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Abstract
In this article, a solution of the Dirichlet problem for the Schrödinger operator on a
cone is constructed by the generalized Poisson integral with a slowly growing
continuous boundary function. A solution of the Poisson integral for any continuous
boundary function is also given explicitly by the Poisson integral with the generalized
Poisson kernel depending on this boundary function.
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1 Introduction and results
Let R and R+ be the set of all real numbers and the set of all positive real numbers re-
spectively. We denote the n-dimensional Euclidean space by Rn (n ≥ ). A point in Rn is
denoted by P = (X,xn), where X = (x,x, . . . ,xn–). The Euclidean distance between two
points P and Q in Rn is denoted by |P –Q|. Also |P –O| with the origin O of Rn is simply
denoted by |P|. The boundary and the closure of a set S in Rn are denoted by ∂S and S
respectively.
We introduce a system of spherical coordinates (r,�), � = (θ, θ, . . . , θn–), in Rn which

are related to Cartesian coordinates (x,x, . . . ,xn–,xn) by xn = r cos θ.
The unit sphere and the upper half unit sphere in Rn are denoted by Sn– and Sn–+ ,

respectively. For simplicity, a point (,�) on Sn– and the set {�; (,�) ∈ �} for a set
�, � ⊂ Sn–, are often identified with � and �, respectively. For two sets � ⊂ R+ and
� ⊂ Sn–, the set {(r,�) ∈ Rn; r ∈ �, (,�) ∈ �} in Rn is simply denoted by � × �.
For P ∈ Rn and r > , let B(P, r) denote an open ball with a center at P and radius r

in Rn. Sr = ∂B(O, r). By Cn(�), we denote the set R+ × � in Rn with the domain � on
Sn–. We call it a cone. We denote the sets I × � and I × ∂� with an interval on R by
Cn(�; I) and Sn(�; I). By Sn(�; r) we denote Cn(�)∩Sr . By Sn(�) we denote Sn(�; (, +∞))
which is ∂Cn(�) – {O}. We denote the (n – )-dimensional volume elements induced by
the Euclidean metric on Sr by dSr .
Let Aa denote the class of nonnegative radial potentials a(P), i.e.,  ≤ a(P) = a(r), P =

(r,�) ∈ Cn(�), such that a ∈ Lbloc(Cn(�)) with some b > n/ if n≥  and with b =  if n = 
or n = .
This article is devoted to the stationary Schrödinger equation

Scha u(P) = –�u(P) + a(P)u(P) = , (.)
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where P ∈ Cn(�),� is the Laplace operator and a ∈ Aa. These solutions called a-harmonic
functions or generalized harmonic functions are associated with the operator Scha. Note
that they are (classical) harmonic functions in the case a = .Under these assumptions, the
operator Scha can be extended in the usual way from the spaceC∞

 (Cn(�)) to an essentially
self-adjoint operator on L(Cn(�)) (see [–]).We will denote it Scha as well. This last one
has a Green’s function G(�,a)(P,Q). Here G(�,a)(P,Q) is positive on Cn(�) and its in-
ner normal derivative ∂G(�,a)(P,Q)/∂nQ ≥ . We denote this derivative by P(�,a)(P,Q),
which is called the Poisson a-kernel with respect to Cn(�). We remark that G(�, )(P,Q)
and P(�, )(P,Q) are the Green’s function and Poisson kernel of the Laplacian in Cn(�)
respectively.
Given a domain D⊂ Rn and a continuous function u on ∂(D), we say that h is a solution

of the Dirichlet problem for the Schrödinger operator on D with u if Scha h =  in D and

lim
P∈D,P→Q

h(P) = u(Q)

for every Q ∈ ∂(D). Note that h is a solution of the classical Dirichlet problem for the
Laplacian in the case a = .
Let �* be a Laplace-Beltrami operator (the spherical part of the Laplace) on � ⊂ Sn–

and λj (j = , , , . . . ,  < λ < λ ≤ λ ≤ · · · ) be the eigenvalues of the eigenvalue problem
for �* on � (see, e.g., [, p. ])

�*ϕ(�) + λϕ(�) =  in �,

ϕ(�) =  on ∂�.

Corresponding eigenfunctions are denoted by ϕjv ( ≤ v ≤ vj), where vj is the multiplicity
of λj. We set λ = , norm the eigenfunctions in L(�) and ϕ = ϕ > . Then there exist
two positive constants d and d such that

dδ(P) ≤ ϕ(�)≤ dδ(P) (.)

for P = (,�) ∈ � (see Courant and Hilbert []), where δ(P) = infQ∈∂Cn(�) |P –Q|.
In order to ensure the existences of λj (j = , , , . . .). We put a rather strong assumption

on �: if n ≥ , then � is a C,α-domain ( < α < ) on Sn– surrounded by a finite num-
ber of mutually disjoint closed hypersurfaces (e.g., see [, pp. -] for the definition of
C,α-domain). Then ϕjv ∈ C(�) (j = , , , . . . , ≤ v≤ vj) and ∂ϕ/∂n >  on ∂� (here and
below, ∂/∂n denotes differentiation along the interior normal).
Hence well-known estimates (see, e.g., [, p. ]) imply the following inequality:

vj∑
v=

ϕjv(�)
∂ϕjv(�)

∂n�

≤ M(n)jn–, (.)

where the symbolM(n) denotes a constant depending only on n.
LetVj(r) andWj(r) stand, respectively, for the increasing and nonincreasing, as r → +∞,

solutions of the equation

–Q′′(r) –
n – 
r

Q′(r) +
(

λj

r
+ a(r)

)
Q(r) = ,  < r < ∞, (.)
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normalized under the condition Vj() =Wj() = .
We shall also consider the class Ba, consisting of the potentials a ∈ Aa such that there

exists a finite limit limr→∞ ra(r) = k ∈ [,∞); moreover, r–|ra(r) – k| ∈ L(,∞). If a ∈
Ba, then the solutions of Equation (.) are continuous (see []).
In the rest of the article, we assume that a ∈ Ba and we shall suppress this assumption

for simplicity. Further, we use the standard notations u+ =max(u, ), u– = –min(u, ), [d]
is the integer part of d and d = [d] + {d}, where d is a positive real number.
Denote

ι±j,k =
 – n± √

(n – ) + (k + λj)


(j = , , , , . . .).

It is known (see []) that in the case under consideration the solutions to Equation (.)
have the asymptotics

Vj(r)∼ dr
ι+j,k , Wj(r)∼ dr

ι–j,k , as r → ∞, (.)

where d and d are some positive constants.
If a ∈ Aa, it is known that the following expansion for the Green function G(�,a)(P,Q)

(see [, Ch. ], [, ])

G(�,a)(P,Q) =
∞∑
j=


χ ′()

Vj
(
min(r, t)

)
Wj

(
max(r, t)

)( vj∑
v=

ϕjv(�)ϕjv(�)

)
,

where P = (r,�), Q = (t,�), r �= t and χ ′(s) = w(W(r),V(r))|r=s, is their Wronskian. The
series converges uniformly if either r ≤ st or t ≤ sr ( < s < ).
For a nonnegative integer m and two points P = (r,�), Q = (t,�) ∈ Cn(�), we put

K(�,a,m)(P,Q) =

⎧⎨⎩ if  < t < ,

K̃(�,a,m)(P,Q) if  ≤ t <∞,

where

K̃(�,a,m)(P,Q) =
m∑
j=


χ ′()

Vj(r)Wj(t)

( vj∑
v=

ϕjv(�)ϕjv(�)

)
.

We introduce another function of P = (r,�) ∈ Cn(�) and Q = (t,�) ∈ Cn(�)

G(�,a,m)(P,Q) =G(�,a)(P,Q) –K(�,a,m)(P,Q).

The generalized Poisson kernel P(�,a,m)(P,Q) (P = (r,�) ∈ Cn(�), Q = (t,�) ∈ Sn(�))
with respect to Cn(�) is defined by

P(�,a,m)(P,Q) =
∂G(�,a,m)(P,Q)

∂nQ
.

In fact,

P(�,a, )(P,Q) = P(�,a)(P,Q).

http://www.boundaryvalueproblems.com/content/2012/1/59
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We remark that the kernel function P(�, ,m)(P,Q) coincides with the one in Yoshida
and Miyamoto [] (see [, Ch. ]).
Put

U(�,a,m;u)(P) =
∫
Sn(�)

P(�,a,m)(P,Q)u(Q)dσQ,

where u(Q) is a continuous function on ∂Cn(�) and dσQ is a surface area element on Sn(�).
With regard to classical solutions of the Dirichlet problem for the Laplacian, Yoshida

and Miyamoto [, Theorem ] proved the following result.

Theorem A If u is a continuous function on ∂Cn(�) satisfying∫
Sn(�)

|u(t,�)|
 + tι

+
m+,+n–

dσQ <∞,

then U(�, ,m;u)(P) is a classical solution of the Dirichlet problem on Cn(�) with g and
satisfies

lim
r→∞,P=(r,�)∈Cn(�)

r–ι+m+,U(�, ,m;u)(P) = .

Our first aim is to give growth properties at infinity for U(�,a,m;u)(P).

Theorem  Let γ ≥  (resp. γ < ), ι+[γ ],k + {γ } > –ι+,k +  (resp. –ι+[–γ ],k – {–γ } > –ι+,k + )
and

ι+[γ ],k + {γ } – n +  ≤ ι+m+,k < ι+[γ ],k + {γ } – n + (
resp. s – ι+[–γ ],k – {–γ } – n +  ≤ ι+m+,k < –ι+[–γ ],k – {–γ } – n + 

)
.

If u is a measurable function on ∂Cn(�) satisfying∫
Sn(�)

|u(t,�)|
 + tι

+
[γ ],k+{γ } dσQ < ∞

(
resp.

∫
Sn(�)

|u(t,�)|( + tι
+
[–γ ],k+{–γ }]

)
dσQ < ∞

)
, (.)

then

lim
r→∞,P=(r,�)∈Cn(�)

r–ι+[γ ],k–{γ }+n–U(�,a,m;u)(P) =  (.)(
resp. lim

r→∞,P=(r,�)∈Cn(�)
rι

+
[–γ ],k+{–γ }+n–U(�,a,m;u)(P) = 

)
. (.)

Next, we are concerned with solutions of the Dirichlet problem for the Schrödinger
operator on Cn(�).

Theorem Let γ and ι+m+,k be as inTheorem . If u is a continuous function on ∂Cn(�) sat-
isfying (.), then U(�,a,m;u)(P) is a solution of the Dirichlet problem for the Schrödinger
operator on Cn(�) with u and (.) (resp. (.)) holds.

If we take ι+[γ ],k + {γ } = ι+m+,k + n – , then we immediately have the following corollary,
which is just Theorem A in the case a = .

http://www.boundaryvalueproblems.com/content/2012/1/59
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Corollary If u is a continuous function on ∂Cn(�) satisfying∫
Sn(�)

|u(t,�)|
 + tι

+
m+,k+n–

dσQ < ∞, (.)

then U(�,a,m;u)(P) is a solution of the Dirichlet problem for the Schrödinger operator on
Cn(�) with u and satisfies

lim
r→∞,P=(r,�)∈Cn(�)

r–ι+m+,kU(�,a,m;u)(P) = . (.)

By using Corollary, we can give a solution of the Dirichlet problem for any continuous
function on ∂Cn(�).

Theorem If u is a continuous function on ∂Cn(�) satisfying (.) and h(r,�) is a solution
of the Dirichlet problem for the Schrödinger operator on Cn(�) with u satisfying

lim
r→∞,P=(r,�)∈Cn(�)

r–ι+m+,k h+(P) = , (.)

then

h(P) =U(�,a,m;u)(P) +
m∑
j=

( vj∑
v=

djvϕjv(�)

)
Vj(r),

where P = (r,�) ∈ Cn(�) and djv are constants.

2 Lemmas
Throughout this article, let M denote various constants independent of the variables in
questions, which may be different from line to line.

Lemma 

∣∣P(�,a)(P,Q)
∣∣ ≤ Mrι

–
,k tι

+
,k– (.)(

resp.
∣∣P(�,a)(P,Q)

∣∣ ≤ Mrι
+
,k tι

–
,k–

)
(.)

for any P = (r,�) ∈ Cn(�) and any Q = (t,�) ∈ Sn(�) satisfying  < t
r ≤ 

 (resp.  < r
t ≤ 

 );

∣∣P(�, )(P,Q)
∣∣ ≤ M


tn–

+M
r

|P –Q|n (.)

for any P = (r,�) ∈ Cn(�) and any Q = (t,�) ∈ Sn(�; (  r,

 r)).

Proof (.) and (.) are obtained by Kheyfits (see [, Ch. ]). (.) follows from Azarin
(see [, Lemma  and Remark]). �

Lemma  (see []) For a nonnegative integer m, we have

∣∣P(�,a,m)(P,Q)
∣∣ ≤ M(n,m, s)Vm+(r)

Wm+(t)
t

ϕ(�)
∂ϕ(�)
∂n�

(.)

http://www.boundaryvalueproblems.com/content/2012/1/59
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for any P = (r,�) ∈ Cn(�) and Q = (t,�) ∈ Sn(�) satisfying r ≤ st ( < s < ), where
M(n,m, s) is a constant dependent of n, m and s.

Lemma  (see [, Theorem ]) If u(r,�) is a solution of Equation (.) on Cn(�) satisfying∫
�

u+(r,�)dS =O
(
rι

+
m,k

)
, as r → ∞, (.)

then

u(r,�) =
m∑
j=

( vj∑
v=

djvϕjv(�)

)
Vj(r).

Lemma  Obviously, the conclusion of Lemma  holds true if (.) is replaced by

lim
r→∞,(r,�)∈Cn(�)

r–ι+m+,k u+(r,�) = . (.)

Proof Since

Vm+(r) ∼ rι
+
m+,k as r → ∞

from (.) and

ι+m+,k ≥ ι+m,k ,

(.) gives that (.) holds, from which the conclusion immediately follows. �

3 Proof of Theorem 1
We only prove the case γ ≥ , the remaining case γ <  can be proved similarly.
For any ε > , there exists Rε >  such that∫

Sn(�;(Rε ,∞))

|u(Q)|
 + tι

+
[γ ],k+{γ } dσQ < ε. (.)

The relation G(�,a)(P,Q)≤ G(�, )(P,Q) implies this inequality (see [])

P(�,a)(P,Q) ≤ P(�, )(P,Q). (.)

For  < s < 
 and any fixed point P = (r,�) ∈ Cn(�) satisfying r > 

Rε , let I =
Sn(�; (, )), I = Sn(�; [,Rε]), I = Sn(�; (Rε ,  r]), I = Sn(�; (  r,


 r)), I = Sn(�; [  r,

r
s )),

I = Sn(�; [, rs )) and I = Sn(�; [ rs ,∞)), we write

U(�,a,m;u)(P) ≤
∑
i=

U�,a,i(P),

where

U�,a,i(P) =
∫
Ii

∣∣P(�,a)(P,Q)
∣∣∣∣u(Q)∣∣dσQ (i = , , , , ),

http://www.boundaryvalueproblems.com/content/2012/1/59
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U�,a,(P) =
∫
I

∣∣P(�,a,m)(P,Q)
∣∣∣∣u(Q)∣∣dσQ,

U�,a,(P) =
∫
I

∣∣∣∣∂K̃ (�,a,m)(P,Q)
∂nQ

∣∣∣∣∣∣u(Q)∣∣dσQ.

By ι+[γ ],k + {γ } > –ι+,k + , (.), (.) and (.), we have the following growth estimates

U�,a,(P) ≤ Mrι
–
,k

∫
I
tι
+
,k–

∣∣u(Q)∣∣dσQ

≤ Mrι
–
,kR

ι+[γ ],k+{γ }+ι+,k–
ε , (.)

U�,a,(P) ≤ Mrι
–
,k , (.)

U�,a,(P) ≤ Mεrι
+
[γ ],k+{γ }–n+. (.)

We obtain by ι+m+,k ≥ ι+[γ ],k + {γ } – n + , (.) and (.)

U�,a,(P) ≤ Mrι
+
,k

∫
Sn(�;[(/)r,∞))

tι
–
,k–

∣∣u(Q)∣∣dσQ

≤ Mrι
+
,k

∫
Sn(�;[(/)r,∞))

tι
+
[γ ],k+{γ }+ι–,k– |u(Q)|

tι
+
[γ ],k+{γ } dσQ

≤ Mεrι
+
[γ ],k+{γ }–n+. (.)

By (.) and (.), we consider the inequality

U�,a,(P) ≤ U�,,(P) ≤ U ′
�,,(P) +U ′′

�,,(P),

where

U ′
�,,(P) =M

∫
I
t–n

∣∣u(Q)∣∣dσQ, U ′′
�,,(P) =Mr

∫
I

|u(Q)|
|P –Q|n dσQ.

We first have

U ′
�,,(P) = M

∫
I
tι
+
,k+ι–,k–

∣∣u(Q)∣∣dσQ

≤ Mrι
+
,k

∫
Sn(�;((/)r,∞))

tι
–
,k–

∣∣u(Q)∣∣dσQ

≤ Mεrι
+
[γ ],k+{γ }–n+, (.)

which is similar to the estimate of U�,a,(P).
Next, we shall estimate U ′′

�,,(P). Take a sufficiently small positive number d such that
I ⊂ B(P,  r) for any P = (r,�) ∈ �(d), where

�(d) =
{
P = (r,�) ∈ Cn(�); inf

z∈∂�

∣∣(,�) – (, z)
∣∣ < d,  < r <∞

}
and divide Cn(�) into two sets �(d) and Cn(�) –�(d).

http://www.boundaryvalueproblems.com/content/2012/1/59
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If P = (r,�) ∈ Cn(�) – �(d), then there exists a positive d′
 such that |P –Q| ≥ d′

r for
any Q ∈ Sn(�), and hence

U ′′
�,,(P) ≤ M

∫
I
t–n

∣∣u(Q)∣∣dσQ

≤ Mεrι
+
[γ ],k+{γ }–n+, (.)

which is similar to the estimate of U ′
�,,(P).

We shall consider the case P = (r,�) ∈ �(d). Now put

Hi(P) =
{
Q ∈ I; i–δ(P) ≤ |P –Q| < iδ(P)

}
.

Since Sn(�)∩ {Q ∈ Rn : |P –Q| < δ(P)} =∅, we have

U ′′
�,,(P) =M

i(P)∑
i=

∫
Hi(P)

r
|u(Q)|

|P –Q|n dσQ,

where i(P) is a positive integer satisfying i(P)–δ(P) ≤ r
 < i(P)δ(P).

Since we see from (.)

rϕ(�) ≤ Mδ(P)

for P = (r,�) ∈ Cn(�). Similar to the estimate of U ′
�,,(P), we obtain∫

Hi(P)
r

|u(Q)|
|P –Q|n dσQ

≤
∫
Hi(P)

r
|u(Q)|

(i–δ(P))n
dσQ

≤ M(–i)n
∫
Hi(P)

t–n|u(Q)|dσQ

≤ Mεrι
+
[γ ],k+{γ }–n+

for i = , , , . . . , i(P).
So

U ′′
�,,(P) ≤ Mεrι

+
[γ ],k+{γ }–n+. (.)

We only consider U�,a,(P) in the case m ≥ , since U�,a,(P) ≡  form = . By the defi-
nition of K̃(�,a,m), (.) and Lemma , we see

U�,a,(P) ≤ M
χ ′()

m∑
j=

jn–qj(r),

where

qj(r) = Vj(r)
∫
I

Wj(t)|u(Q)|
t

dσQ.

http://www.boundaryvalueproblems.com/content/2012/1/59


Qiao and Deng Boundary Value Problems 2012, 2012:59 Page 9 of 11
http://www.boundaryvalueproblems.com/content/2012/1/59

To estimate qj(r), we write

qj(r)≤ q′
j(r) + q′′

j (r),

where

q′
j(r) = Vj(r)

∫
I

Wj(t)|u(Q)|
t

dσQ, q′′
j (r) = Vj(r)

∫
Sn(�;(Rε ,r/s))

Wj(t)|u(Q)|
t

dσQ.

Notice that

Vj(r)
Vm+(t)
Vj(t)t

≤ M
Vm+(r)

r
≤ Mrι

+
m+,k–

(
t ≥ ,Rε <

r
s

)
.

Thus, by ι+m+,k < ι+[γ ],k + {γ } – n + , (.) and (.) we conclude

q′
j(r) = Vj(r)

∫
I

|u(Q)|
Vj(t)tn–

dσQ

≤ MVj(r)
∫
I

Vm+(t)
tι
+
m+,k

|u(Q)|
Vj(t)tn–

dσQ

≤ Mrι
+
m+,k–R

ι+[γ ],k+{γ }–ι+m+,k–n+
ε .

Analogous to the estimate of q′
j(r), we have

q′′
j (r)≤ Mεrι

+
[γ ],k+{γ }–n+.

Thus we can conclude that

qj(r)≤ Mεrι
+
[γ ],k+{γ }–n+,

which yields

U�,a,(P) ≤ Mεrι
+
[γ ],k+{γ }–n+. (.)

By ι+m+,k ≥ ι+[γ ],k + {γ } – n + , (.), (.) and (.) we have

U�,,(P) ≤ MVm+(r)
∫
I

|u(Q)|
Vm+(t)tn–

dσQ

≤ Mεrι
+
[γ ],k+{γ }–n+. (.)

Combining (.)–(.), we obtain that ifRε is sufficiently large and ε is sufficiently small,
thenU(�,a,m;u)(P) = o(rι

+
[γ ],k+{γ }–n+) as r → ∞, where P = (r,�) ∈ Cn(�). Then we com-

plete the proof of Theorem .

http://www.boundaryvalueproblems.com/content/2012/1/59
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4 Proof of Theorem 2
For any fixed P = (r,�) ∈ Cn(�), take a number satisfying R > max(, rs ) ( < s < 

 ). By
ι+m+,k ≥ ι+[γ ],k + {γ } – n + , (.), (.) and (.), we have

∫
Sn(�;(R,∞))

∣∣P(�,a,m)(P,Q)
∣∣∣∣u(Q)∣∣dσQ

≤ MVm+(r)ϕ(�)
∫
Sn(�;(R,∞))

|u(Q)|
tι
+
m+,k+n–

dσQ

≤ Mrι
+
m+,kϕ(�)

∫
Sn(�;(r/s,∞))

tι
+
[γ ],k+{γ }–ι+m+,k–n+ |u(Q)|

tι
+
[γ ],k+{γ } dσQ

≤ Mrι
+
[γ ],k+{γ }–n+

ϕ(�)
∫
Sn(�;(r/s,∞))

|u(Q)|
tι
+
[γ ],k+{γ } dσQ

≤ Mrι
+
[γ ],k+{γ }–n+

ϕ(�)

< ∞.

Thus U(�,a,m;u)(P) is finite for any P ∈ Cn(�). Since P(�,a,m)(P,Q) is a generalized
harmonic function of P ∈ Cn(�) for any fixed Q ∈ Sn(�), U(�,a,m;u)(P) is also a gen-
eralized harmonic function of P ∈ Cn(�). That is to say, U(�,a,m;u)(P) is a solution of
Equation (.) on Cn(�).
Now we study the boundary behavior of U(�,a,m;u)(P). Let Q′ = (t′,�′) ∈ ∂Cn(�) be

any fixed point and l be any positive number satisfying l >max(t′ + , R).
Set χS(l) is a characteristic function of S(l) = {Q = (t,�) ∈ ∂Cn(�), t ≤ l} and write

U(�,a,m;u)(P) =U ′(P) –U ′′(P) +U ′′′(P),

where

U ′(P) =
∫
Sn(�;(,(/)l])

P(�,a)(P,Q)u(Q)dσQ,

U ′′(P) =
∫
Sn(�;(,(/)l])

∂K(�,a,m)(P,Q)
∂nQ

u(Q)dσQ,

U ′′′(P) =
∫
Sn(�;((/)l,∞))

P(�,a,m)(P,Q)u(Q)dσQ.

Notice that U ′(P) is the Poisson a-integral of u(Q)χS((/)l), we have
limP→Q′ ,P∈Cn(�)U ′(P) = u(Q′). Since lim�→�′ ϕjv(�) =  (j = , , , . . .;  ≤ v ≤ vj) as P =
(r,�) → Q′ = (t′,�′) ∈ Sn(�), we have limP→Q′ ,P∈Cn(�)U ′′(P) =  from the definition of
the kernel function K(�,a,m)(P,Q). U ′′′(P) = O(rι

+
[γ ],k+{γ }–n+

ϕ(�)), and therefore tends
to zero.
So the function U(�,a,m;u)(P) can be continuously extended to Cn(�) such that

lim
P→Q′ ,P∈Cn(�)

U(�,a,m;u)(P) = u
(
Q′)

for any Q′ = (t′,�′) ∈ ∂Cn(�) from the arbitrariness of l. Thus we complete the proof of
Theorem  from Theorem .
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5 Proof of Theorem 3
From Corollary, we have the solution U(�,a,m;u)(P) of the Dirichlet problem on Cn(�)
with u satisfying (.). Consider the function h(P) –U(�,a,m;u)(P). Then it follows that
this is the solution of Equation (.) in Cn(�) and vanishes continuously on ∂Cn(�).
Since

 ≤ (
h –U(�,a,m;u)

)+(P) ≤ h+(P) +
(
U(�,a,m;u)

)–(P)
for any P ∈ Cn(�), we have

lim
r→∞,P=(r,�)∈Cn(�)

r–ι+m+,k
(
h –U(�,a,m;u)

)+(P) = 

from (.) and (.). Then the conclusions of Theorem  follow immediately from
Lemma .
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