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Abstract

This article is concerned with the existence of nontrivial solutions for a non-positive
fourth-order two-point boundary value problem (BVP) and the existence of positive
solutions for a semipositive fourth-order two-point BVP. In mechanics, the problem
describes the deflection of an elastic beam rigidly fixed at both ends. The method to
show our main results is the topological degree and fixed point theory of nonlinear
operator on lattice.
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1 Introduction
The purpose of this article is to investigate the existence of nontrivial solutions and

positive solutions of the following nonlinear fourth-order two-point boundary value

problem (for short, BVP){
u(4)(t) = λf (t, u(t)), 0 ≤ t ≤ 1,
u(0) = u(1) = u′(0) = u′(1) = 0,

(P)

where l is a positive parameter, f : [0,1] × R1 ® R1 is continuous.

Fourth-order two-point BVPs are useful for material mechanics because the pro-

blems usually characterize the deflection of an elastic beam. The problem (P) describes

the deflection of an elastic beam with both ends rigidly fixed. The existence and multi-

plicity of positive solutions for the elastic beam equations has been studied extensively

when the non-linear term f : [0,1] × [0, +∞) ® [0, +∞) is continuous, see for example

[1-10] and references therein. Agarwal and Chow [1] investigated problem (P) by using

of contraction mapping and iterative methods. Bai [3] applied upper and lower solution

method and Yao [9] used Guo-Krasnosel’skii fixed point theorem of cone expansion-

compression type. However, there are only a few articles concerned with the nonposi-

tive or semipositive elastic beam equations. Yao [11] considered the existence of posi-

tive solutions of semipositive elastic beam equations by constructing control functions

and a special cone and using fixed point theorem of cone expansion-compression type.

In this article, we assume that f : [0,1] × R1 ® R1, which implies the problem (P) is

nonpositive (or semipositive particularly). By the topological degree and fixed point

theory of superlinear operator on lattice (the definition of lattice will be given in
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Section 2), we obtain the existence of nontrivial solutions for the non-positive BVP (P)

and the existence of positive solutions for the semipositive BVP (P).

2 Preliminaries
Let E be an ordered Banach space in which the partial ordering ≤ is induced by a cone

P ⊂ E, θ denote the zero element of E. P is called solid if int P ≠ ∅, i.e., P has none-

mpty interior. P is called a generating cone if E = P - P . For the concepts and proper-

ties about the cones we refer to [12-14].

We call E a lattice in the partial ordering ≤, if for arbitrary x, y Î E, sup{x, y} and inf

{x, y} exist. For x Î E, let

x+ = sup{ x, θ}, x− = sup{ –x, θ},

which are called the positive and the negative part of x, respectively. Take |x| = x+ +

x-, then |x| Î P , and |x| is called the module of x. One can see [15] for the definition

and the properties about the lattice.

For convenience, we use the following notations:

x+ = x+, x− = −x−, (2:1)

then

x+ ∈ P, x− ∈ (−P), x = x+ + x−.

Remark 2.1 If E is a lattice, then P is a generating cone.

Definition 2.1 [[16], Definition 3.2, p. 929]. Let D ⊂ E and F : D ® E be a nonlinear

operator. F is said to be quasi-additive on lattice, if there exists y0 Î E such that

Fx = Fx+ + Fx− + y0, ∀x ∈ D, (2:2)

where x+ and x- are defined by (2.1).

Remark 2.2 We point out that the condition (2.2) appears naturally in the applica-

tions of nonlinear differential equations and integral equations.

Let

E = C[a, b] = {x(t)|x : [a, b] → R1 is continuous},

and f : [a, b] × R1 ® R1. Consider the Nemytskii operator

(Fx)(t) = f (t, x(t)).

Set P = {x Î C[a, b] | x(t) ≥ 0}, then E = C[a, b] is a lattice in the partial ordering

which is induced by P . For any x Î C[a, b], it is evident that

x+(t) = max{x(t), 0}, x−(t) = min{x(t), 0},

and hence |x|(t) = |x(t)|. By Remark 3.1 in [16], we know that there exists y0 Î C[a,

b] such that Fx = Fx+ + Fx- + y0, ∀x Î C[a, b].

Suppose that B is a linear operator and A = BF . It follows that

Ax = Ax+ + Ax− + By0,

which means that A is quasi-additive on lattice.
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Definition 2.2 [[17], Definition, p. 261]. Let B : E ® E be a linear operator. B is said

to be a u0-bounded linear operator, if there exists u0 Î P\{θ}, such that for any x Î P

\{θ}, there exist a natural number n and real numbers ζ, h >0, such that

ζu0 ≤ Bnx ≤ ηu0.

Lemma 2.1 [[18], Theorem 4.2.2, p. 122]. Let P be a generating cone and B a u0-

bounded completely continuous linear operator. Then the spectral radius r(B) ≠ 0 and

r-1(B) is the only positive eigenvalue corresponding to positive eigenvectors and B has

no other eigenvectors except those corresponding to r-1(B).

Let B : E ® E be a positive completely continuous linear operator, r(B) a spectral

radius of B, B* the conjugated operator of B, and P* the conjugated cone of P. Since P

⊂ E is a generating cone, according to the famous Krein-Rutman theorem (see [14]), if

r(B) ≠ 0, then there exist ϕ̄ ∈ P\{θ} , and g* Î P*\{θ}, such that

Bϕ̄ = r(B)ϕ̄, B∗g∗ = r(B)g∗. (2:3)

Fix ϕ̄ ∈ P\{θ} , g* Î P*\{θ} such that (2.3) holds. For δ >0, let

P(g∗, δ) = {x ∈ P, g∗(x) ≥ δ||x||},

then P (g*, δ) is also a cone in E.

Definition 2.3 [[19], Definition, p. 528]. Let B be a positive linear operator. B is said

to satisfy H condition, if there exist ϕ̄ ∈ P\{θ} , g* Î P*\{θ} and δ >0 such that (2.3)

holds, and B maps P into P(g*, δ).

Remark 2.3 Let Bϕ =
∫ b
a k(x, y)ϕ(y)dy , where k(x, y) Î C([a, b] × [a, b]), k(x, y) ≥ 0,

� Î C[a, b]. Suppose that (2.3) holds and there exists v(x) Î P\{θ} such that

k(x, y) ≥ v(x)k(τ , y), ∀x, y, τ ∈ [a, b]

and v(x)g*(x) ≢ 0, then B satisfies H condition (see [19]).

Lemma 2.2 [[16], Theorem 3.1, p. 929]. Let P be a solid cone, A : E ® E be a com-

pletely continuous operator satisfying A = BF, where F is quasi-additive on lattice, B is

a positive bounded operator satisfying H condition. Suppose that

(i) there exist a1 > r-1(B), y1 Î P such that

Fx ≥ a1x − y1, ∀x ∈ P; (2:4)

(ii) there exist 0 ≤ a2 ≤ r-1(B), y2 Î P such that

Fx ≥ a2x − y2, ∀x ∈ (−P). (2:5)

Then there exists R0 >0 such that deg(I - A, TR, θ) = 0 for any R > R0 , where TR =

{x Î C[0, 1] : ||x|| < R}.

Lemma 2.3 [[16], Theorem 3.3, p. 932]. Let Ω be a bounded open subset of E, θ Î
Ω, and A : �̄ → P a completely continuous operator. Suppose that A has no fixed

point on ∂Ω. If

(i) there exists a positive bounded linear operator B such that |Ax| ≤ B|x|, for all x Î
∂Ω;

(ii) r(B) ≤ 1.

Then deg(I - A, Ω, θ) = 1.
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3 Existence of nontrivial solutions for the non-positive BVP (P)
In the sequel we always take E = C[0,1] with the norm ||u|| = max0≤t≤1 |u(t)| and P =

{u Î C[0, 1] | u(t) ≥ 0, 0 ≤ t ≤ 1}. Then P is a solid cone in E and E is a lattice under

the partial ordering ≤ induced by P.

A solution of BVP (P) is a fourth differentiable function u : [0,1] ® R such that u

satisfies (P). u is said to be a positive solution of BVP (P) if u(t) >0, 0 < t <1. Let G(t,

s) be Green’s function of homogeneous linear problem u(4)(t) = 0, u(0) = u(1) = u’(0) =

u’(1) = 0. From Yao [11] we have

G(t, s) =
{ 1

6 t
2(1 − s)2[(s − t) + 2(1 − t)s], 0 ≤ t ≤ s ≤ 1,

1
6 s

2(1 − t)2[(t − s) + 2(1 − s)t], 0 ≤ s ≤ t ≤ 1,

and

(G1) G(t, s) ≥ 0, 0 ≤ t, s ≤ 1;

(G2) G(t, s) = G(s, t);

(G3) G(t, s) ≥ p(t)G(τ; s), 0 ≤ t, s, τ ≤ 1, where p(t) = 2
3 min{t2, (1 − t)2} .

Lemma 3.1 Let H(t) = 1
2 t

2(1 − t)2 and q(s) = 2
3 s

2(1 − s)2 . Then

q(s)H(t) ≤ G(t, s) ≤ H(t), 0 ≤ t, s ≤ 1. (3:1)

Proof. Since G(0, s) = G(1, s) = 0, 0 ≤ s ≤ 1, H(0) = H(1) = 0, then q(s)H(t) = G(t, s)

= H(t) holds for t = 0 and t = 1. If 0 < t ≤ s ≤ 1 and t <1, then

G(t, s) = 1
6 t

2(1 − s)2[3s(1 − t) − t(1 − s)]

≤ 1
2 t

2(1 − s)2s(1 − t)

≤ 1
2 t

2(1 − t)2s(1 − s)

< 1
2 t

2(1 − t)2 = H(t),

and

G(t, s)
H(t)

=
1
6 t

2(1 − s)2[3s(1 − t) − t(1 − s)]
1
2 t

2(1 − t)2

≥ (1 − s)2[3s(1 − t) − t(1 − t)]

3(1 − t)2

=
(1 − s)2(3s − t)

3(1 − t)
≥ 2s(1 − s)2

3(1 − t)

≥ 2
3 s

2(1 − s)2 = q(s).

Similarly, (3.1) holds for 0 ≤ s ≤ t <1 and t >0. The proof is complete. □
It is well known that the problem (P) is equivalent to the integral equation

u(t) = λ

1∫
0

G(t, s)f (s, u(s))ds.

Let

(Au)(t) =

1∫
0

G(t, s)f (s, u(s))ds, (3:2)
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(Bu)(t) =

1∫
0

G(t, s)u(s)ds. (3:3)

Lemma 3.2 Let B be defined by (3.3). Then B is a u0-bounded linear operator.

Proof. Let u0 (t) = H (t) = 1
2 t

2(1 − t)2 , t Î [0,1]. For any u Î P\{θ}, by Lemma 3.1

we have

1∫
0

q(s)H(t)u(s)ds ≤ Bu(t) =

1∫
0

G(t, s)u(s)ds ≤
1∫

0

H(t)u(s)ds.

Take arbitrarily 0 < ε0 < 1
2 , then

u0(t)

1−ε0∫
ε0

q(s)u(s)ds ≤ Bu(t) ≤ ‖u‖ · u0(t).

Let ζ =
∫ 1−ε0
ε0

q(s)u(s)ds > 0 , h = ||u|| >0. Then

ζu0 ≤ Bu ≤ ηu0.

This indicates that B : E ® E is a u0-bounded linear operator. □
From Lemma 2.1 we have r(B) ≠ 0 and r-1(B) is the only eigenvalue of B. Denote l1

= r-1(B).

Now let us list the following conditions which will be used in this article:

(H1) there exist constants a and b with a > b ≥ 0 satisfying

lim inf
u→+∞

f (t, u)
u

≥ α, lim sup
u→−∞

f (t, u)
u

≤ β , ∀t ∈ [0, 1]. (3:4)

(H2) there exists a constant g ≥ 0 satisfying

lim sup
u→0

∣∣∣∣ f (t, u)u

∣∣∣∣ ≤ γ , ∀t ∈ [0, 1]. (3:5)

(H3) lim
u→+∞

f (t, u)
u

= +∞ .

Theorem 3.1 Suppose that (H1) and (H2) hold. Then for any λ ∈ (
λ1
α
, λ1

ι

)
, BVP (P)

has at least one nontrivial solution, where l1 = r-1(B) is the only eigenvalue of B, B is

denoted by (3.3), ι = max{b, g}.
Proof. Let (Fu)(t) = f(t, u(t)). Then A = BF, where A is denoted by (3.2). By Remark

2.2, F is quasi-additive on lattice. Applying the Arzela-Ascoli theorem and a standard

argument, we can prove that A : E ® E is a completely continuous operator.

Now we show that lA = lBF has at least one nontrivial fixed point, which is the

nontrivial solution of BVP (P).

On account of (G3) we have that p(t) = 2
3 min{t2, (1 − t)2} ∈ P\{θ} such that

G(t, s) ≥ p(t)G(τ , s), 0 ≤ t, s, τ ≤ 1.
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Notice that Bu (t) =
∫ 1
0 G(t, s)u(s)ds , where G(t, s) ≥ 0, G(t, s) Î C([0,1] × [0,1]).

From Lemma 3.2 B is a u0-bounded linear operator. By Lemma 2.1 we have r(B) ≠ 0

and l1 = r-1(B) is the only eigenvalue of B. Then there exist ϕ̄ ∈ P\{θ} and g* Î P*\{θ}

such that (2.3) holds. Notice that l >0, from Remark 2.3, lB satisfies H condition.

By (3.4) and (3.5), there exist r >0, M >0 and 0 < ε < min{ αλ−λ1
λ

, λ1−βλ

λ
, λ1−γλ

λ
}

such that

f (t, u) ≥ (α − ε)u − M, ∀t ∈ [0, 1], u ≥ 0, (3:6)

f (t, u) ≥ (β + ε)u − M, ∀t ∈ [0, 1], u ≤ 0, (3:7)

|f (t, u)| ≤ (γ + ε)|u|, ∀t ∈ [0, 1], |u| ≤ r. (3:8)

By (3.6) and (3.7), we have (2.4) and (2.5) hold, where a1 = a - ε, a2 = b + ε.

Let B1 = lB. Then r−1 (B1) = λ1
λ
. Obviously, for any λ ∈ (λ1

α
, λ1

ι
) , a1 > r-1(B1), a2 < r-

1(B1). From Lemma 2.2 there exists R0 >0 such that for any R >max{R0, r},

deg(I − λA,TR, θ) = 0. (3:9)

Let B2 = l(g + ε)B. From (3.8) we have |lAu| ≤ B2|u|, also r(B2) =
λ(γ+ε)

λ1
≤ 1 . With-

out loss of generality we assume that lA has no fixed point on ∂Tr, where Tr = {u Î C

[0,1] | ||u|| < r}. By Lemma 2.3 we have

deg(I − λA,Tr , θ) = 1, (3:10)

It is easy to see from (3.9) and (3.10) that lA has at least one nontrivial fixed point.

Thus problem (P) has at least one nontrivial solution. □
Remark 3.1 If a = +∞, b = g = 0, then for any l >0 problem (P) has at least one

nontrivial solution.

Theorem 3.2 Suppose that (H1) holds. Assume f(t, 0) ≡ 0, ∀t Î [0,1] and

lim
u→0

f (t, u)
u

= ρ. (3:11)

Then for any λ ∈ (λ1
α
, λ1

β
) and λ �= λ1

ρ , BVP (P) has at least one nontrivial solution.

Proof. Since f(t, 0) ≡ 0, ∀t Î [0,1], then Aθ = θ. By (3.11) we have that the Frechet

derivative A′
θ of A at θ exists and

(A′
θu)(t) =

1∫
0

G(t, s)ρu(s)ds.

Notice that λ �= λ1
ρ , then 1 is not an eigenvalue of λA′

θ . By the famous Leray-Schau-

der theorem there exists r >0 such that

deg(I − λA,Tr , θ) = deg(I − λA′
θ ,Tr , θ) = (−1)κ �= 0, (3:12)

where � is the sum of algebraic multiplicities for all eigenvalues of λA′
θ lying in the

interval (0, 1). From the proof of Theorem 3.1 we have that (3.9) holds for any
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λ ∈ (λ1
α
, λ1

β
) . By (3.9) and (3.12), lA has at least one nontrivial fixed point. Thus pro-

blem (P) has at least one nontrivial solution. □

4 Existence of positive solutions for the semipositive BVP (P)
In many real problems, the positive solution is more significant. In this section we will

study this kind of question.

Lemma 4.1 [[20], Theorem 1, p. 90]. Let D = [a, b]. Suppose

(i) G(t, s) is a symmetric kernel. And there exist D0 ⊂ D, mesD0 ≠ 0 and δ >0 such

that

G(t, s) ≥ δG(τ , s), ∀t ∈ D0, s, τ ∈ D;

(ii) f(t, u) is bounded from below and lim
u→+∞ f (t, u) = +∞ uniformly holds for t Î D0.

Then for any l* >0, there exists R = R(l*) >0 such that if 0 <l0 ≤ l*, ||�0|| ≥ R and

�0 = l0A�0, then �0(x) ≥ 0, where A is denoted by (3.2).

Theorem 4.1 Suppose that (H3) holds. Then there exists l* >0 such that for any 0

<l <l* BVP (P) has at least one positive solution.

Proof. By (H3) there exists a constant b >0 such that

f (t, u) ≥ −b, ∀t ∈ [0, 1], u ≥ 0. (4:1)

Let

f1(t, u) =
{

f (t, u), u ≥ 0,
f (t,−u), u < 0.

From (4.1) f1 is bounded from below. Let

(A1u)(t) =

1∫
0

G(t, s)f1(s, u(s))ds.

Then A1 : E ® E is a completely continuous operator.

From the proof of Theorems 2.7.3 and 2.7.4 in Sun [18], there exists R0 >0 such that

for any R > R0,

deg(I − λA1,TR, θ) = 0, ∀λ > 0. (4:2)

Take 0 < r < R0. Let m = max0≤t≤1,|u|<r|f1(t, u)|, G = max0≤s,t≤1 G(t, s), λ̄ = r(mG)−1 .

For any 0 < λ < λ̄ , u Î ∂Tr, we have

‖λA1u‖ = max
0≤t≤1

|
∫ 1

0
λG(t, s)f1(s, u(s))ds|

< λ̄Gm = r = ‖u‖ .

Thus

deg(I − λA1,Tr , θ) = 1, ∀0 < λ < λ̄. (4:3)

From (4.2) and (4.3), we have that for any 0 < λ < λ̄ , there exist ul, Î C[0,1], ||ul||

> r such that ul = lA1ul. In order to apply Lemma 4.1 we claim that
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lim
λ→0+,uλ=λA1uλ, ‖uλ‖>r

‖uλ‖ = +∞. (4:4)

In fact, if (4.4) doesn’t hold, then there exist ln >0, uλn ∈ C[0, 1] such that ln ® 0,

r < ||uλn || < c (c >0 is a constant) and

uλn = λnA1uλn . (4:5)

Since A1 is completely continuous, then {uλn} has a subsequence converging to u* Î

C[0,1]. Assume, without loss of generality, that it is {uλn} . Taking n ® +∞ in (4.5), we

have u* = θ, which is a contradiction to ||uλn || > r > 0 . Hence (4.4) holds.

Let D = [0,1], D0 = [t1, t2] ⊂ (0, 1) ⊂ D, δ = min
t1≤t≤t2

p(t) > 0 . By (G3)

G(t, s) ≥ δG(τ , s), ∀t ∈ D0, s, τ ∈ D.

From (H3) and the definition of f1, we have

lim
u→+∞ f1(t, u) = lim

u→+∞ f (t, u) = +∞.

By Lemma 4.1 there exists R = R(λ̄) > 0 such that if 0 < λ ≤ λ̄ , ||ul|| ≥ R and ul =

lA1ul, then ul(t) ≥ 0. By (4.4), there exists λ∗ < λ̄ such that if 0 <l ≤ l*, ||ul|| ≥ r

and ul = lA1ul, then ||ul|| ≥ R. Thus ul(t) ≥ 0. By the definitions of A1 and f1 we

have

uλ(t) = λA1uλ(t) = λ

1∫
0

G(t, s)f1(s, u(s))ds = λ

1∫
0

G(t, s)f (s, u(s))ds = λAuλ(t).

And so ul(t) is a positive solution of problem (P). □
Remark 4.1 In Theorem 4.1, without assuming that f(t, u) ≥ 0 when u ≥ 0, we obtain

the existence of positive solutions for the semipositive BVP (P).

Remark 4.2 Noticing that, in this article, we only study the existence of positive

solutions for BVP (P), which is irrelevant to the value of f(t, u) when u ≤ 0, we only

need to suppose that f(t, u) is bounded from below when u ≥ 0. In fact, f(t, u) may be

unbounded from below when u ≤ 0.

5 Two examples
In order to illustrate possible applications of Theorems 3.2 and 4.1, we give two

examples.

Example 5.1 Consider the fourth-order BVP{
u(4)(t) = λ[sin u(t) + u(t) arctanu (t) + πu(t)], 0 ≤ t ≤ 1,

u(0) = u(1) = u′(0) = u′(1) = 0.
(P1)

In this example, f(t, u) = sinu + uarctanu + πu, then

lim inf
u→+∞

f (t, u)
u

=
3π

2
, lim inf

u→−∞
f (t, u)
u

=
π

2
, (5:1)

lim
u→0

f (t, u)
u

= 1 + π . (5:2)
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Take a = 3π/2, b = π/2, r = π +1. Then (5.1), (5.2) indicate (H1), (3.11) hold, repec-

tively. Notice that a > r > b >0 and f(t, 0) ≡ 0, ∀t Î [0,1], by Theorem 3.2 for any

λ ∈ (λ1
α
, λ1

β
) and λ �= λ1

ρ , BVP (P1) has at least one nontrivial solution.

Example 5.2 Consider the fourth-order BVP{
u(4)(t) = λ[(

√
t + 1)u2 − 3

√
u], 0 ≤ t ≤ 1,

u(0) = u(1) = u′(0) = u′(1) = 0.
(P2)

In this example, f (t, u) =
(√

t + 1
)
u2 − 3

√
u , then

lim
u→+∞

f (t, u)
u

= lim
u→+∞

[
(
√
t + 1)u − 1

3
√
u2

]
= +∞. (5:3)

(5.3) means (H3) holds. By Theorem 4.1 there exists l* >0 such that for any 0 < l <

l* BVP (P2) has at least one positive solution.
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