Infinitely many solutions for class of Neumann quasilinear elliptic systems

Davood Maghsoodi Shoorabi ${ }^{1 *}$ and Ghasem Alizadeh Afrouzi ${ }^{2}$

[^0]
Abstract

We investigate the existence of infinitely many weak solutions for a class of Neumann quasilinear elliptic systems driven by a (p_{1}, \ldots, p_{n})-Laplacian operator. The technical approach is fully based on a recent three critical points theorem.

AMS subject classification: 35J65; 34A15.
Keywords: infinitely many solutions, Neumann system, critical point theory, variational methods

1 Introduction

The purpose of this article is to establish the existence of infinitely many weak solutions for the following Neumann quasilinear elliptic system

$$
\begin{cases}-\Delta_{p_{i}} u_{i}+a_{i}(x)\left|u_{i}\right|^{p_{i}-2} u=\lambda F_{u_{i}}\left(x, u_{1}, \ldots, u_{n}\right) & \text { in } \Omega, \tag{1}\\ \frac{\partial u_{i}}{\partial \nu}=0 & \text { on } \partial \Omega\end{cases}
$$

for $i=1, \ldots, n$, where $\Omega \subset \mathbb{R}^{N}(N \geq 1)$ is a non-empty bounded open set with a smooth boundary $\partial \Omega, p_{i}>N$ for $i=1, \ldots, n, \Delta_{p_{i}} u_{i}=\operatorname{div}\left(\left|\nabla u_{i}\right|^{p_{i}-2} \nabla u_{i}\right)$ is the p_{i}-Laplacian operator, $a_{i} \in L^{\infty}(\Omega)$ with ess $\inf _{\Omega} a_{i}>0$ for $i=1, \ldots, n, \lambda>0$, and $F: \Omega \times \mathbb{R}^{n} \rightarrow$ \mathbb{R} is a function such that the mapping $\left(t_{1}, t_{2}, \ldots, t_{n}\right) \rightarrow F\left(x, t_{1}, t_{2}, \ldots, t_{n}\right)$ is in C^{1} in \mathbb{R}^{n} for all $x \in \Omega, F_{t_{i}}$ is continuous in $\Omega \times \mathbb{R}^{n}$ for $i=1, \ldots, n$, and $F(x, 0, \ldots, 0)=0$ for all x $\in \Omega$ and v is the outward unit normal to $\partial \Omega$. Here, $F_{t_{i}}$ denotes the partial derivative of F with respect to t_{i}.

Precisely, under appropriate hypotheses on the behavior of the nonlinear term F at infinity, the existence of an interval Λ such that, for each $\lambda \in \Lambda$, the system (1) admits a sequence of pairwise distinct weak solutions is proved; (see Theorem 3.1). We use a variational argument due to Ricceri which provides certain alternatives in order to find sequences of distinct critical points of parameter-depending functionals. We emphasize that no symmetry assumption is required on the nonlinear term F (thus, the symmetry version of the Mountain Pass theorem cannot be applied). Instead of such a symmetry, we assume a suitable oscillatory behavior at infinity on the function F.
We recall that a weak solution of the system (1) is any $u=\left(u_{1}, \ldots, u_{n}\right) \in W^{1, p_{1}}(\Omega) \times \ldots \times W^{1, p_{n}}(\Omega)$, such that

$$
\begin{gathered}
\int_{\Omega} \sum_{i=1}^{n}\left(\left|\nabla u_{i}(x)\right|^{p_{i}-2} \nabla u_{i}(x) \nabla v_{i}(x)+a_{i}(x)\left|u_{i}(x)\right|^{p_{i}-2} u_{i}(x) v_{i}(x)\right) d x \\
-\lambda \int_{\Omega} \sum_{i=1}^{n} F_{u_{i}}\left(x, u_{1}(x), \ldots u_{n}(x)\right) v_{i}(x) d x=0
\end{gathered}
$$

for all $v=\left(v_{1}, \ldots, v_{n}\right) \in W^{1, p_{1}}(\Omega) \times \ldots \times W^{1, p_{n}}(\Omega)$.
For a discussion about the existence of infinitely many solutions for differential equations, using Ricceri's variational principle [1]and its variants [2,3] we refer the reader to the articles [4-16].

For other basic definitions and notations we refer the reader to the articles [17-22].
Here, our motivation comes from the recent article [8]. We point out that strategy of the proof of the main result and Example 3.1 are strictly related to the results and example contained in [8].

2 Preliminaries

Our main tool to ensure the existence of infinitely many classical solutions for Dirichlet quasilinear two-point boundary value systems is the celebrated Ricceri's variational principle [[1], Theorem 2.5] that we now recall as follows:
Theorem 2.1. Let X be a reflexive real Banach space, let $\Phi, \Psi: X \rightarrow \mathbb{R}$ be two Gâteaux differentiable functionals such that Φ is sequentially weakly lower semicontinuous, strongly continuous, and coercive and Ψ is sequentially weakly upper semicontinuous. For every $r>\inf _{X} \Phi$, let us put

$$
\varphi(r):=\inf _{u \in \Phi^{-1}(\mathrm{l}-\infty, r \mathrm{D})} \frac{\sup _{v \in \Phi^{-1}(\mathrm{l}-\infty, r \mathrm{D}} \Psi(v)-\Psi(u)}{r-\Phi(u)}
$$

and

$$
\gamma:=\liminf _{r \rightarrow+\infty} \varphi(r), \quad \delta:=\liminf _{r \rightarrow\left(\inf _{X} \Phi\right)^{+}} \varphi(r) .
$$

Then, one has
(a) for every $r>\inf _{X} \Phi$ and every $\left.\lambda \in\right] 0, \frac{1}{\varphi(r)}\left[\right.$, the restriction of the functional $I_{\lambda}=$ $\Phi-\lambda \Psi$ to $\Phi^{-1}(]-\infty, r[)$ admits a global minimum, which is a critical point (local minimum) of I_{λ} in X.
(b) If $\gamma<+\infty$ then, for each $\lambda \in] 0, \frac{1}{\gamma}[$, the following alternative holds: either
$\left(b_{1}\right) I_{\lambda}$ possesses a global minimum, or
$\left(b_{2}\right)$ there is a sequence $\left\{u_{n}\right\}$ of critical points (local minima) of I_{λ} such that
$\lim _{n \rightarrow+\infty} \Phi\left(u_{n}\right)=+\infty$.
(c) If $\delta<+\infty$ then, for each $\lambda \in] 0, \frac{1}{\delta}[$, the following alternative holds: either
$\left(c_{1}\right)$ there is a global minimum of Φ which is a local minimum of I_{λ}, or
$\left(c_{2}\right)$ there is a sequence $\left\{u_{n}\right\}$ of pairwise distinct critical points (local minima) of I_{λ} that converges weakly to a global minimum of Φ.

We let X be the Cartesian product of n Sobolev spaces $W^{1, p_{1}}(\Omega), W^{1, p_{2}}(\Omega), \ldots$ and $W^{1, p_{n}}(\Omega)$, i.e., $X=\prod_{i=1}^{n} W^{1, p_{i}}(\Omega)$, equipped with the norm

$$
\left\|\left(u_{1}, u_{2}, \ldots, u_{n}\right)\right\|=\sum_{i=1}^{n}\left\|u_{i}\right\|_{p_{i}}
$$

where

$$
\begin{align*}
\left\|u_{i}\right\|_{p_{i}} & =\left(\int_{\Omega}\left|\nabla u_{i}(x)\right|^{p_{i}}+a_{i}(x)\left|u_{i}(x)\right|^{p_{i}} d x\right)^{\frac{1}{p_{i}}}, i=1, \ldots, n . \tag{2}\\
C & =\max \left\{\sup _{u_{i} \in W^{1, p_{i}(\Omega) \backslash\{0\}}} \frac{\sup _{x \in \Omega}|u(x)|^{p_{i}}}{\left\|u_{i}\right\|_{p_{i}}^{p_{i}}} ; i=1, \ldots, n\right\} .
\end{align*}
$$

Since $p_{i}>N$ for $1 \leq i \leq n$, one has $C<+\infty$. In addition, if Ω is convex, it is known [23] that

$$
\sup _{u_{i} \in W^{1}, p_{i}(\Omega) \backslash\{0\}} \frac{\sup _{x \in \Omega}\left|u_{i}(x)\right|}{\left\|u_{i}\right\|_{p_{i}}} \leq 2^{\frac{p_{i}-1}{p_{i}}} \max \left\{\left(\frac{1}{\left\|a_{i}\right\|_{1}}\right)^{\frac{1}{p_{i}}} ; \frac{\operatorname{diam}(\Omega)}{\frac{1}{p^{p}}}\left(\frac{p_{i}-1}{p_{i}-N} m(\Omega)\right)^{\frac{p_{i}-1}{p_{i}}} \frac{\left\|a_{i}\right\|_{\infty}}{\left\|a_{i}\right\|_{1}}\right\}
$$

for $1 \leq i \leq n$, where $\|\cdot\|_{1}=\int_{\Omega}|\cdot(x)| d x,\|\cdot\|_{\infty}=\sup _{x \in \Omega}|\cdot(x)|$ and $m(\Omega)$ is the Lebesgue measure of the set Ω, and equality occurs when Ω is a ball.

In the sequel, let $\underline{p}=\min \left\{p_{i} ; 1 \leq i \leq n\right\}$.
For all $\gamma>0$ we define

$$
\begin{equation*}
K(\gamma)=\left\{\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n}: \sum_{i=1}^{n}\left|t_{i}\right| \leq \gamma\right\} . \tag{3}
\end{equation*}
$$

3 Main results

We state our main result as follows:
Theorem 3.1. Assume that
(A1)

$$
\begin{aligned}
& \lim _{\xi \rightarrow+\infty} \inf \frac{\int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right)_{\in K(\xi)}} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\xi^{p}} \\
< & \left(\sum_{i=1}^{n}\left(p_{i} C\right)^{\frac{1}{p_{i}}}\right)_{\substack{\left(t_{1}, \ldots, t_{n}\right) \rightarrow \infty \\
\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}_{+}^{n}}}^{\lim \sup _{\substack{p}} \frac{\int_{\Omega} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\sum_{i=1}^{n} \frac{\left\|a_{i}\right\|_{1}\left|t_{i}\right|^{p_{i}}}{p_{i}}}}
\end{aligned}
$$

where $K(\xi)=\left\{\left(t_{1}, \ldots, t_{n}\right)\left|\sum_{i=1}^{n}\right| t_{i} \mid \leq \xi\right\}$ (see (3)).

Then, for each

$$
] \frac{\lambda \in \Lambda:=}{\lim \sup _{\substack{\left(t_{1}, \ldots, t_{n}\right) \rightarrow \infty \\\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}_{+}^{n}}}^{\int_{\Omega} F\left(x, t_{1}, \ldots, t_{n}\right) d x}} \frac{\left(\sum_{i=1}^{n}\left(p_{i} C\right)^{\frac{1}{p_{i}}}\right)^{p}}{\sum_{i=1}^{n} \frac{\left\|a_{i}\right\|_{1}\left|t_{i}\right|}{p_{i}}}, \frac{\left(\lim _{\xi \rightarrow+\infty} \frac{\int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in K(\xi)^{p}} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\xi^{p}}\right.}{\lim }\right]
$$

the system (1) has an unbounded sequence of weak solutions in X.
Proof. Define the functionals $\Phi, \Psi: X \rightarrow \mathbb{R}$ for each $u=\left(u_{1}, \ldots, u_{n}\right) \in X$, as follows

$$
\Phi(u)=\sum_{i=1}^{n} \frac{\left\|u_{i}\right\|_{p_{i}}^{p_{i}}}{p_{i}}
$$

and

$$
\Psi(u)=\int_{\Omega} F\left(x, u_{1}(x), \ldots, u_{n}(x)\right) d x
$$

It is well known that Ψ is a Gâteaux differentiable functional and sequentially weakly lower semicontinuous whose Gâteaux derivative at the point $u \in X$ is the functional $\Psi^{\prime}(u) \in X^{*}$, given by

$$
\Psi^{\prime}(u)(v)=\int_{\Omega} \sum_{i=1}^{n} F_{u_{i}}\left(x, u_{1}(x), \ldots, u_{n}(x)\right) v_{i}(x) d x
$$

for every $v=\left(v_{1}, \ldots, v_{n}\right) \in X$, and $\Psi^{\prime}: X \rightarrow X^{*}$ is a compact operator. Moreover, Φ is a sequentially weakly lower semicontinuous and Gâteaux differentiable functional whose Gâteaux derivative at the point $u \in X$ is the functional $\Phi^{\prime}(u) \in X^{*}$, given by

$$
\Phi^{\prime}\left(u_{1}, \ldots, u_{n}\right)\left(v_{1}, \ldots, v_{n}\right) \int_{\Omega} \sum_{i=1}^{n}\left(\left|\nabla u_{i}(x)\right|^{p_{i}-2} \nabla u_{i}(x) \nabla v_{i}(x)+a_{i}(x)\left|u_{i}(x)\right|^{p_{i}-2} u_{i}(x) v_{i}(x)\right) d x
$$

for every $v=\left(v_{1}, \ldots, v_{n}\right) \in X$. Furthermore, $\left(\Phi^{\prime}\right)^{-1}: X^{*} \rightarrow X$ exists and is continuous.
Put $I_{\lambda}:=\Phi-\lambda \Psi$. Clearly, the weak solutions of the system (1) are exactly the solutions of the equation $I_{\lambda}^{\prime}\left(u_{1}, \ldots, u_{n}\right)=0$. Now, we want to show that

$$
\gamma<+\infty
$$

Let $\left\{\xi_{m}\right\}$ be a real sequence such that $\xi_{m} \rightarrow+\infty$ as $m \rightarrow \infty$ and

$$
\lim _{m \rightarrow \infty} \frac{\int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in K\left(\xi_{m}\right)} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\xi_{m}}
$$

$$
=\liminf _{\xi \rightarrow+\infty} \frac{\int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in K(\xi)} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\xi^{p}}
$$

$$
\text { Put } \left.r_{m}=\frac{\xi_{m}^{p}}{\left(\sum_{i=1}^{n}\left(p_{i} C\right)\right.} \frac{1}{p_{i}}\right)^{\underline{p}} \text { for all } m \in \mathbb{N} \text {. Since }
$$

$$
\sup _{x \in \Omega}\left|u_{i}(x)\right|^{p_{i}} \leq C\left\|u_{i}\right\|_{p_{i}}^{p_{i}}
$$

for each $u_{i} \in W^{1, p_{i}}(\Omega)$ for $1 \leq i \leq n$, we have

$$
\begin{equation*}
\sup _{x \in \Omega} \sum_{i=1}^{n} \frac{\left|u_{i}(x)\right|^{p_{i}}}{p_{i}} \leq C \sum_{i=1}^{n} \frac{\left\|u_{i}\right\|_{p_{i}}^{p_{i}}}{p_{i}} . \tag{4}
\end{equation*}
$$

for each $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right) \in X$. This, for each $r>0$, together with (4), ensures that

$$
\left.\left.\Phi^{-1}(]-\infty, r\right]\right) \subseteq\left\{u \in X ; \sup \sum_{i=1}^{n} \frac{\left|u_{i}(x)\right|^{p_{i}}}{p_{i}} \leq C r \text { for each } x \in \Omega\right\}
$$

Hence, an easy computation shows that $\sum_{i=1}^{n}\left|u_{i}\right| \leq \xi_{m}$ whenever $u=\left(u_{1}, \ldots, u_{n}\right) \in$ $\left.\left.\Phi^{-1}(]-\infty, r_{m}\right]\right)$. Hence, one has

$$
\begin{aligned}
\varphi\left(r_{m}\right) & =\inf _{u \in \Phi^{-1}\left(\mathrm{l}-\infty, r_{m} \mathrm{D}\right.} \frac{\left.\sup _{v \in \Phi^{-1}\left(\mathrm{l}-\infty, r_{m} \mathrm{D}\right.} \Psi(v)\right)-\Phi(u)}{r_{m}-\Phi(u)} \\
& \leq \frac{\sup _{v \in \Phi^{-1}\left(\mathrm{l}-\infty, r_{m} \mathrm{D}\right.} \Psi(v)}{r_{m}} \\
& \leq \frac{\int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in K\left(\xi_{m}\right)} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\frac{p}{\left(\sum_{i=1}^{n}\left(p_{i} C\right)^{\frac{1}{p_{i}}}\right)^{p}}}
\end{aligned}
$$

Therefore, since from Assumption (A1) one has

$$
\liminf _{\xi \rightarrow+\infty} \frac{\int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in K(\xi)} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\xi^{\underline{p}}}<\infty
$$

we deduce

$$
\begin{gather*}
\gamma \leq \liminf _{m \rightarrow+\infty} \varphi\left(r_{m}\right) \\
\leq\left(\sum_{i=1}^{n}\left(p_{i} C\right)^{\frac{1}{p_{i}}}\right)^{p} \liminf _{\xi \rightarrow+\infty} \frac{\int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in K(\xi)} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\xi^{p}}<+\infty . \tag{5}
\end{gather*}
$$

Assumption (A1) along with (5), implies

$$
\Lambda \subseteq] 0, \frac{1}{\gamma}[
$$

Fix $\lambda \in \Lambda$. The inequality (5) concludes that the condition (b) of Theorem 2.1 can be applied and either I_{λ} has a global minimum or there exists a sequence $\left\{u_{m}\right\}$ where $u_{m}=$ $\left(u_{1 m}, \ldots, u_{n m}\right)$ of weak solutions of the system (1) such that $\lim _{m \rightarrow \infty}\left\|\left(u_{1 m}, \ldots, u_{n m}\right)\right\|=+\infty$.
Now fix $\lambda \in \Lambda$ and let us verify that the functional I_{λ} is unbounded from below. Arguing as in [8], consider n positive real sequences $\left\{d_{i, m}\right\}_{i=1}^{n}$ such that $\sqrt{\sum_{i=1}^{n} d_{i, m}^{2}} \rightarrow+\infty$ as $m \rightarrow \infty$
and

$$
\begin{equation*}
\lim _{m \rightarrow+\infty} \frac{\int_{\Omega} F\left(x, d_{1, m}, \ldots, d_{n, m}\right) d x}{\sum_{i=1}^{n} \frac{d_{i, m}^{p_{i}}}{p_{i}}}=\limsup _{\substack{\left.t_{1}, \ldots, t_{n}\right) \rightarrow \infty \\\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}_{+}^{n}}} \frac{\int_{\Omega} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\sum_{i=1}^{n} \frac{\left\|a_{i}\right\|_{1}\left|t_{i}\right|^{p_{i}}}{p_{i}}} \tag{6}
\end{equation*}
$$

For all $m \in \mathbb{N}$ define $w_{m}(x)=\left(d_{1, m}, \ldots, d_{n, m}\right)$. For any fixed $m \in \mathbb{N}, w_{m} \in X$ and, in particular, one has

$$
\Phi\left(w_{m}\right)=\sum_{i=1}^{n} \frac{d_{i, m}^{p_{i}}\left\|a_{i}\right\|_{1}}{p_{i}}
$$

Then, for all $m \in \mathbb{N}$,

$$
I_{\lambda}\left(w_{m}\right)=\Phi\left(w_{m}\right)-\lambda \Psi\left(w_{m}\right)=\sum_{i=1}^{n} \frac{d_{i, m}^{p_{i}}\left\|a_{i}\right\|_{1}}{p_{i}}-\lambda \int_{\Omega} F\left(x, d_{1, m}, \ldots, d_{n, m}\right) d x
$$

Now, if

$$
\limsup _{\substack{\left(t_{1}, \ldots, t_{n}\right) \rightarrow \infty \\\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}_{+}^{n}}} \frac{\int_{\Omega} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\sum_{i=1}^{n} \frac{\left\|a_{i}\right\|_{1}\left|t_{i}\right|^{p_{i}}}{p_{i}}}<\infty
$$

we fix $\epsilon \in] \frac{1}{\lambda \lim \sup _{\substack{\left.t_{1}, \ldots, t_{n}\right) \rightarrow \infty \\\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}_{+}^{n}}} \frac{\int_{\Omega} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\| \sum_{i=1}^{n} \frac{\left\|a_{i}\right\|_{1}\left|t_{i}\right|^{p_{i}}}{p_{i}}}}, 1\left[\right.$ From (6) there exists τ_{ε} such that

$$
\int_{\Omega} F\left(x, d_{1, m}, \ldots, d_{n, m}\right) d x
$$

$$
>\epsilon \limsup _{\substack{\left(t_{1}, \ldots, t_{n}\right) \rightarrow \infty \\\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}_{+}^{n}}} \frac{\int_{\Omega} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\sum_{i=1}^{n} \frac{\left\|a_{i}\right\|_{1}\left|t_{i}\right|^{p_{i}}}{p_{i}}}\left(\sum_{i=1}^{n} \frac{d_{i, m}^{p_{i}}\left\|a_{i}\right\|_{1}}{p_{i}}\right) \quad \forall m>\tau_{\epsilon}
$$

therefore

$$
I_{\lambda}\left(w_{m}\right) \leq\left(1-\lambda \epsilon \limsup _{\substack{\left(t_{1}, \ldots, t_{n}\right) \rightarrow \infty \\\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}_{+}^{n}}} \frac{\int_{\Omega} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\sum_{i=1}^{n} \frac{\left\|a_{i}\right\|_{1}\left|t_{i}\right|^{p_{i}}}{p_{i}}}\right) \sum_{i=1}^{n} \frac{d_{i, m}^{p_{i}}\left\|a_{i}\right\|_{1}}{p_{i}} \forall m>\tau_{\epsilon}
$$

and by the choice of ε, one has

$$
\lim _{m \rightarrow+\infty}\left[\Phi\left(w_{m}\right)-\lambda \Psi\left(w_{m}\right)\right]=-\infty
$$

If

$$
\limsup _{\xi \rightarrow+\infty} \frac{\int_{\Omega} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\sum_{i=1}^{n} \frac{\left\|a_{i}\right\|_{1}\left|t_{i}\right|^{p}}{p_{i}}}=\infty
$$

let us consider $K>\frac{1}{\lambda}$. From (6) there exists τ_{K} such that

$$
\int_{\Omega} F\left(x, d_{1, m}, \ldots, d_{n, m}\right) d x>K \sum_{i=1}^{n} \frac{d_{i, m}^{p_{i}}\left\|a_{i}\right\|_{1}}{p_{i}} \forall m>\tau_{K},
$$

therefore

$$
I_{\lambda}\left(w_{m}\right) \leq(1-\lambda K) \sum_{i=1}^{n} \frac{d_{i, m}^{p_{i}}\left\|a_{i}\right\|_{1}}{p_{i}} \forall m>\tau_{K}
$$

and by the choice of K, one has

$$
\lim _{m \rightarrow+\infty}\left[\Phi\left(w_{m}\right)-\lambda \Psi\left(w_{m}\right)\right]=-\infty
$$

Hence, our claim is proved. Since all assumptions of Theorem 2.1 are satisfied, the functional I_{λ} admits a sequence $\left\{u_{m}=\left(u_{1 m}, \ldots, u_{n m}\right)\right\} \subset X$ of critical points such that

$$
\lim _{m \rightarrow \infty}\left\|\left(u_{1 m}, \ldots, u_{n m}\right)\right\|=+\infty
$$

and we have the conclusion.
Here, we give a consequence of Theorem 3.1.
Corollary 3.2. Assume that
(A2) $\liminf _{\xi \rightarrow+\infty} \frac{\int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in K(\xi)} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\xi^{p}}<\left(\sum_{i=1}^{n}\left(p_{i} C\right)^{\frac{1}{p_{i}}}\right)^{p}$;
(A3) $\lim \sup _{\substack{\left(t_{1}, \ldots, t_{n}\right) \rightarrow \infty \\\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}_{+}^{n}}} \frac{\int_{\Omega} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\sum_{i=1}^{n} \frac{\left\|a_{i},\right\|_{1}\left|t_{i}\right|^{p_{i}}}{p_{i}}}>1$.
Then, the system

$$
\begin{cases}-\Delta_{p_{i}} u_{i}+a_{i}(x)\left|u_{i}\right|^{p_{i}-2} u=F_{u_{i}}\left(x, u_{1}, \ldots, u_{n}\right) & \text { in } \Omega \\ \frac{\partial u_{i}}{\partial v}=0 & \text { on } \partial \Omega\end{cases}
$$

for $1 \leq i \leq n$, has an unbounded sequence of classical solutions in X.
Now, we want to present the analogous version of the main result (Theorem 3.1) in the autonomous case.
Theorem 3.3. Assume that
(A4)

$$
\begin{aligned}
& \liminf _{\xi \rightarrow+\infty} \frac{\sup _{\left(t_{1}, \ldots, t_{n}\right) \in K(\xi)} F\left(t_{1}, \ldots, t_{n}\right)}{\xi^{p}} \\
< & \left(\sum_{i=1}^{n}\left(p_{i} C\right)^{\frac{1}{p_{i}}}\right)_{\substack{\left(t_{1}, \ldots, t_{n}\right) \rightarrow \infty \\
\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}_{+}^{n}}}^{\limsup _{i=1}^{n} \frac{F\left(t_{1}, \ldots, t_{n}\right)}{\sum_{i} \|_{1}\left|t_{i}\right|^{p_{i}}}}
\end{aligned}
$$

where $K(\xi)=\left\{\left(t_{1}, \ldots, t_{n}\right)\left|\sum_{i=1}^{n}\right| t_{i} \mid \leq \xi\right\}$ (see (3)).
Then, for each

$$
\lambda \in \Lambda:=
$$

$$
\frac{1}{\left.\frac{F\left(t_{1}, \ldots, t_{n}\right)}{{\lim \sup _{\substack{\left(t_{1}, \ldots, t_{n}\right) \rightarrow \infty \\\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}_{+}^{n}}}^{\sum_{i=1}^{n} \frac{\left\|a_{i}\right\|_{1} \mid t_{i}}{p_{i}}}}_{p_{i}}} \frac{\left(\sum_{i=1}^{n}\left(p_{i} C\right)^{\frac{1}{p_{i}}}\right)^{p}}{\lim \inf _{\xi \rightarrow+\infty} \frac{\sup _{\left(t_{1}, \ldots, t_{n}\right) \in K(\xi)} F\left(t_{1}, \ldots, t_{n}\right)}{\xi^{\ell}}}\right]}
$$

the system

$$
\begin{cases}-\Delta_{p_{i}} u_{i}+a_{i}(x)\left|u_{i}\right|^{p_{i}-2} u=\lambda F_{u_{i}}\left(u_{1}, \ldots, u_{n}\right) & \text { in } \Omega, \\ \frac{\partial u_{i}}{\partial v}=0 & \text { on } \partial \Omega\end{cases}
$$

has an unbounded sequence of weak solutions in X.
Proof. Set $F\left(x, u_{1}, \ldots, u_{n}\right)=F\left(u_{1}, \ldots, u_{n}\right)$ for all $x \in \Omega$ and $\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{R}^{n}$. The conclusion follows from Theorem 3.1.
Remark 3.1. We observe in Theorem 3.1 we can replace $\xi \rightarrow+\infty$ and $\left(t_{1}, \ldots, t_{n}\right) \rightarrow$ $(+\infty, \ldots,+\infty)$ with $\xi \rightarrow 0^{+}\left(t_{1}, \ldots, t_{n}\right) \rightarrow\left(0^{+}, \ldots, 0^{+}\right)$, respectively, that by the same way as in the proof of Theorem 3.1 but using conclusion (c) of Theorem 2.1 instead of (b), the system (1) has a sequence of weak solutions, which strongly converges to 0 in X.
Finally, we give an example to illustrate the result.
Example 3.1. Let $\Omega \subset \mathbb{R}^{2}$ be a non-empty bounded open set with a smooth boundary $\vartheta \Omega$ and consider the increasing sequence of positive real numbers given by

$$
a_{n}:=2, \quad a_{n+1}:=n!\left(a_{n}\right)^{\frac{5}{4}}+2
$$

for every $n \geq 1$. Define the function

$$
F\left(t_{1}, t_{2}\right)= \begin{cases}\left(a_{n+1}\right)^{5} e^{-\frac{1}{1-\left[\left(t_{1}-a_{n+1}\right)^{2}+\left(t_{2}-a_{n+1}\right)^{2}\right]}} & \left(t_{1}, t_{2}\right) \in \bigcup_{n \geq 1} B B\left(\left(a_{n+1}, a_{n+1}\right), 1\right), \tag{7}\\ \text { otherwise }\end{cases}
$$

where $\left.B\left(\left(a_{n+1}, a_{n+1}\right), 1\right)\right)$ be the open unit ball of center $\left(a_{n+1}, a_{n+1}\right)$. We observe that the function F is non-negative, $F(0,0)=0$, and $F \in C^{1}\left(\mathbb{R}^{2}\right)$. We will denote by f and g, respectively, the partial derivative of F respect to t_{1} and t_{2}. For every $n \in \mathbb{N}$, the restriction F on $B\left(\left(a_{n+1}, a_{n+1}\right), 1\right)$ attains its maximum in $\left(a_{n+1}, a_{n+1}\right)$ and $F\left(a_{n+1}, a_{n+1}\right)$ $=\left(a_{n+1}\right)^{5}$,
then

$$
\limsup _{n \rightarrow+\infty} \frac{F\left(a_{n+1}, a_{n+1}\right)}{\frac{a_{n+1}^{3}}{3}+\frac{a_{n+1}^{4}}{4}}=+\infty
$$

So

$$
\limsup _{\left(t_{1}, t_{2}\right) \rightarrow(+\infty,+\infty)} \frac{F\left(t_{1}, t_{2}\right)}{\frac{\left.t_{1}\right|^{3}}{3}+\frac{t_{2} 4^{4}}{4}}=+\infty
$$

On the other by setting $y_{n}=a_{n+1}-1$ for every $n \in \mathbb{N}$, one has

$$
\sup _{\left(t_{1}, t_{2}\right) \in K\left(\gamma_{n}\right)} F\left(t_{1}, t_{2}\right)=a_{n}^{5} \forall n \in \mathbb{N}
$$

Then

$$
\lim _{n \rightarrow \infty} \frac{\sup _{\left(t_{1}, t_{2}\right) \in K\left(y_{n}\right)} F\left(t_{1}, t_{2}\right)}{\left(a_{n+1}-1\right)^{3}}=0,
$$

and hence

$$
\liminf _{\xi \rightarrow \infty} \frac{\sup _{\left(t_{1}, t_{2}\right) \in K(\xi)} F\left(t_{1}, t_{2}\right)}{\xi^{3}}=0 .
$$

Finally

$$
\begin{gathered}
0=\liminf _{\xi \rightarrow+\infty} \frac{\sup _{\left(t_{1}, t_{2}\right) \in K(\xi)} F\left(t_{1}, t_{2}\right)}{\xi^{3}} \\
<\left((3 C)^{\frac{1}{3}}+(4 C)^{\frac{1}{4}}\right)^{3} \limsup _{\left(t_{1}, t_{2}\right) \rightarrow(+\infty,+\infty)_{\left(t_{1}, t_{2}\right) \in \mathbb{R}_{+}^{n}}} \frac{F\left(t_{1}, t_{2}\right)}{\frac{\left|t_{1}\right|^{3}}{3}+\frac{\left|t_{2}\right|^{4}}{4}}=+\infty .
\end{gathered}
$$

So, since all assumptions of Theorem 3.3 is applicable to the system

$$
\begin{cases}-\Delta_{3} u+|u| u=\lambda f(u, v) & \text { in } \Omega \\ -\Delta_{4} v+|v|^{2} g=\lambda g(u, v) & \text { in } \Omega \\ \frac{\partial u}{\partial v}=\frac{\partial v}{\partial v}=0 & \text { on } \partial \Omega\end{cases}
$$

for every $\lambda \in[0,+\infty[$.

Author details

'Department of Mathematics, Science and Research Branch, Islamic Azad University (IAU), Tehran, Iran ${ }^{2}$ Department of Mathematics, Faculty of Basic Sciences, University of Mazandaran, 47416-1467 Babolsar, Iran

Authors' contributions

DMS has presented the main purpose of the article and has used GAA contribution due to reaching to conclusions. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 30 January 2012 Accepted: 6 May 2012 Published: 6 May 2012

References

1. Ricceri, B: A general variational principle and some of its applications. J Comput Appl Math. 113, 401-410 (2000). doi:10.1016/S0377-0427(99)00269-1
2. Bonanno, G, Molica Bisci, G: Infinitely many solutions for a boundary value problem with discontinuous nonlinearities Bound Value Probl. 2009, 1-20 (2009)
3. Marano, S, Motreanu, D: Infinitely many critical points of non-differentiable functions and applications to the Neumanntype problem involving the p-Laplacian. J Diff Equ. 182, 108-120 (2002). doi:10.1006/jdeq.2001.4092
4. Bonanno, G, D'Aguì, G: On the Neumann problem for elliptic equations involving the p-Laplacian. J Math Anal Appl. 358, 223-228 (2009). doi:10.1016/j.jmaa.2009.04.055
5. Bonanno, G, Di Bella, B: Infinitely many solutions for a fourth-order elastic beam equation. Nonlinear Diff Equ Appl NoDEA. 18, 357-368 (2011). doi:10.1007/s00030-011-0099-0
6. Bonanno, G, Molica Bisci, G: A remark on perturbed elliptic Neumann problems. Studia Univ "Babeş-Bolyai", Mathematica. LV(4) (2010)
7. Bonanno, G, Molica Bisci, G: Infinitely many solutions for a Dirichlet problem involving the p-Laplacian. Proc Royal Soc Edinburgh. 140A, 737-752 (2010)
8. Bonanno, G, Molica Bisci, G, O'Regan, D: Infinitely many weak solutions for a class of quasilinear elliptic systems. Math Comput Model. 52, 152-160 (2010). doi:10.1016/j.mcm.2010.02.004
9. Bonanno, G, Molica Bisci, G, Rădulescu, V: Infinitely many solutions for a class of nonlinear eigenvalue problems in Orlicz-Sobolev spaces. C R Acad Sci Paris, Ser I. 349, 263-268 (2011). doi:10.1016/j.crma.2011.02.009
10. Candito, P: Infinitely many solutions to the Neumann problem for elliptic equations involving the p-Laplacian and with discontinuous nonlinearities. Proc Edin Math Soc. 45, 397-409 (2002)
11. Candito, P, Livrea, R: Infinitely many solutions for a nonlinear Navier boundary value problem involving the pbiharmonic. Studia Univ "Babeș-Bolyai", Mathematica. LV(4) (2010)
12. Dai, G: Infinitely many solutions for a Neumann-type differential inclusion problem involving the $p(x)$-Laplacian. Nonlinear Anal. 70, 2297-2305 (2009). doi:10.1016/j.na.2008.03.009
13. Fan, X, Ji, C: Existence of infinitely many solutions for a Neumann problem involving the p(x)-Laplacian. J Math Anal Appl. 334, 248-260 (2007). doi:10.1016/j.jmaa.2006.12.055
14. Kristály, A: Infinitely many solutions for a differential inclusion problem in \boxtimes^{N}. J Diff Equ. 220, 511-530 (2006). doi:10.1016/j.jde.2005.02.007
15. Li, C: The existence of infinitely many solutions of a class of nonlinear elliptic equations with a Neumann boundary conditions for both resonance and oscillation problems. Nonlinear Anal. 54, 431-443 (2003). doi:10.1016/S0362-546X(03) 00100-7
16. Ricceri, B: Infinitely many solutions of the Neumann problem for elliptic equations involving the p-Laplacian. Bull Lond Math Soc. 33(3):331-340 (2001). doi:10.1017/S0024609301008001
17. Afrouzi, GA, Heidarkhani, S: Existence of three solutions for a class of Dirichlet quasi-linear elliptic systems involving the (p_{1}, \ldots, p_{n})-Laplacian. Nonlinear Anal. 70, 135-143 (2009). doi:10.1016/j.na.2007.11.038
18. Afrouzi, GA, Heidarkhani, S, O'Regan, D: Three solutions to a class of Neumann doubly eigenvalue elliptic systems driven by a (p_{1}, \ldots, p_{n})-Laplacian. Bull Korean Math Soc. 47(6):1235-1250 (2010). doi:10.4134/BKMS.2010.47.6.1235
19. Bonanno, G, Heidarkhani, S, O'Regan, D: Multiple solutions for a class of Dirichlet quasilinear elliptic systems driven by a (p, q)-Laplacian operator. Dyn Syst Appl. 20, 89-100 (2011)
20. Heidarkhani, S, Tian, Y: Multiplicity results for a class of gradient systems depending on two parameters. Nonlinear Anal. 73, 547-554 (2010). doi:10.1016/j.na.2010.03.051
21. Heidarkhani, S, Tian, Y: Three solutions for a class of gradient Kirchhoff-type systems depending on two parameters. Dyn Syst Appl. 20, 551-562 (2011)
22. Zeidler, E: Nonlinear Functional Analysis and its Applications. Springer, New Yorkll (1985)
23. Bonanno, G, Candito, P: Three solutions to a Neumann problem for elliptic equations involving the p-Laplacian. Arch Math (Basel). 80, 424-429 (2003)
[^1]
Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

[^0]: * Correspondence: davood.m. s@gmail.com
 Department of Mathematics, Science and Research Branch, Islamic Azad University (IAU), Tehran, Iran
 Full list of author information is available at the end of the article

[^1]: doi:10.1186/1687-2770-2012-54
 Cite this article as: Shoorabi and Afrouzi: Infinitely many solutions for class of Neumann quasilinear elliptic systems. Boundary Value Problems 2012 2012:54.

