. While in the

large-deformation diffeomorphic approach to image matching, system (1.1) is sum-

moned in a type of matching procedure called metamorphosis (see [4] and the refer-

ences therein). This system appeared originally in [5]. Based on the deformation of bi-

Hamiltonian structure of the hydrodynamic type, Chen et al. [6] obtained system (1.1)

when s = -1. They show that it has the peakon and multilink solitons, and is integrable

in the sense that it has Lax-pair. The mathematical properties of system (1.1) have

been studied further in many articles, see, e.g., [7-15]. In [4], Holm and Ivanov general-

ized the Lax-pair formulation of system (1.1) to produce an integrable multi-compo-

nent family, CH(n, k), of equations with n components and 1 ≤ |k| ≤ n velocities. They

determined their Lie-Poisson Hamiltonian structures and gave numerical examples of

their soliton solution behavior. Recently, a new global existence result and several new

blow-up results of strong solutions for the Cauchy problem of Equation (1.1) with s =

1 were obtained in [8]. Gui and Liu [14] established the local well posedness for the

two-component Camassa-Holm system in a range of the Besov spaces. Chen and Liu
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[16] discussed the wave-breaking phenomenon of a generalized two-component

Camassa-Holm system, and determined the exact blow-up rate of such solutions. The

existence and uniqueness of global weak solutions to Equation (1.1) have also been dis-

cussed by Guan and Yin [17].

In this article, we consider a two-component generalization of Equation (1.1), that is{
ut − uxxt + 3umux − 2uxuxx − uuxxx + ρρx = 0,

ρt + (uρ)x = 0,
(1:2)

with initial data{
u (0, x) = u0 (x) ∈ Hs, s ≥ 1, x ∈ R,

ρ (0, x) = ρ0 (x) ∈ Hs−1, s − 1 ≥ 1, x ∈ R,
(1:3)

where m ≥ 1. It can be reduced to (1.1) as m = 1.

The purpose of this article is to study the well posedness, local weak solution, and

blow-up for Cauchy problem (1.2) and (1.3). System (1.2) also conserves conservation

laws. Our starting point is to obtain the local well posedness by using Kato’s theory,

Next, we derive some blow-up results of the solutions by the following transport equa-

tion, {
qt = u

(
t, q

)
, t ∈ [0,T) ,

q (0, x) = x, x ∈ R,

which is a crucial ingredient to obtain the blow-up phenomenon. Last, by using the

conserves from laws and the contraction mapping theorem, we obtain the existence of

weak solutions of Cauchy problem (1.2) and (1.3). These methods are similar to that

was used in [18]. However, because of the asymmetry and the high strength of the

nonlinearity of Equation (1.3), it is more difficult to estimate the norm of u, r, ux, rx
in Sobolev space. In addition, also we get Equation (5.10) which is different with that

in [18]. As for the blow-up phenomenon, we get some new results of (1.2) and (1.3).

Guan and Yin [17,19] got the global weak solutions for two-component Camassa-

Holm shallow water system; they first obtained approximate solutions for the system,

then they prove the compactness of these solutions, and at last they got the global

weak solutions. Using the same way, Liu and Yin [20] also got global weak solutions

for a periodic two-component μ-Hunter-Saxton system. However, in this article, we

add high-order perturbation terms in this system, and by using the conserves laws and

the contraction mapping theorem, we obtain the existence of weak solutions.

The remainder of this article is organized as follows. Section 2 is the preliminary. In

Section 3, the local well posedness for strong solution of Cauchy problem (1.2) and

(1.3) is established by Kato’s theory. In Section 4, by transport equation, some blow-up

results of the solutions of Cauchy problem (1.2) and (1.3) are obtained. The proof of

existence of local weak solution is carried out in Section 5.

2. Blow-up

Lemma 2.1: Given z0 =
(
u0
ρ0

)
∈ Hs × Hs−1 , s > 5/2, then there exists a maximal

T = T
(‖z0‖Hs×Hs−1

)
> 0 , and a unique solution z =

(
u
ρ

)
to Cauchy problem (1.2) and
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(1.3) such that

z (· , z0) ∈ C
(
[0 ,T) ;Hs × Hs−1) ∩ C1 (

[0 ,T) ;Hs−1 ×Hs−2) .
Moreover, the solution depends continuously on the initial data, i.e., the mapping

z0 → z (· , z0) : Hs × Hs−1 → C
(
[0 ,T) ;Hs× Hs−1) ∩ C1 (

[0 ,T) ;Hs−1 ×Hs−2)
is continuous.

The proof is similar with Theorem 4.1 in [21].

Let ρ̄ = ρ − 1 , then (1.2) is equivalent to{
ut − utxx + 3umux = 2uxuxx + uuxxx − ρ̄ρ̄x − ρ̄x.

ρ̄t + uρ̄x = −uxρ̄x − u.
(2:1)

Consider the following initial value problem,{
qt = u

(
t, q

)
, t ∈ [0,T) ,

q (0, x) = x, x ∈ R.
(2:2)

where u is the first component of the solution z to Equation (1.2).

To prove the blow-up result, we need the following lemma.

Lemma 2.2: Let z0Î Hs × Hs-1, (s > 5/2), and let T > 0 be the maximal existence time

of the corresponding solution z to Equation (2.1), then we have(
ρ̄

(
t, q (t, x)

)
+ 1

)
qx (t, x) = (ρ̄0 (x) + 1) , ∀ (t, x) ∈ [0,T) × R. (2:3)

Proof. Differentiating the left-hand side of Equation (2.3) with respect t. It follows

from (2.1) and (2.2), that

d
dt

(
ρ̄

(
t, q (t, x)

)
+ 1

)
qx (t, x)

=
(
ρ̄t

(
t, q (t, x)

)
+ ρ̄x

(
t, q (t, x)

)
qt (t, x)

)
qx (t, x) +

(
ρ̄

(
t, q (t, x)

)
+ 1

)
qxt (t, x)

=
(
ρ̄t

(
t, q (t, x)

)
+ ρ̄x

(
t, q (t, x)

)
u

(
t, q

)
+ ρ̄

(
t, q

)
ux

(
t, q

)
+ ux

(
t, q

))
qx (t, x)

= 0.

This completes the proof of this lemma.

Theorem 2.1: Let z0 =
(
u0
ρ̄0

)
∈ Hs × Hs−1 , (s > 5/2), and T be the maximal time of

the solution z to Equation (1.2) with the initial data z0. Assume that there exists x0 Î
R such that ρ̄0 (x0) = −1 and

u′
0 (x0) < −

√
2
[(‖u0‖2H1 + ‖ρ0‖2L2

)
+

3
m + 1

(‖u0‖2H1 + ‖ρ0‖2L2
)m + 1/2

]1/2
.

Then, T is finite and the slope of u tends to negative infinity as t goes to T while u is

uniformly bounded on [0, T).

Proof. Let z =
(
u
ρ̄

)
be the solution of Equation (2.1) with the initial data z0, and T

be the maximal time of z, and let
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n (t) = ux
(
t, q (t, x0)

)
, γ (t) = ρ̄

(
t, q (t, x0)

)
+ 1.

From (2.1) and (2.2), we have

dn
dt

= (utx + uuxx)
(
t, q (t, x0)

)
,
dγ
dt

= −γ n.

Differentiating the first equation in (2.1) with respect x, we have

utx+uuxx =
3

m + 1
um+1−1

2
u2−1

2
u2x+

1
2

ρ̄2+ρ̄−�−2
(

3
m + 1

um+1 − 1
2
u2 +

1
2
u2x +

1
2

ρ̄2 + ρ̄

)
.

Note that γ (0) = ρ̄0 (x0) + 1 = 0 , Then, by Lemma4.1, we have g(t) = 0, ∀t Î[0, T).
Thus

nt = −1
2
n2 +

1
2

γ 2 +
3

m + 1
um+1− 1

2
u2−�−2

(
3

m + 1
um+1 − 1

2
u2 +

1
2
u2x +

1
2

γ 2
) (

t, q
)
.

Since �−2
(
1
2
u2x +

1
2

γ 2
)

≥ 0 , and

n′ (t) ≤ −1
2
n2 + u2 +

3
m + 1

|u|m+1. , n′ (t) ≤ −1
2
n2 + u2 +

3
m + 1

|u|m+1.

Note that ‖u‖L∞ ≤ (‖u‖2H1 + ‖ρ‖2L2
)1/2 =

(‖u0‖2H1 + ‖ρ0‖2L2
)1/2 . If let

K =
[(‖u0‖2H1 + ‖ρ0‖2L2

)
+

3
m + 1

(‖u0‖2H1 + ‖ρ0‖2L2
)m + 1/2

]1/2
, then we have

n′ (t) ≤ −1
2
n2 (t) + K2 .

Since n (0) < −
√
2K , we obtain that n (t) < −

√
2t, ∀t ∈ [0,T) .

With the inequality above, we get

n (0) +
√
2K

n (0) − √
2K

exp
(√

2Kt
)

− 1 ≤ 2
√
2K

n (t) − √
2K

≤ 0.

Since 0 <
n (0) +

√
2K

n (0) − √
2K

< 1 , there exists 0 < T <
1√
2K

ln

(
n (0) +

√
2K

n (0) − √
2K

)
, such

that lim
t↑T

n (t) = −∞, i.e., limt↑T
ux (t) = −∞ .

This completes the proof of the theorem.

3. Local weak solution
Definition 3.1: ([22]) Let (u0, r0) Î H1(R) × H1(R). If (u, r) belongs to

L∞
loc

(
[0,T) ; H1 (R)

) × L∞
loc

(
[0,T) ; H1 (R)

)
and satisfies the identity

∫ T

0

∫
R
(zψt + F (u) ψx) dxdt +

∫
R
z0 (x)ψ (0, x) dx = 0,

for all ψ ∈ C∞
c ([0,T) × R) × C∞

c ([0,T) × R) , where

ψ ∈ C∞
c ([0,T) × R) × C∞

c ([0,T) ×R) , the set of all the restrictions to ([0,T) × R) ×

([0,T) × R) of smooth functions on R2 × R2 with compact support contained in ((-T, T)

× R) × ((-T, T) × R). Then, z is called a weak solution to Equation (1.6). If z is a weak
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solution on [0, T) × [0, T) for every T > 0, then it is called global weak solution to

Equation (1.6).

In this section, we discuss the existence of weak solution of Cauchy problem (1.2)

and (1.3). To this purpose, we consider the following Cauchy problem:{
ut − uxxt + εuxxxxt + 3umux − 2uxuxx − uuxxx + ρρx = 0,

ρt + ερxxt + (uρ)x = 0,
(3:1)

{
u (0, x) = u0 (x) ∈ Hs, s ≥ 1, x ∈ R.

ρ (0, x) = ρ0 (x) ∈ Hs−1, s − 1 ≥ 1, x ∈ R.
(3:2)

where ε is a constant satisfying 0 <ε < 1/4. Note that when ε = 0, system (3.1) and

(3.2) is just the system (1.2) and (1.3).

For any 0 <ε < 1/4 and s ≥ 1, the integral operators

D1 =
(
1 − ∂2x + ε∂4x

)−1
: Hs → Hs+4

and

D2 =
(
1 + ε∂2x

)−1
: Hs → Hs+2

define two bounded linear operator in the indicated Sobolev spaces.

To prove the existence of solutions to the problem (3.1) and (3.2), we apply the two

operators above to both sides of (3.1) and then integrate the resulting equations with

regard to t. This leads to the following equations.

⎧⎪⎪⎨
⎪⎪⎩
u(x, t) = u0(x) +

∫ t

0
D1

[(
− 3
m + 1

um+1
)
x
+

(
u2x

)
x +

(
uuxx − 1

2
u2x

)
x
+
1
2

(
ρ2)

x

]
dτ .

ρ (x, t) = ρ0 (x) +
∫ t

0
D2

[−(uρ)x
]
dτ .

A standard application of the contraction mapping theorem leads to the following

existence result.

Theorem 3.1: For each initial data u0 Î Hs (s ≥ 1), r0 Î Hs-1(s ≥ 2), there exists a T

> 0 depending only on the norm of ‖u0‖Hs , ‖ρ0‖Hs−1 , and m such that there exists a

unique solution (u, r) Î C([0,T];Hs) × C([0, T];Hs-1) of system (3.1) and (3.2) in the

sense of distribution. If u0 Î Hs (s ≥ 2), r0 Î Hs-1(s ≥ 3), the solution (u, r) Î C([0,∞];

Hs) × C([0, ∞];Hs-1) exists for all time, in particular, when u0 Î Hs (s ≥ 4), r0 Î Hs-1(s

≥ 5), the corresponding solution is a classical globally defined solution of (3.1) and

(3.2).

The global existence result follows from the conservation law∫
R

(
u2 + ρ2 + u2x + ερ2

x + εu2xx
)
dx =

∫
R

(
u20 + ρ2

0 + u20x + ερ2
0x + εu20xx

)
dx

admitted by (3.1) in its integral form.

Theorem 3.2: Suppose that for some s ≥ 4, the function pair u(x, t) and r(x, t) in the

solution of Equation (3.1) corresponding to the initial data u0 Î Hs (s ≥ 4); r0 Î Hs-1(s

≥ 5), then the following inequalities hold:
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‖u‖2H1 , ‖ρ‖2L2 ≤
∫
R

(
u20 + ρ2

0 + u20x + ερ2
0x + εu20xx

)
dx. (3:3)

For any real number q Î (1, s] (s ≥ 5), there exists a constant c depending only on q,

m, such that∫
R

[
(1 − ε)

(
�qu

)2
+

(
�q−1ρ

)2
+ (1 + ε)

(
�q−1ρx

)2
+ ε

(
�qux

)2
+ ε

(
�q−1u

)2]
dx ≤∫

R

[
(1 − ε)

(
�qu0

)2
+

(
�q−1ρ0

)2
+ (1 + ε)

(
�q−1ρ0x

)2
+ ε

(
�qu0x

)2
+ ε

(
�q−1u0

)2]
dx

+c
∫ t

0

(‖u‖mL∞ + ‖ρx‖L∞ + ‖ux‖L∞ + ‖ρ‖L2
) (‖u‖2Hq + ‖ρ‖2Hq−1

)
dτ .

(3:4)

For any q Î (1, s-1] (s ≥ 4), there exists a constant c such that

(1 − ε) ‖ut‖Hq ≤ c (1 + ‖ux‖L∞ + ‖ρx‖L∞)
(‖u‖Hq + ‖u‖mHq + ‖ρ‖Hq−1

)
. (3:5)

And for any q Î (1, s-2] (s ≥ 5), there exists a constant c such that

‖ρt‖Hq−1 ≤ c (1 + ‖ux‖L∞ + ‖ρx‖L∞)
(‖u‖Hq + ‖u‖mHq + ‖ρ‖Hq−1

)
. (3:6)

Proof. It is obvious that (3.3) holds. In order to prove (5.4), let � =
(
1 − ∂2x

)1/2. We

rewrite Equation (3.1) in the following equivalent form.{
(1 − ε) ut − εuxxt + ε�−2ut = −�−2 (

ρρx + 3umux − 2uxuxx − uuxxx
)
,

ρt + (1 + ε)�−2ρxxt = −�−2(uρ)x,
(3:7)

For any q Î (1, s] (s ≥ 5), applying (Λq u)Λq to the both sides of the first equation of

Equation (3.7), respectively, and integrating with regard to x, we obtain

(1 − ε)
(
�qu,�qut

) − ε
(
�qu,�quxxt

)
+ ε

(
�qu,�q−2ut

)
=
1
2
d
dt

∫
R

[
(1 − ε)

(
�qu

)2
+ ε

(
�qux

)2
+ ε

(
�q−1u

)2]
dx,

By using Sobolev embedding theorems, we have∣∣(�qu,�q−2ρρx
)
0

∣∣ ≤ ∣∣([�q−2,ρ
]
ρx,�qu

)
0

∣∣ + ∣∣(ρ�q−2ρx,�qu
)
0

∣∣
≤ c‖u‖Hq

(‖ρx‖L∞
∥∥�q−3ρx

∥∥
L2 +

∥∥�q−2ρ
∥∥
L2‖ρx‖L∞

)
+ ‖u‖Hq‖ρ‖L2

∥∥�q−2ρx
∥∥
L2

≤ c‖u‖Hq (‖ρx‖L∞‖ρ‖Hq−2 + ‖ρ‖Hq−2‖ρx‖L∞ + ‖ρ‖L2‖ρ‖Hq−1)

≤ c (‖ρx‖L∞ + ‖ρ‖L2)
(‖u‖2Hq + ‖ρ‖2Hq−1

)
,

where we have used lemma in [23] with r = q -2 > 0. Also

∣∣(�qu,�q−2 (
3umux − 2uxuxx − uuxxx

))
0

∣∣ =
∣∣∣∣∣
(

∂x�
−2

(
3

m + 1
um+1 − 1

2
u2x − uuxx

)
, u

)
q

∣∣∣∣∣
≤

∥∥∥∥ 3
m + 1

um+1 − 1
2
u2x − uuxx

∥∥∥∥
Hq−1

‖u‖Hq ≤ c
(∥∥um∥∥

L∞ + ‖ux‖L∞
) (‖u‖2Hq + ‖ρ‖2Hq−1

)
,

where we have used Lemma in [24] with r = q -1 > 0.

Tian and Zhu Boundary Value Problems 2012, 2012:52
http://www.boundaryvalueproblems.com/content/2012/1/52

Page 6 of 12



Then, we get

1
2
d
dt

∫
R

[
(1 − ε)

(
�qu

)2 + ε
(
�qux

)2 + ε
(
�q−1u

)2]
dx

≤ c
(‖u‖mL∞ + ‖ux‖L∞ + ‖ρx‖L∞ + ‖ρ‖L2

) (‖u‖2Hq + ‖ρ‖2Hq−1

)
.

(3:8)

For any q Î (1, s-1] (s ≥ 5), applying (Λq-1 r) Λq-1 to the both sides of the second

equation of Equation (3.7), respectively, then we obtain

1
2
d
dt

∫
R

[(
�q−1ρ

)2 + (1 + ε)
(
�q−2ρx

)2]dx ≤ c (‖u‖L∞ + ‖ρ‖L∞)
(‖u‖2Hq + ‖ρ‖2Hq−1

)
. (3:9)

Summing up (3.8) and (3.9), we get∫
R

[
(1 − ε)

(
�qu

)2 + (
�q−1ρ

)2
+ (1 + ε)

(
�q−2ρx

)2
+ ε

(
�qux

)2 + ε
(
�q−1u

)2]
dx

≤
∫
R

[
(1 − ε)

(
�qu0

)2 + (
�q−1ρ0

)2
+ (1 + ε)

(
�q−2ρ0x

)2
+ ε

(
�qu0x

)2 + ε
(
�q−1u0

)2]
dx

+c
∫ t

0

(‖u‖mL∞ + ‖ρx‖L∞ + ‖ux‖L∞ + ‖ρ‖L2
) (‖u‖2Hq + ‖ρ‖2Hq−1

)
dτ .

For any q Î (1, s-1] (s ≥ 4), applying (Λq ut)Λ
q to the both sides of the first equation

of Equation (3.7), respectively, and integrating with regard to x, we obtain that

(1 − ε)
(
�qut,�qut

)−ε
(
�qut,�quxxt

)
+ε

(
�qut,�q−2ut

)
= (1 − ε) ‖ut‖2Hq+ε ‖uxt‖2Hq+ε ‖ut‖2Hq−1 ,

and ∣∣∣(∂x�−2ρ2, ut
)
q

∣∣∣ = ∣∣∣(ut,�−2ρρx
)
q

∣∣∣ ≤ ∣∣([�q−2,ρ
]
ρx,�qut

)
0

∣∣ + ∣∣(ρ�q−2ρx,�qut
)
0

∣∣
≤ c‖ut‖Hq

(‖ρx‖L∞
∥∥�q−3ρx

∥∥
L2 +

∥∥�q−2ρ
∥∥
L2‖ρx‖L∞ + ‖ρ‖L2

∥∥�q−2ρx
∥∥
L2

)
≤ c‖ut‖Hq · ‖ρ‖Hq−2 (‖ρx‖L∞ + ‖ρ‖L2) ,

∣∣∣(ut ,�−2 (
3umux − 2uxuxx − uuxxx

))
q

∣∣∣ =
∣∣∣∣∣
(
ut, ∂x�−2

(
3

m + 1
um+1 − 1

2
u2x − uuxx

))
q

∣∣∣∣∣
≤ ‖ut‖Hq ·

∥∥∥∥ 3
m + 1

um+1 − 1
2
u2x − uuxx

∥∥∥∥
Hq−1

≤ c‖ut‖Hq

(‖u‖mL∞ + ‖u‖L∞ + ‖ux‖L∞
) (‖u‖Hq + ‖u‖mHq

)
,

where we have used lemma in [24] with r = q -1 > 0. Then, we get

(1 − ε) ‖ut‖Hq ≤ c (1 + ‖ux‖L∞ + ‖ρx‖L∞)
(‖u‖Hq + ‖u‖mHq + ‖ρ‖Hq−1

)
.

For any q Î (1, s-2] (s ≥ 5), applying (Λq-1 rt)Λq-1 to the both sides of the second

equation of Equation (5.7), respectively, then we obtain

‖ρt‖Hq−1 ≤ c (1 + ‖ρx‖L∞ + ‖ux‖L∞) (‖u‖Hq + ‖ρ‖Hq−1)

≤ c (1 + ‖ρx‖L∞ + ‖ux‖L∞)
(‖u‖Hq + ‖u‖mHq + ‖ρ‖Hq−1

)
.

This complete the proof of the theorem.

Suppose u0 Î Hs (s ≥ 1), r0 Î Hs-1(s ≥ 2), and let uε0, rε0 be the convolution uε0 =

�ε*u0, rε0 = �ε*r0, where ϕε (x) = ε−1/4 · ϕ̂

(
ε−1/4x

)
such that the Fourier transform

ϕ̂ of � satisfies ϕ̂ ∈ C∞
0 , ϕ̂ (ξ) ≥ 0 , and ϕ̂ (ξ) = 1 for any ξ Î (-1,1). Then, it follows
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from Theorem 3.1 that for each ε with 0 <ε <1/4, the Cauchy problem{
ut − uxxt + εuxxxxt + 3umux − 2uxuxx − uuxxx + ρρx = 0,

ρt + ερxxt +
(
up

)
x = 0,

(3:10)

{
u (0, x) = uε0 (x) , t ≥ 0, x ∈ R
ρ (0, x) = ρε0 (x) , t ≥ 0, x ∈ R

has a unique solution uε (t, x) ÎC
∞([0,∞);H∞ and rε (t, x) ÎC∞([0,∞);H∞. We first

demonstrate the properties of the initial data uε0, rε0 in the following lemma. The

proof is similar to Lemma 5 in [25].

Lemma 3.1: Under the above assumptions, there hold

‖uε0‖Hq ≤ c, if q ≤ s; ‖ρε0‖Hq−1 ≤ c, if q − 1 ≤ s.

‖uε0‖Hq ≤ c · ε
(s − q)/4, if q > s; ‖ρε0‖Hq−1 ≤ c · ε

(s − q + 1)/4, if q − 1 > s.

for any ε with 0 < ε < 1/
4 , where c is a constant independent of ε. The proof is

similar to Lemma 5 in [25].

Theorem 3.3: Suppose that u0(x) Î Hs(R), s Î [1, 3/2]; r0(x) Î Hs-1(R),

s-1 Î [1, 3/2] such that ‖u0x‖L∞ < ∞ , ‖ρ0x‖L∞ < ∞ . Let uε0 = �ε*u0, rε0 = �ε*r0, be
defined the same as above. Then, there exist constants T > 0 and c > 0 independent of

ε such that the corresponding solution uε, rε of (3.10) satisfy the inequalities

‖ρεx‖L∞ ≤ c , ‖ρεx‖L∞ ≤ c for any t Î [0,T).

Proof. Use Equation (3.7) with u = uε, r = rε. Differentiating with respect to x on

both sides of the first equation in Equation (3.7). Note that ∂2x �−2 = �−2 − I , we

obtain

(1 − ε) uxt − εuxxxt = −1
2

�−2ρ2 +
1
2

ρ2 − ∂2x �−2
(

3
m + 1

um+1 − 1
2
u2x − uuxx

)
− ε�−2uxt

=
1
2

ρ2 +
3

m + 1
um+1 − 1

2
u2x − uuxx − �−2

(
1
2

ρ2 +
3

m + 1
um+1 − 1

2
u2x − uuxx

)
− ε�−2uxt,

Let n > 0 be an integer. Then, multiplying the above equation by (ux)
2n+1 to integrate

with respect to x, we get
∫
R

[
(1 − ε) uxt(ux)

2n+1 − εuxxxt(ux)
2n+1]dx

=
∫
R

1
2

ρ2(ux)
2n+1dx +

∫
R

3
m + 1

um+1(ux)
2n+1dx −

∫
R

1
2

(ux)
2n+3dx +

1
2n + 2

∫
R
(ux)

2n+3dx −
∫
R
g(ux)

2n+1dx,

where g = �−2
(
1
2

ρ2 +
3

m + 1
um+1 − 1

2
u2x − uuxx

)
+ ε∂x�

−2ut .

It follows from Hölder inequality that

(1 − ε)
d

dt

(∫
R
(ux)2n+2dx

) 1
2n + 2 ≤ ε

(∫
R
|uxxxt|2n+2dx

) 1
2n + 2 +

1
2

(∫
R

ρ4n+4dx
) 1
2n + 2

+
3

m + 1

(∫
R

(
um+1)2n+2dx)

1
2n + 2 +

1
2

(∫
R
|ux|4n+4dx

) 1
2n + 2 +

1
2n + 2

(∫
R
u4n+4x dx

) 1
2n + 2 +

(∫
R

∣∣g∣∣2n+2dx)
1

2n + 2 .
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Note that
∥∥f∥∥Lp → ∥∥f∥∥L∞ as p®∞ for any f Î L∞∩L2. Integrating the above inequal-

ity over R with respect to t, and taking the limitation as n®∞, we have

(1 − ε) ‖ux‖L∞ ≤ (1 − ε) ‖u0x‖L∞+
∫ t

0

[
ε‖uxxxt‖L∞ + c

(∥∥ρ2
∥∥
L∞ +

∥∥um+1
∥∥
L∞ +

∥∥u2x∥∥L∞ +
∥∥g∥∥L∞

)]
dτ .

It follows from (3.3) that
∥∥g∥∥L∞ ≤ c̃

(‖ut‖L2 + ‖ρ‖2L2 + ‖u‖m+1
L2 + ‖ux‖2L2 + ‖uuxx‖L2

) ≤ c̃1 (1 + ‖ut‖L2 + ‖uuxx‖L2) .

For any given r Î (1/2,1), we have

‖uxxxt‖L∞ ≤ cr‖uxxxt‖Hr ≤ cr‖ut‖Hr+3 ≤ cr (1 + ‖ux‖L∞ + ‖ρx‖L∞)
(‖u‖Hr+4 + ‖u‖mHr+4 + ‖ρ‖Hr+3

)
.

Then from (3.4), we have

‖u‖Hr+4 + ‖ρ‖Hr+3 ≤
√
2
(‖u‖2Hr+4 + ‖ρ‖2Hr+3

)2 ≤
√

2
1 − ε

{
(1 − ε) ‖u0‖2Hr+4 + ε ‖u0x‖2Hr+4 + ε ‖u0‖2Hr+3

+ ‖ρ0‖2Hr+3 + (1 + ε) ‖ρ0x‖2Hr+3

}1/2 · exp
[
c
∫ (‖u‖mL∞ + ‖ρ‖L2 + ‖ux‖L∞ + ‖ρx‖L∞

)
dτ

]

≤ cε(s−r−4)/4 · exp
[
c
∫ t

0
(1 + ‖ux‖L∞ + ‖ρx‖L∞) dτ

]
,

and

‖u‖Hr+4 + ‖u‖mHr+4 + ‖ρ‖Hr+3 ≤ (‖u‖Hr+4 + ‖ρ‖Hr+3) + (‖u‖Hr+4 + ‖ρ‖Hr+3)m

Thus,

‖uxxxt‖L∞ ≤ crε(s−r−4)/4 (1 + ‖ux‖L∞ + ‖ρx‖L∞) · exp
[
c
∫ t

0
(1 + ‖ux‖L∞ + ‖ρx‖L∞) dτ

]

+cmε(s−r−4)m/4(1 + ‖ux‖L∞ + ‖ρx‖L∞)m · exp
[
cm

∫ t

0
(1 + ‖ux‖L∞ + ‖ρx‖L∞) dτ

]
,

and

∥∥ρ2
∥∥
L∞ ≤ ‖ρ‖2L∞ ≤ ‖ρ‖2H1 =

∫
R
|ρ|2dx +

∫
R
|ρx|2dx = ‖ρ‖2L2 + ‖ρx‖2L2 ≤ c

(
1 + ‖ρx‖2L2

) ≤ c
(
1 + ‖ρx‖2L∞

)
∥∥um+1

∥∥
L∞ ≤ ‖u‖m+1

L∞ ≤ ‖u‖m+1
H1 ≤ c,

‖ut‖L2 ≤ ‖ut‖H1 ≤ ‖ut‖Hr+3 ≤ (1 + ‖ux‖L∞ + ‖ρx‖L∞) · (‖u‖Hr+4 + ‖u‖mHr+4 + ‖ρ‖Hr+4

)

‖uuxx‖L2 ≤ ‖uuxx‖H1 ≤ c (‖u‖L∞‖uxx‖H1 + ‖u‖H1‖uxx‖L∞) ≤ c‖u‖H1‖u‖Hr+4 ≤ c‖u‖Hr+4 .

Then, we get∥∥g∥∥L∞≤̃c̃
[
(1 + (1 + ‖ux‖L∞ + ‖ρx‖L∞)) · (‖u‖Hr+4 + ‖u‖mHr+4 + ‖ρ‖Hr+3

)]
.

It follows that

‖ux‖L∞ ≤ ‖u0x‖L∞ +
1

1 − ε

∫ t

0

{
c
[
1 + (‖ux‖L∞ + ‖ρx‖L∞) + (‖ux‖L∞ + ‖ρx‖L∞)2 + (1 + ‖ux‖L∞ + ‖ρx‖L∞)

· (‖u‖Hr+4 + ‖u‖mHr+4 + ‖ρ‖Hr+3

)]
+ εcr (1 + ‖ux‖L∞ + ‖ρx‖L∞) · (‖u‖Hr+4 + ‖u‖mHr+4 + ‖ρ‖Hr+3

)}
dτ

≤ ‖u0x‖L∞ +
4c
3

∫ t

0

{
1 + (‖ux‖L∞ + ‖ρx‖L∞) + (‖ux‖L∞ + ‖ρx‖L∞)2 + (1 + ‖ux‖L∞ + ‖ρx‖L∞)
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exp
[
c
∫ τ

0
(1 + ‖ux‖L∞ + ‖ρx‖L∞) dη

]
+ (1 + ‖ux‖L∞ + ‖ρx‖L∞)m · exp

[
cm

∫ τ

0
(1 + ‖ux‖L∞ + ‖ρx‖L∞) dη

]}
dτ , where c

is a constant depends on Λ-2 and m.

Also, we can obtain

‖ρx‖L∞ ≤ ‖ρ0x‖L∞ + c
∫ t

0
{1 + (‖ux‖L∞ + ‖ρx‖L∞) + (1 + ε) (1 + ‖ux‖L∞ + ‖ρx‖L∞)(‖u‖Hr+4 + ‖u‖mHr+4 + ‖ρ‖Hr+3

)}
dτ ,

where r ∈
(
1
2
, 1

)
. From (3.9), we derive

‖ux‖L∞ + ‖ρx‖L∞ ≤ ‖u0x‖L∞ + ‖ρ0x‖L∞ +
4c
3

∫ t

0
{1 + (‖ux‖L∞ + ‖ρx‖L∞)

+(‖ux‖L∞ + ‖ρx‖L∞)2 + (1 + ‖ux‖L∞ + ‖ρx‖L∞) · exp
[
c
∫ τ

0
(1 + ‖ux‖L∞ + ‖ρx‖L∞) dη

]

+(1 + ‖ux‖L∞ + ‖ρx‖L∞)m · exp
[
cm

∫ τ

0
(1 + ‖ux‖L∞ + ‖ρx‖L∞) dη

]}
dτ .

It follows from the contraction mapping theorem that there exists a constant T > 0

such that the equation

f (t) = ‖u0x‖L∞ + ‖ρ0x‖L∞ +
4cm
3

∫ t

0

{
[1+ f (τ ) + f 2 (τ ) +

(
1 + f (τ )

)
exp

[
c
∫ τ

0

(
1 + f (η)

)
dη

]
+

(
1 + f (τ )

)m · exp
[
cm

∫ τ

0

(
1 + f (η)

)
dη

]}
dτ ,

(3:11)

has a unique solution f(t) Î C [0,T]. Theorem II in Section I.1 in [26] shows that

‖ux‖L∞ + ‖ρx‖L∞ ≤ f (t) for any t Î [0,T] which leads to the conclusion of this

theorem.

Let u = uε, r = rε, with (3.4) used

‖uε‖Hq+‖ρε‖Hq−1 ≤ cε(s−r−4)/4·exp
[
c
∫ t

0
(1 + ‖ux‖L∞ + ‖ρx‖L∞) dτ

]
≤ c·exp

[
c
∫ t

0

(
1 + f (τ )

)
dτ

]

where s ∈
[
1,

3
2

]
, r ∈

(
1
2
, 1

)
.

‖uεt‖Hr + ‖ρεt‖Hr−1 = ‖ut‖Hr + ‖ρt‖Hr−1 ≤ c
(
1 + f (t)

) · exp
[
c
∫ t

0

(
1 + f (τ )

)
dτ

]

+c
(
1 + f (t)

)m · exp
[
cm

∫ t

0

(
1 + f (τ )

)
dτ

]
,

where q Î (0, s], r Î (0, s-1], t Î [0,T].

Then, it follows from Aubin’s compactness theorem [27] that there exist subse-

quences of {uε}, {rε} denoted by
{
uεn

}
,
{
ρεn

}
such that

{
uεn

}
,
{
ρεn

}
are weakly conver-

gent to u(t, x)Î L2([0,T]; Hs), r(t, x)Î L2([0,T]; Hs-1), respectively, and
{
uεnt

}
,

{
ρεnt

}
are weakly convergent to ut(t, x)Î L2([0,T]; Hs-1), rt(t, x)Î L2([0,T]; Hs-2), respectively.

Because
{
uεn

}
are weakly convergent to u(t, x)Î L2([0,T]; Hs), f

(
uεn − u

) → 0 for any

fÎ (L2([0,T]; Hs))* = L2([0,T]; Hs) when n ® ∞. Applying Riesz lemma, we conclude

that there exists fuεn−u such that
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fuεn−u
(
uεn − u

)
=

(
uεn − u, uεn − u

)
=

∥∥uεn − u
∥∥2.

Since fuεn−u
(
uεn − u

) → 0 as n ® ∞, we have
∥∥uεn − u

∥∥2 → 0 . Then for any real R

> 0,
{
uεn

}
converges strongly to u Î L2([0,T]; Hq(-R, R)) for any q Î [0, s-1); and{

uεnt
}
converges to ut strongly in L2([0,T]; Hr(-R, R)) for any r Î [0, s-1]. Similarly,

g
(
ρεn − ρ

) → 0 for any gÎ (L2([0,T]; Hs))* = L2([0,T]; Hs) as n ® ∞. By Riesz lemma,

we conclude that there exists guεn−u such that

guεn−u
(
uεn − u

)
=

(
uεn − u, uεn − u

)
=

∥∥uεn − u
∥∥2.

Since guεn−u
(
uεn − u

) → 0 as n ® ∞, we have
∥∥uεn − u

∥∥2 → 0 . Then for any real R

> 0,
{
uεn

}
converges strongly to r Î L2 ([0,T]; Hq-1(-R, R)) for any q Î [0, s-1), and{

ρεnt
}
converge to ut, rt strongly in L2([0,T]; Hr-1(-R, R)) for any r Î [0, s-1]. Hence,

the existence of a weak solution to the Cauchy problem (1.2) and (1.3) is established.

Theorem 3.4: Let u0(x) ÎH
s(R)

(
s ∈

[
1, 3

/
2
])

and r0(x) ÎHs-1(R)
(
s − 1 ∈

[
1, 3

/
2
])

,

which satisfy ‖u0x‖L∞ < ∞ , ‖ρ0x‖L∞ < ∞ . Then there exists a constant T > 0 such

that the Cauchy problem (1.2) and (1.3) with the initial data has a solution

(u (t, x) ,ρ (t, x)) ∈ L2
(
[0,T] ; Hs) × L2

(
[0,T] ; Hs−1) ,

in the sense of distribution. And ux, rx Î L∞([0,T] × R).

Proof. It follows from Theorem 3.3 that
{
uεnx

}
,
{
ρεnx

}
are bounded in the space L∞.

Hence, the sequences
{
u2εn

}
,

{
ρ2

εn

}
,

{
u2εnx

}
,

{
ρ2

εnx

}
,

{
uεnρεn

}
,

{
uεnxρεnx

}
,

{
uεnxρεn

}
,{

uεnρεnx
}
are also weakly convergent to u2, r2, u2x , ρ2

x , ur, uxrx, uxr, urxÎL
2([0,T]; Hr

(-R, R)) for any r Î [0, s-1] and R > 0, respectively. Therefore, u, r satisfy

∫ T

0

∫
R
u

(
ft − fxxt

)
dxdt = −

∫ T

0

∫
R

[(
3

m + 1
um+1 +

1
2
u2x +

1
2

ρ2
)
fx + uuxfxx

]
dxdt,

and

∫ T

0

∫
R
ρftdxdt = −

∫ T

0

∫
R

(uρ) fdxdt,

with u(0,x) = u0(x), r(0,x) = r0(x), and any f ∈ C∞
0 . Moreover, since X = L1([0,T] ×

R) is a separable Banach space and
{
uεnx

}
,
{
ρεnx

}
are bounded sequences in the dual

space X* = L∞([0,T] × R) of X, there are two subsequences of
{
uεnx

}
,

{
ρεnx

}
(still

denoted by
{
uεnx

}
,
{
ρεnx

}
) weak star convergent to two functions U, P Î L∞([0,T] ×

R), respectively. Because
{
uεnx

}
,
{
ρεnx

}
are also weakly convergent to ux, rx Î L∞([0,T]

× R), respectively. It follows that ux = U, rx = P hold almost everywhere. Hence, ux, rx
Î L∞([0,T] × R).
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