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Abstract
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1 Introduction
We consider a Cauchy-type problem associated with the equation

Dα
a

[
(x − a)rDβ

a y(x)
]
= f (x, y), x > a, 0 < α < 1, 0 ≤ β ≤ 1, r < α, (1)

where Dα
a and Dβ

a are the Riemann-Liouville fractional derivatives.

In recent years there has been a considerable interest in the theory and applications

of fractional differential equations. As for the theory, the investigations include the

existence and uniqueness of solutions, asymptotic behavior, stability, etc. See for exam-

ple the books [1-3] and the articles [4-10] and the references therein.

As for the applications, fractional models provide a tool for capturing and under-

standing complex phenomena in many fields. See for example the surveys in [1,11] and

the collection of applications in [12].

Some recent applications include control systems [13,14], viscoelasticity [15-18], and

nanotechnology [19]. Also fractional models are used to model a vibrating string [20],

and anomalous transport [21], anomalous diffusion [22-24].

Another field of applications is in random walk and stochastic processes [25-27] and

its applications in financial modeling [28-30]. Other physical and engineering processes

are given in [31,32]

In a series of articles, [33-35], Glushak studied the uniform well-posedness of a Cau-

chy-type problem with two fractional derivatives and bounded operator. He also pro-

posed a criterion for the uniform correctness of unbounded operator.
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In this article we prove an existence and uniqueness result for a nonlinear Cauchy-

type problem associated with the Equation (1) in the space of weighted continuous

functions.

We start with some preliminaries in Section 2. In Section 3 we define the sequential

derivative and develop some properties and composition identities. In Section 4 we set

up the Cauchy-type problem and establish the equivalence with the associated integral

equation. Finally, in Section 5 we prove the existence and uniqueness of the solution.

2 Preliminaries
In this section we present some definitions, lemmas, properties and notation which we

use later. For more details please see [1].

Let -∞ <a <b < ∞. Let C[a, b] denote the spaces of continuous functions on [a, b].

We denote by L(a, b) the spaces of Lebesgue integrable functions on (a, b). Let CL(a,

b) = L(a, b) ⋂ C(a, b].

We introduce the weighted spaces of continuous functions

Cγ [a, b] =
{
f : (a, b] → R : (x − a)γ f (x) ∈ C[a, b]

}
, γ ∈ R, (2)

with the norm
∥∥f∥∥Cγ [a,b]

=
∥∥(x − a)γ f (x)

∥∥
C[a,b], (3)

where
∥∥f∥∥C[a,b] = max

x∈[a,b]
∣∣f (x)∣∣ . (4)

In the case f is not defined at x = a or g < 0 we let

(x − a)γ f (x)
∣∣x=a = limx−a+ (x − a)γ f (x). The spaces Cg[a, b] satisfy the following prop-

erties.

• C0[a,b] = C[a,b].

• Cγ1 [a, b] ⊂ Cγ2 [a, b], γ1 < γ2 .

• Cg[a,b] ⊂CL(a,b),g < 1.

• f Î Cg [a, b] if and only if f Î C(a, b) and limx→a+(x − a)γ f (x) exists and is finite.

The left-sided Riemann-Liouville fractional integrals and derivatives are defined as

follows.

Definition 1 Let f Î L(a,b). The integral

Iαa f (x) :=
1

�(α)

x∫
a

f (s)

(x − s)1−α
ds, x > a, α > 0, (5)

is called the left-sided Riemann-Liouville fractional integral of order a of the function

f.

Definition 2 The expression

Dα
a f (x) := DIα−1

a f (x), x > a, 0 < α < 1, D =
d
dx

, (6)
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is called the left-sided Riemann-Liouville fractional derivative of order a of f provided

the right-hand side exists.

For power functions we have the following formulas.

Lemma 3 For x >a we have

[
Iαa (t − a)β−1

]
(x) =

�(β)
�(β + α)

(x − a)β+α−1, α ≥ 0, β > 0. (7)

[
Dα

a (t − a)α−1
]
(x) = 0, 0 < α < 1. (8)

Next we present some mapping properties of the operator Iαa .

Lemma 4 For a > 0, Iαa maps L(a, b) into L(a, b).

The proof of Lemma 4 is given in [36]. The following lemma is proved in [37].

Lemma 5 For a > 0, Iαa maps C[a, b] into C[a, b].

The following lemma is proved in [38].

Lemma 6 Let a ≥ 0. If f Î CL(a, b) then Iαa f ∈ CL(a, b) .

The mapping properties of Iαa in the spaces Cg[a, b], 0 ≤ a ≤ g < 1, are given in [1],

Lemma 2.8 which is proved in [39] in Russian. For completeness we present here a

more general result for a > 0 and g < 1. First we prove the necessity condition at the

left end.

Lemma 7 Let a ≥ 0 and g < 1. If f Î Cg[a, b] then

lim
x→a+

(x − a)γ−αIαa f (x) =
c�(1 − γ )

�(1 + α − γ )
, (9)

where c = limx→a+(x − a)γ f (x) .

Proof. Note that from Lemma 3 we have

Iαa (x − a)−γ =
�(1 − γ )

�(1 + α − γ )
(x − a)α−γ .

Thus
∣∣∣∣(x − a)γ−αIαa f (x) − c�(1 − γ )

�(1 + α − γ )

∣∣∣∣ = ∣∣(x − a)γ−αIαa f (x) − c(x − a)γ−αIαa (x − a)−γ
∣∣

= (x − a)γ−α
∣∣Iαa f (x) − cIαa (x − a)−γ

∣∣
= (x − a)γ−α

∣∣Iαa [
(x − a)−γ {(x − a)γ f (x) − c}]∣∣ .

Now, given � > 0 there exists δ > 0 such that x - a <δ implies that

∣∣(x − a)γ f (x) − c
∣∣ < ε

�(1 + α − γ )
�(1 − γ )

.

Thus
∣∣∣∣(x − a)γ−αIαa f (x) − c�(1 − γ )

�(1 + α − γ )

∣∣∣∣ = (x − a)γ−α
∣∣Iαa [

(x − a)−γ {(x − a)γ f (x) − c}]∣∣

< ε
�(1 + α − γ )

�(1 − γ )
(x − a)γ−αIαa

[
(x − a)−γ

]

= ε
�(1 + α − γ )

�(1 − γ )
(x − a)γ−α �(1 − γ )

�(1 + α − γ )
(x − a)α−γ

= ε.
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This yields the limit (9).

Next we present the mapping properties of Iαa in the spaces Cg[a, b].

Lemma 8 Let a > 0 and g < 1. If f Î Cg[a, b] then Iαa f ∈ Cγ−α[a, b] and for x Î (a,

b] we have

∣∣Iαa f (x)∣∣ ≤ �(1 − γ )
�(1 + α − γ )

(x − a)α−γ
∥∥f∥∥Cγ [a,b]

. (10)

Proof. From Lemmas 6 and 7 we have Iaf Î C(a, b) and limx→a+(x − a)γ−αIαa f (x)

exists and is finite. Thus Iαa f ∈ Cγ−α[a, b] . Now for x Î (a, b] we have

∣∣Iαa f (x)∣∣ = 1
�(α)

∣∣∣∣∣∣
x∫

a

(x − t)α−1(t − a)−γ (t − a)γ f (t)dt

∣∣∣∣∣∣

≤ 1
�(α)

∥∥f∥∥Cγ [a,b]

x∫
a

(x − t)α−1(t − a)−γ dt.

The relation (10) follows by applying Lemma 3.

Consequently, from Lemma 8 we have the following property.

Lemma 9 Let a > 0, g < 1, and r Î ℝ. If f Î Cg[a, b] then

(x − a)−rIαa f ∈ Cγ+r−α [a, b] . In particular, if g + r - a < 1 then Iaf Î CL(a, b).

Later, the following observation is important.

Lemma 10 Let a > 0 and r <a. If f Î CL(a, b) then (x − a)−rIαa f ∈ CL(a, b) .

Proof. When r ≤ 0 the result follows clearly from Lemma 6. When r > 0 it follows

from Lemma 6 that (x − a)−rIαa f ∈ C(a, b) and we only need to show that

(x − a)−rIαa f ∈ L(a, b) .

For any x Î (a, b] we have the following inequality.

∣∣Iαa f (x)∣∣ = 1
�(α)

∣∣∣∣∣∣
x∫

a

(x − t)α−1f (t)dt

∣∣∣∣∣∣

=
1

�(α)

x∫
a

(x − t)α−r−1(x − t)r
∣∣f (t)∣∣ dt

≤ (x − a)r

�(α)

x∫
a

(x − t)α−r−1 ∣∣f (t)∣∣ dt

=
�(α − r)

�(α)
(x − a)rIα−r

a

∣∣f (x)∣∣ .
Or,

(x − a)−r
∣∣Iαa f (x)∣∣ ≤ �(α − r)

�(α)
Iα−r
a

∣∣f (x)∣∣ .

From Lemma 4 the right-hand side is in L(a, b) and thus (x − a)−rIαa f ∈ L(a, b). This

completes the proof.

The following lemma follows by direct calculations using Dirichlet formula, [36].
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Lemma 11 Let a ≥ 0, b ≥ 0, and f Î CL(a, b). Then

Iαa I
β
a f (x) = Iα+β

a f (x), (11)

for all x Î (a, b].

Lemma 11 leads to the left inverse operator.

Lemma 12 Let a > 0 and f Î CL(a, b). Then

Dα
a I

α
a f (x) = f (x), (12)

for all x Î (a, b].

Now we present a version of the fundamental theorem of fractional calculus.

Lemma 13 Let 0 <a < 1. If f Î C(a, b) and Dα
a f ∈ CL(a, b) , then

f ∈ CL(a, b), Iαa f (a
+) exists and is finite, and

IαaD
α
a f (x) = f (x) − I1−α

a f (a+)
�(α)

(x − a)α−1, (13)

for all x Î (a, b].

Proof. From Lemma 12 we have for all x Î (a, b] the relation

Dα
a I

α
aD

α
a f (x) = Dα

a f (x),

which we can write as

Dα
a

[
f − IαaD

α
a f

]
(x) = 0.

This implies that

f (x) − IαaD
α
a f (x) = c(x − a)α−1, (14)

for some constant c. Since Lemma 6 implies that IαaD
α
a f ∈ CL(a, b) , we also have f Î

CL(a, b). Also, if we apply I1−α
a to both sides of (14) we obtain

I1−α
a f (x) = IaD

α
a f (x) = c�(α).

Taking the limit yields I1−α
a f (a+) = c�(α) and (13) is obtained.

In the proof of our existence and uniqueness result we will use the following results.

Lemma 14 Let g Î ℝ, a <c <b, g Î Cg[a, c], g Î C[c, b] and g is continuous at c.

Then g Î Cg[a, b].

Theorem 15 ([1], Banach Fixed Point Theorem) Let (U, d) be a nonempty complete

metric space. Let T : U ® U be a map such that for every u, v Î U, the relation

d(Tu,Tv) ≤ wd(u, v), 0 ≤ w < 1,

holds. Then the operator T has a unique fixed point u* Î U.

3 Sequential derivative
In this section we define the sequential derivative and integral that we consider and

develop some of their properties. In particular, we derive the composition identities.

Definition 16 Let a > 0, b > 0, r Î ℝ. Let f Î CL(a, b). Define the sequential integral

J α,β
r,a f and the sequential derivative Dα,β

r,a f by
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J α,β
r,a f (x) = Iαa (x − a)−rIβa f (x), (15)

and

Dα,β
r,a f (x) = Dα

a (x − a)rDβ
a f (x), (16)

if the right-hand sides exist.

From Lemma 3 we have the following formula for the power function.

Lemma 17 Let a > 0, b > 0, r Î ℝ. If

ρ > max{−1,β − r − 1},

then for x >a,

Dα,β
r,a (x − a)ρ =

�(ρ + 1)
�(ρ − β + 1)

�(ρ + r − β + 1)
�(ρ + r − β − α + 1)

(x − a)ρ+r−β−α . (17)

Moreover, from Lemmas 3 and 17 we have the following vanishing derivatives.

Lemma 18

(a) Let a > 0, 0 <b < 1, r Î ℝ. Then for x >a,

Dα,β
r,a (x − a)β−1 = 0. (18)

(b) Let 0 <a < 1 and b > 0. Let r Î ℝ be such that r <a + b. Then for x >a,

Dα,β
r,a (x − a)α+β−r−1 = 0. (19)

Lemma 19 (Left inverse) Let a > 0, b > 0, and r Î ℝ. If f Î CL(a, b) such that

(x − a)−rIαa f ∈ CL(a, b) then

Dα,β
r,a J β,α

r,a f (x) = f (x), (20)

for all x Î (a, b].

Proof. Relation (20) follows directly by applying Lemma 12 twice.

From Lemmas 8 and 9 we have the following mapping property of the operator

J β,α
r,a .

Lemma 20 Let a > 0, b > 0, and r < 1 + a. Let 0 ≤ g < min{1, 1 + a - r}. If f Î Cg[a,

b] then J β,α
r,a f ∈ Cγ+r−α−β [a, b] and for x Î (a, b] we have

∣∣J β,α
r,a f (x)

∣∣ ≤ k
∥∥f∥∥Cγ [a,b]

(x − a)α+β−r−γ , (21)

where

k =
�(1 − γ )�(1 + α − r − γ )

�(1 − γ + α)�(1 + α + β − r − γ )
. (22)

Lemma 20 implies the following.

Lemma 21 Let a > 0, b > 0, and r < 1 + a. Let 0 ≤ g < min{1, 1 + a-r}. If r ≤ a + b,

then J β,α
r,a is bounded in Cg[a, b] and
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∥∥J β,α
r,a f

∥∥
Cγ [a,b]

≤ k(b − a)α+β−r
∥∥f∥∥Cγ [a,b]

, (23)

where k is given by (22).

Proof. Since g + r - a - b ≤ g, then from Lemma 20 we have

J β,α
r,a f ∈ Cγ+r−α−β [a, b] ⊂ Cγ [a, b].

The bound in (23) follows by multiply (21) by (x - a)g and taking the maximum.

As a special case of Lemma 21, we have

Lemma 22 Let a > 0, b > 0, and r < min{a + 1, a + b}. Then J β,α
r,a , maps C[a, b]

into C[a, b] and
∥∥J β,α

r,a f
∥∥
C[a,b] ≤ L(b − a)α+β−r

∥∥f∥∥C[a,b], (24)

where

L =
�(1 + α − r)

�(1 + α)�(1 + α + β − r)
. (25)

The following is an analogous result to the result for the Riemann-Liouville integral

proved in [10].

Lemma 23 Let a > 0, b > 0, and r <a. Let f Î CL(a, c). Let

g(x) =
1

�(β)

c∫
a

(x − t)β−1(t − a)−rIαa f (t) dt.

Then

lim
x→c+

g(x) = J β,α
r,a f (c).

Proof. Since r <a, Lemma 10 implies that (x − a)−rIαa f (x) ∈ CL(a, c) . Thus J β,α
r,a f (c)

is finite and

∣∣g(x) − J β,c
r,a f (c)

∣∣ ≤ 1
�(β)

c∫
a

k(x, t)(t − a)−rIαa
∣∣f (t)∣∣ dt,

where

k(x, t) =
∣∣∣(c − t)β−1 − (x − t)β−1

∣∣∣ .
Since limx→c+k(x, t) = 0 , the limit of the right-hand side vanishes and the proof is

complete.

The following lemma relates the fractional derivative Dα,β
r,a to the Riemann-Liouville

derivative Dβ
a .

Lemma 24 Let 0 <a < 1, b ≥ 0, and r Î ℝ. If Dβ
a y(x) ∈ C(a, b) and Dα,β

r,a y ∈ CL(a, b)

then (x − a)rDβ
a y ∈ CL(a, b), I1−α

a

[
(x − a)rDβ

a y
]
(a+) exists and finite, and
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Dβ
a y(x) = (x − a)−rIαaDα,β

r,a y(x) +
I1−α

[
(x − a)rDβ

a y
]
(a+)

�(α)
(x − a)α−r−1, (26)

for all x Î (a, b]. If in addition, r <a then Dβ
a y ∈ CL(a, b) .

Proof. Clearly Dβ
a y ∈ C(a, b) implies that (x − a)rDβ

a y ∈ C(a, b) . Thus we can apply

Lemma 13 to (x − a)rDβ
a y and obtain

IαaDα,β
r,a y(x) = IαaD

α
a (x − a)rDβ

a y(x)

= (x − a)rDβ
a y(x) −

I1−α
a

[
(x − a)rDβ

a y
]
(a+)

�(α)
(x − a)α−1.

By multiplying both sides by (x - a)r we obtain (26). If r <a then Lemma 10 implies

that (x − a)−rIαaD
α,β

r,ay(x) ∈ CL(a, b) and thus from (26) we have Dβ
a y ∈ CL(a, b) . This

proves the result.

The Next lemma gives an analogous result to the fundamental theorem of calculus in

terms of the operators Dα,β
r,a and J α,β

r,a .

Lemma 25 Let 0 <a < 1 and 0 <b < 1. Let y Î C(a, b) be such that Dα,β
r,a y ∈ CL(a, b)

and Dβ
a y ∈ CL(a, b) . Then both I1−α

a

[
(x − a)rDβ

a y
]
(a+) and I1−β

a y(a+) exist, y Î CL(a,

b), and

J β,α
r,a Dα,β

r,a y(x) = y(x) −
[
I1−β
a y

]
(a+)

�(β)
(x − a)β−1

−
[
I1−α
a (x − a)rDβ

a y
]
(a+)

�(α)
�(α + r)

�(α + β − r)
(x − a)α+β−r−1,

(27)

for all x Î (a, b].

Proof. By applying Lemma 13 twice we obtain

J β,α
r,a Dα,β

r,a y(x) = Iβa (x − a)−rIαaD
α
a (x − a)rDβ

a y(x)

= Iβ(x − a)−r

⎡
⎣(x − a)rDβ

a y(x) −
[
I1−α
a (x − a)rDβ

a y
]
(a+)

�(α)
(x − a)α−1

⎤
⎦

= IβaD
β
a y −

[
I1−α
a (x − a)rDβ

a y
]
(a+)

�(α)
Iβa (x − a)α−1−r

= y(x) −
[
I1−β
a y

]
(a+)

�β
(x − a)β−1

−
[
I1−α
a (x − a)rDβ

a y
]
(a+)

�(α)
�(α + r)

�(α + β − r)
(x − a)α+β−r−1.

4 Cauchy-type problem and equivalency
Consider the Cauchy-type problem

Dα,β
r,a y(x) = f (x, y(x)), a < x ≤ b, 0 < α < 1, 0 < β < 1, r ∈ R, (28)
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lim
x→a+

I1−α
a

[
(x − a)rDβ

a y
]
(x) = c1, (29)

lim
x→a+

I1−β
a y(x) = c0, (30)

where c0 and c1 are real numbers.

In this problem there are two conditions even when 0 <a + b < 1. The two initial

conditions are based on the composition (27). The condition (29) is of one order less

than that in the differential Equation (28) while the condition (30) is one order less

than the equation for Dβ
a y .

In addition, from [1, Lemma 3.2], the condition (30) follows from the condition

lim
x→a+

[
(x − a)1−βy(x)

]
=

c0
�(β)

, (31)

and if 0 <a - r < 1 then (29) follows from the condition

lim
x→a+

[
(x − a)1−α+rDβ

a y(x)
]
=

c1
�(α)

. (32)

Consequently, the results below hold under conditions of the type (31) and (32).

Now, Based on the composition in Lemma 24, in the next theorem we establish an

equivalence with the following fractional integro-differential equation:

Dβ
a y = (x − a)−rIαa f [x, y(x)] +

c1
�(α)

(x − a)α−r−1, (33)

lim
x→a+

I1−β
a y(x) = c0. (34)

Theorem 26 Let 0 <a < 1, b > 0 and r Î ℝ. Let f : (a, b] × ℝ ® ℝ be a function

such that f(.,y(.)) Î C1-a [a, b] for any y Î C1-a [a, b]. Then we have the following.

(a) If y Î C1-a[a, b] satisfies (33) and (34) then y(x) satisfies (28-30).

(b) If y Î C1-a[a, b] with Dβ
a y ∈ C(a, b) satisfy (28-30), then y(x) satisfies (33-34).

Proof.

For assertion (a), let y Î C1-a[a, b] satisfy (33-34). We multiply (33) by (x - a)r to

obtain

(x − a)rDβ
a y = Iαa f (x, y(x)) +

c1
�(α)

(x − a)α−1. (35)

Next we apply Dα
a to both sides of (35) to obtain (28). As for the initial condition,

apply I1−α
a to both sides of (35) and then take the limit to obtain (29).

For assertion (b), let y Î C1-a[a, b] satisfy (28-30). Since f(x, y(x)) Î C1-a[a, b], then

from (28) we have Dα,β
r,a y ∈ C1−α[a, b] . Since also by hypothesis Dβ

a y ∈ C(a, b) , we can

apply Lemma 24 and the formula (26) holds. By substituting the initial condition we

obtain (33). This completes the proof.
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The composition in Lemma 25 leads to the nonlinear integral equation,

y(x) = J β,α
r,a f (x, y(x)) +

c0
�(β)

(x − a)β−1 +
c1�(α − r)

�(α)�(α + β − r)
(x − a)α+β−r−1. (36)

The following theorem establishes an equivalence with this equation.

Theorem 27 Let 0 <a < 1, 0 <b < 1 and r <a. Let f : (a, b] × ℝ ® ℝ be a function

such that f(.,y(.)) Î C1-b[a, b] for any y Î C1-b[a, b]. Then the following statements hold.

(a) If y Î C1-b[a, b] satisfies the integral Equation (36) then y(x) satisfies the Cauchy-

type problem (28-30).

(b) If y Î C1-b[a, b] with Dβ
a y ∈ C(a, b) satisfies the Cauchy-type problem (28-30),

then y(x) satisfies the integral Equation (36).

Proof. (a). Let y Î C1-b[a, b] satisfy the integral Equation (36). By hypothesis we have

f Î C1-b[a, b]. Moreover, from Lemma 9 and the hypothesis r <a, we have

(x − a)−rIαa f ∈ C1+r−α−β [a, b] ⊂ CL(a, b).

Thus the hypothesis of Lemmas 18 and 19 are satisfied. Applying the operator Dα,β
r,a

to both sides of (36) and using Lemmas 18 and 19 yields (28) as follows.

Dα,β
r,a y(x) = Dα,β

r,a J β,α
r,a f (x, y(x))+

Dα,β
r,a

[
c0

�(β)
(x − a)β−1 +

c1�(α − r)
�(α)�(α + β − r)

(x − a)α+β−r−1
]

= f (x, y(x)).

Next, applying I1−β
a to both sides of (36) yields

I1−β
a y(x) = J 1,α

r,a f (x, y(x)) + c0 +
c1

�(α)
�(α − r)

�(α + β − r)
�(α + β − r)
�(α − r + 1)

(x − a)α−r . (37)

Since r <a, taking the limit we obtain the initial condition (30).

Applying I1−α
a (x − a)rDβ

a to both sides of (36) and using Lemmas 3, 11, and 12

yields

I1−α
a (x − a)rDβ

a y(x) = I1−α
a (x − a)rDβ

a

[J β,α
r,a f (x, y(x))

]
+

I1−α
a (x − a)rDβ

a

[
c1�(α − r)

�(α)�(α + β − r)
(x − a)α+β−r−1

]

= I1a f (x, y(x)) + c1.

Again, taking the limit we obtain the initial condition (29).

(b). Let y Î C1-b[a, b] satisfy (28-30). Since f(x, y(x)) Î CL(a, b) then from (28),

Dα,β
r,a y ∈ CL(a, b) . Since r <a then from Lemma 24 we have Dβ

a y ∈ CL(a, b) . Thus we

can apply Lemma 25 and the formula (27) holds. By using the initial conditions we

obtain (36). This completes the proof.

In the next section we use this equivalence to prove the existence and uniqueness of

solutions.
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5 Existence and uniqueness of the solution of the Cauchy-type problem
In this section we prove an existence and uniqueness result for the Cauchy-type pro-

blem (28-30) using the integral Equation (36). For this purpose we introduce the fol-

lowing lemma.

Lemma 28 Let 0 <r <a < 1, 0 <b < 1, then the fractional differentiation operator

J β,α
r,a is bounded in C1-b[a, b] and

∥∥J β,α
r,a f

∥∥
C1−β [a,b]

≤ K(b − a)α+β−r
∥∥f∥∥C1−β [a,b]

, (38)

where

K =
�(β)�(α + β − r)

�(α + β)�(α + 2β − r)
. (39)

Proof. Clearly from the hypothesis we have r <a + b and 0 < 1 - b < min{1, 1 + a -

r}. Thus the result follows by taking g = 1 - b in Lemma 21.

Theorem 29 Let 0 <r <a < 1, 0 ≤ b < 1. Let f : (a, b] × ℝ ® ℝ be a function such

that f(.,y(.)) Î C1-b[a, b] for any y Î C1-b[a, b] and the condition:
∣∣f (x, y1) − f (x, y2)

∣∣ ≤ A
∣∣y1 − y2

∣∣ , A > 0, (40)

is satisfied for all x Î (a, b] and for all y1, y2 Î ℝ.

Then the Cauchy-type problem (28-30) has a solution y Î C1-b[a, b]. Furthermore, if

for this solution Dβ
a y ∈ C(a, b) , then this solution is unique.

Proof.

According to Theorem 27(a), we can consider the existence of an C1-b[a, b] solution

for the integral Equation (36). This equation holds in any interval (a, x1] ⊂ (a, b], a

<x1 <b. Choose x1 such that

w1 := AK(x1 − a)α+β−r < 1,

where K is given by (39). We rewrite the integral equation in the form y(x) = Ty(x),

where

Ty(x) = v0(x) + J β,α
r,a f (x, y(x)),

and

v0(x) =
c0

�(β)
(x − a)β−1 +

c1�(α − r)
�(α)�(α + β − r)

(x − a)α+β−r−1.

Since r <a then v0 Î C1-b[a, b]. Thus, it follows from Lemma 28 that if y Î C1-b[a,

x1] then Ty Î C1-b[a, x1]. Also, for any y1, y2 in C1-b[a, x1], we have
∥∥Ty1 − Ty2

∥∥
C1−β [a,x1]

≤ ∥∥J β,α
r,a

{∣∣f (x, y1(x)) − f (x, y2(x))
∣∣}∥∥

C1−β [a,x1]

≤ A
∥∥J β,α

r,a

{∣∣y1(x) − y2(x)
∣∣}∥∥

C1−β [a,x1]

≤ AK(x1 − a)α+β−r
∥∥y1 − y2

∥∥
C1−β [a,x1]

≤ w1
∥∥y1 − y2

∥∥
C1−β [a,x1]

, 0 < w1 < 1.
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Hence by Theorem 15 there exists a unique solution y* Î C1-b[a, x1] to the Equation

(36) on the interval (a, x1].

If x1 ≠ b then we consider the interval [x1, b]. On this interval we consider solutions

y Î C[x1, b] for the equation

y(x) = Ty(x) := v01(x) + J β,α
r,x1 f (x, y(x)), x ∈ [x1, b], (41)

where

v01(x) =
y0

�(β)
(x − a)β−1+

1
�(α)�(β)

x1∫
a

⎡
⎣(x − t)β−1(t − a)−r

⎧⎨
⎩

t∫
a

(t − s)α−1f (s, y(s))ds

⎫⎬
⎭

⎤
⎦dt.

Now we select x2 Î (x1, b] such that

w2 := AL(x2 − x1)α+β−r < 1,

where L is given by (25). Since the solution is uniquely defined on the interval (a,

x1], we can consider v01(x) to be a known function. For y1, y2 Î C[x1, x2], it follows

from the Lipschitz condition and Lemma 22 that
∥∥Ty1 − Ty2

∥∥
C[x1,x2]

≤ ∥∥J β,α
r,x1

{∣∣f (x, y1(x)) − f (x, y2(x))
∣∣}∥∥

C[x1,x2]

≤ A
∥∥J β,α

r,x1

{∣∣y1(x) − y2(x)
∣∣}∥∥

C[x1,x2]

≤ AL(x2 − x1)α+β−r
∥∥y1 − y2

∥∥
C[x1,x2]

≤ w2
∥∥y1 − y2

∥∥
C[x1,x2]

.

Since 0 <w2 < 1, T is a contraction. Since f(x, y(x)) Î C[x1, x2] for any y Î C[x1, x2],

then J β,α
r,x1 f ∈ C[x1, x2] . Moreover, clearly v01(x) is in C[x1, x2]. Thus the right-hand

side of (41) is in C[x1, x2]. Therefore T maps C[x1, x2] into itself. By Theorem 15,

there exists a unique solution y∗1 ∈ C[x1, x2] to the equation on the interval [x1, x2].

Moreover, it follows from Lemma 23 that y∗1(x1) = y∗0(x1). Therefore if

y∗(x) =
{
y∗0(x), a < x ≤ x1,
y∗1(x), x1 < x ≤ x2,

then by Lemma 14, y* Î C1-b[a, x2]. So y* is the unique solution of (36) in C1-b[a, x2]

on the interval (a, x2].

If x2 ≠ b, we repeat the process as necessary, say M - 2 times, to obtain the unique

solutions y∗k ∈ C1−β [xk, xk+1], k = 2, 3, . . . ,M , where a = x0 <x1 < ··· <xM = b, such that

wk+1 = AL(xk+1 − xk)α+β−r < 1.

As a result we have the unique solution y* Î C1-b[a, b] of (36) given by

y∗(x) = y∗k(x), x ∈ (xk, xk+1], k = 0, 1, . . . ,M − 1. (42)

This solution is also a solution for (28-30).
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If Dβ
a y ∈ C(a, b) then the uniqueness follows from part (b) of Theorem 27. This

completes the proof.
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