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Abstract

This article is concerned with the existence and multiplicity of nontrival solutions for
a fourth-order elliptic equation⎧⎨

⎩�2u − M
(∫

�

|∇u|2dx
)

�u = f (x, u), in�,

u = �u = 0, on ∂�

by using the mountain pass theorem.
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1 Introduction
In this article we study the existence of nontrivial solutions for the fourth-order

boundary value problem⎧⎨
⎩�2u − M

(∫
�

|∇u|2dx
)

�u = f (x, u), in�,

u = �u = 0, on ∂�,
(1)

where Ω ⊂ RN is a bounded smooth domain, f : Ω × R ® R and M : R ® R are con-

tinuous functions. The existence and multiplicity results for Equation (1) are consid-

ered in [1-3] by using variational methods and fixed point theorems in cones of

ordered Banach space with space dimension is one.

On the other hand, The four-order semilinear elliptic problem{
�2u + c�u = f (x, u), in�,
u = �u = 0, on ∂�,

(2)

arises in the study of traveling waves in a suspension bridge, or the study of the sta-

tic deflection of an elastic plate in a fluid, and has been studied by many authors, see

[4-10] and the references therein.

Inspired by the above references, the object of this article is to study existence and

multiplicity of nontrivial solution of a fourth-order elliptic equation under some condi-

tions on the function M(t) and the nonlinearity. The proof is based on the mountain

pass theorem, namely,

Lemma 1.1. Let E be a real Banach space, and I Î C1(E, R) satisfy (PS)-condition.

Suppose
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(1) There exist r > 0, a > 0 such that

I|∂Bρ
≥ I(0) + α

where Bp = {u Î E|∥u∥ ≤ r}.
(2) There is an e Î E and ∥e∥ >r such that

I(e) ≤ I(0).

Then I(u) has a critical value c which can be characterized as

C = inf
γ∈�

max
u∈γ ([0,1])

I(u),

where Γ = {g Î C([0, 1],E)|g(0) = 0,g(1) = e}.

The article is organized as follows: Section 2 is devoted to giving the main result and

proving the existence of nontrivial solution of Equation (1). In Section 3, we deal with

the multiplicity results of Equation (1) whose nonlinear term is asymptotically linear at

both zero and infinity

2 Main result I
Theorem 2.1. Assume the function M(t) and the nonlinearity f(x, t) satisfying the fol-

lowing conditions:

(H1) M(t) is continuous and satisfies

M(t) > m0, ∀t > 0, (3)

for some m0 > 0. In addition, that there exist m’ >m0 and t0 > 0, such that

M(t) = m′, ∀t > t0. (4)

(H2) f(x, t) Î C(Ω × R); f(x, t) ≡ 0, ∀x Î Ω, t ≤ 0, f(x, t) ≥ 0, ∀x Î Ω, t > 0;

(H3) |f(x, t)| ≤ a(x) + b|t|p, ∀t Î R and a.e. x in Ω, where a(x) Î Lq (Ω), b Î R

and 1 < p < N+4
N−4 if N > 4 and 1 <p < ∞ if N ≤ 4 and

1
q
+
1
p
= 1;

(H4) f(x, t) = o(|t|) as t ® 0 uniformly for x Î Ω ;

(H5) There exists a constant Θ > 2 and R > 0, such that

	F(x, s) ≤ sf (x, s), ∀|s| ≥ R.

Then Equation (1) has at least one nonnegative solution.

Let Ω ⊂ RN be a bounded smooth open domain, H = H2(�)
⋂

H1
0(�) be the Hil-

bert space equipped with the inner product

(u, v) −
∫
�

(�u�v + ∇u∇v)dx,
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and the deduced norm

||u||2 =
∫
�

|�u|2dx +
∫
�

|∇u|2dx.

Let l1 be the positive first eigenvalue of the following second eigenvalue problem{−�v = λv, in �,
v = 0, on ∂�.

Then from [4], it is clear to see that Λ1 = l1(l1 - c) is the positive first eigenvalue of

the following fourth-order eigenvalue problem{
�2u + c�u = λu, in �,
�u = u = 0, on ∂�,

where c <l1. By Poincare inequality, for all u Î H, we have

||u||2 ≥ �1||u||2L2 . (5)

A function u Î H is called a weak solution of Equation (1) if

∫
�

�u�vdx +M

⎛
⎝∫

�

|∇u|2dx
⎞
⎠∫

�

∇u∇vdx =
∫
�

f (x, u)vdx

holds for any v Î H. In addition, we see that weak solutions of Equation (1) are criti-

cal points of the functional I : H ® R defined by

I(u) =
1
2

∫
�

|�u|2dx + 1
2
M̂

⎛
⎝∫

�

|∇u|2dx
⎞
⎠ −

∫
�

F(x, u)dx,

where M̂(t) =
∫ t
0 M(s)ds and F(x, t) = ∫ f(x, t)dt. Since M is continuous and f has

subcritical growth, the above functional is of class C1 in H. We shall apply the famous

mountain pass theorem to show the existence of a nontrivial critical point of functional

I(u).

Lemma 2.2. Assume that (H1)-(H5) hold, then I(u) satisfies the (PS)-condition.

Proof. Let {un} ⊂ H be a (PS)-sequence. In particular, {un} satisfies

I(un) → C, and
〈
I′(un), un

〉 → 0 as n → ∞. (6)

Since f(x, t) is sub-critical by (H3), from the compactness of Sobolev embedding and,

following the standard processes we know that to show that I verifies (PS)-condition it

is enough to prove that {un} is bounded in H. By contradiction, assume that ∥un∥ ®
+∞.

Case I. If
∫
�

|∇un|2dx is bounded,
∫
�

|�un|2dx → +∞. We assume that there exist a

constant K > 0 such that
∫
�

|∇un|2dx ≤ K . By (H1), it is easy to obtain that

m̃ = maxt∈[0,K]M(t) > m0 . Set l1 = min{1,m0}, l2 = max{1, m̃} . Then, from
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(H1), (H3), and (H5), we have

I(un) − l1
2l2

I′(un)un =
1
2

∫
�

|�un|2dx + 1
2
M̂

⎛
⎝∫

�

|∇un|2dx
⎞
⎠ −

∫
�

F(x, un)dx

− l1
2l2

⎛
⎝∫

�

|�un|2dx +M

⎛
⎝∫

�

|∇un|2dx
⎞
⎠∫

�

|∇un|2dx
⎞
⎠

+
l1
2l2

∫
�

f (x, un)undx

≥ 1
2
l1||un||2 +

∫
�

[
l1
2l2

f (x, u+n)un − F(x, u+n)
]
dx

≥ 1
2
l1||un||2 +

∫
||un||≥R

[
l1
2l2

f (x, u+n)u
+
n − F(x, u+n)

]
dx − C1

≥ 1
2
l1||un||2 + l1

2l2

∫
||un||≥R

[
f (x, u+n)u

+
n − 2l2

l2
F(x, u+n)

]
dx − C1

≥ 1
2
l1||un||2 + l1

2l2

∫
||un||≥R

[
f (x, u+n)u

+
n − 	F(x, u+n)

]
dx − C1.

On the other hand, it is easy to obtain that

I(un) − l1
2l2

I′(un)un ≤ C + C||un||.

Then, from above, we can have

||u||2 ≤ C + C||un||,

which contradicts ∥un∥ ® +∞. Therefore {un} is bounded in H.

Case II. if
∫
�

|�un|2dx → +∞. By (H1), let l2 = max{1, m’}, we also can obtain that

{un} is bounded in H.

This lemma is completely proved.

Lemma 2.3. Suppose that (H1)-(H5) hold, then we have

(1) there exist constants r > 0, a > 0 such that I|∂Bρ
≥ α with Bp = {u Î H ∥u∥ ≤ r};

(2) I(t�1) ® -∞ as t ® +∞.

Proof. By (H1)-(H4), we see that for any ε > 0, there exist constants C 1 > 0, C2 such

that for all (x, s) Î Ω × R, one have

F(x, s) ≤ 1
2

εs2 + C1sp+1 (7)

Choosing ε > 0 small enough, we have

I(u) =
1
2

∫
�

|�u|2dx + 1
2
M̂

⎛
⎝∫

�

|∇u|2dx
⎞
⎠ −

∫
�

F(x, u)dx

≥ 1
2

∫
�

|�u|2dx + 1
2
m0

∫
�

|∇u|2dx −
∫
�

F(x, u)dx

≥ 1
2
l1||u||2 − ε

2
||u||2L2 − C1||u||p+1Lp+1

≥ 1
2
(l1 − ε)||u||2 − C3||u||p+1.
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by (3), (5), (7) and the Sobolev inequality. So, part 1 is proved if we choose ∥u∥ r > 0

small enough.

On the other hand, we have

I(u) =
1
2

∫
�

|�u|2dx + 1
2
M̂

⎛
⎝∫

�

|∇u|2dx
⎞
⎠ −

∫
�

F(x, u)dx

≤ 1
2

∫
�

|�u|2dx + 1
2
m1

∫
�

|∇u|2dx −
∫
�

F(x, u)dx

≥ 1
2
l2||u||2 − ||u||		 + C4.

using (4) and (H5). Hence,

I(tϕ1) ≤ 1
2
l2t2||ϕ1||2 − t	||ϕ1||		 + C4 → −∞

as t ® +∞ and part 2 is proved.

Proof of Theorem 2.1. From Lemmas 2.2 and 2.3, it is clear to see that I(u) satisfies

the hypotheses of Lemma 1.1. Therefore I(u) has a critical point.

3 Existence result II
Theorem 3.1. Assume that (H1) holds. In addition, assume the following conditions

are hold:

(H6) f(x, t)t ≥ 0 for x Î Ω, t Î R;

(H7) lim
t→0

f (x,t)
t = α, lim

|t|→+∞
f (x,t)
t = β , uniformly in a.e x Î Ω, where

α

min{1,m0} < λ1(λ1 +m′) < β < +∞.

Then Equation (1) has at least two nontrivial solutions, one of which is positive and

the other is negative.

Let u+ = max{u, 0}, u- = min{u, 0}. Consider the following problem⎧⎨
⎩�2u − M

(∫
�

|∇u|2dx
)

�u = f +(x, u), in �,

u = �u = 0, on ∂�,
(8)

where

f +(x, t) =
{
f (x, t) if t ≥ 0,
0, if t < 0.

Define the corresponding functional I+ : H ® R as follows:

I+(u) =
1
2

∫
�

|�u|2dx + 1
2
M̂

⎛
⎝∫

�

|∇u|2dx
⎞
⎠ −

∫
�

F+(x, u)dx, ∀u ∈ H,

where F+(x, u) =
∫ u
0 f +(x, t)dt . Obviously, I+ Î Cl(H, R). Let u be a critical point of I+

which implies that u is the weak solution of Equation (8). Futhermore, by the weak

maximum principle it follows that u ≥ 0 in Ω. Thus u is also a solution of Equation

(1).
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Similarly, we also can define

f−(x, t) =
{
f (x, t) if t ≤ 0,
0, if t < 0.

and

I−(u) =
1
2

∫
�

|�u|2dx + 1
2
M̂

⎛
⎝∫

�

|∇u|2dx
⎞
⎠ −

∫
�

F−(x, u)dx, ∀u ∈ H,

where F−(x, u) =
∫ u
0 f−(x, t)dt . Obviously, I- Î C1(H, R). Let u be a critical point of I-

which implies that u is the weak solution of Equation (1) with I-(u) = I(u).

Lemma 3.2. Assume that (H1), (H6), and (H7) hold, then I± satisfies the (PS)

condition.

Proof. We just prove the case of I+. The arguments for the case of I- are similar.

Since Ω is bounded and (H7) holds, then if {un} is bounded in H, by using the Sobolve

embedding and the standard procedures, we can get a convergent subsequence. So we

need only to show that {un} is bounded in H.

Let {un} ⊂ H be a sequence such that

I+(un) → c, ∇I+(un) → 0. (9)

By (H7), it is easy to see that

|f +(x, s)s| ≤ C(1 + |s|2).

Now, (9) implies that, for all j Î H, we have

∫
�

�un�φdx +M

⎛
⎝∫

�

|∇un|2dx
⎞
⎠ ∫

�

∇un∇φdx =
∫
�

f +(x, un)φdx → 0. (10)

Set j = un, we have

min{1,m0}||un||2 ≤
∫
�

|�un|2dx +M

⎛
⎝∫

�

|∇un|2dx
⎞
⎠∫

�

|∇un|2dx

=
∫
�

f +(x, un)undx +
〈∇I+(un), un

〉

≤
∫
�

f +(x, un)undx + o(1)||un||

≤ C + C||un||2L2 + o(1)||un||.

(11)

Next, we will show that ||un||2L2 is bounded. If not, we may assume that ∥un∥L2 ®

+∞ as n ® +∞. Let ωn =
un

||un||L2 , then ||ωn||L2 = 1 . From (11), we have

||ωn||2 ≤ o(1) + C +
o(1)

||un||L2
||un||

||un||L2
= o(1) + C + o(1)||ωn||,
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thus {ωn} is bounded in H. Passing to a subsequence, we may assume that there

exists ω Î H with ||ω||L2 = 1 such that

ωn ⇀ ω, weakly in H, n → +∞,

ωn → ω, strongly in L2(�), n → +∞.

On the other hand, ||un||L2 → +∞ as n ® +∞, by Poincare inequality, it is easy to

know that
∫
�

|�un|2dx → +∞ as n ® +∞. Thus by (H1), the function

M
(∫

�
|∇un|2dx

)
= m′ . So as n ® +∞, by (10), we have∫

�

�ω�φdx +m′
∫
�

∇ω∇φdx
∫
�

βω+φdx = 0, ∀φ ∈ H. (12)

Then ω Î H is a weak solution of the equation

�2ω − m′�ω = βω+.

The weak maximum principle implies that ω = ω+ ≥ 0. Choosing j (x) = �1(x) > 0,

which is the corresponding eigenfunctions of l1. From (10), we get∫
�

�ω�ϕ1dx +m′
∫
�

∇ω∇ϕ1dx = β

∫
�

ω+ϕ1dx. (13)

On the other hand, we can easily see that Λ = l1(l1 + m’) is the eigenvalue of the

problem{
�2u +m′�u = �u, in �,
�u = u = 0, on ∂�

and the corresponding eigenfunction is still �1(x). If ω(x) > 0, we also have∫
�

�ω�ϕ1dx +m′
∫
�

∇ω∇ϕ1dx = �

∫
�

ω+ϕ1dx, (14)

which follows that ω ≡ 0 by Λ <b But this conclusion contradicts ||ω||L2 = 1 .

Hence {un} is bounded in H.

Now we prove that the functionals I± has a mountain pass geometry.

Lemma 3.3. Assume that (H1), (H7) hold, then we have

(1) there exists r, R > 0 such that I±(u) >R, if ∥u∥ = r;
(2) I±(u) are unbounded from below.

Proof. By (H7), for any ε > 0, there exists C 1 > 0, C2 > 0 such that ∀(x, s) Î Ω × R,

we have

F(x, s) ≤ 1
2
(α + ε)s2 + C1sp+1 (15)

and

F(x, s) ≥ 1
2
(β + ε)s2 + C2, (16)

where 2 < p < 2∗ =
{ 2N

N−2 N > 2,
+∞ N ≤ 2.
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We just prove the case of I+. The arguments for the case of I- are similar. Let j =

t�1. When t is sufficiently large, by (16) and (H1), it is easy to see that

I+(tϕ1) =
1
2

∫
�

|�(tϕ1)|2dx + 1
2
M̂

⎛
⎝∫

�

|∇(tϕ1)|2dx
⎞
⎠ −

∫
�

F+(x, tϕ1)dx

≤ 1
2

∫
�

|�(tϕ1)|2dx + 1
2
m′

∫
�

|∇(tϕ1)|2dx −
∫
�

1
2(β − ε)(tϕ1)2 − C2dx

=
t2

2

⎡
⎣∫

�

|�ϕ1|2dx +m′
∫
�

|�ϕ1|2dx − (β − ε)
∫
�

ϕ2
1dx

⎤
⎦ + C2|�|

=
t2

2
[� − (β − ε)]||ϕ1||L2 + C2|�|

→ −∞, as t → +∞.

On the other hand, by (17), (H1), the Poincare inequality and the Sobolve embed-

ding, we have

I+(u) =
1
2

∫
�

|�u|2dx + 1
2
M̂

⎛
⎝∫

�

|∇u|2dx
⎞
⎠ −

∫
�

F+(x, u)dx

≥ 1
2
min{1,m0}||u|| − α + ε

2

∫
�

|u|2dx − C1

∫
�

|u|p+1dx

≥
(
1
2
min{1,m0} − α + ε

2�

)
||u|| − C4||u||p+1,

where C4 is a constant. Choosing ∥u∥ = r small enough, we can obtain I+(u) ≥ R > 0

if ∥u∥ = r.
Proof of Theorem 3.1. From Lemma 3.3, it is easy to see that there exists e Î H

with ∥e∥ >r such that I±(e) < 0.

Define

P = {γ : [0, 1] → H : γ is continuous and γ (0) = 0, γ (1) = e},

and

c± = inf
γ∈P

max
t∈[0,1]

I±(γ (t)).

From Lemma 3.3, we have

I±(0) = 0, I±(e) < 0, I±(u)|∂Bρ
≥ R > 0.

Moreover, by Lemma 3.2, the functions I± satisfies the (PS)-condition. By Lemma 1.1,

we know that c+ is a critical value of I+ and there is at least one nontrivial critical point

in H corresponding to this value. This critical in nonnegative, then the strong maxi-

mum principle implies that is a positive solution of Equation (1). By an analogous way

we know there exists at least one negative solution, which is a nontrivial critical point

of I- Hence, Equation (1) admits at least a positive solution and a negative solution.
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