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Abstract
In this paper, we consider nth-order two-point right focal boundary value problems

u(n)(t) = f (t,u(t),u′(t), . . . ,u(n–1)(t)), a.e. t ∈ (0, 1),

u(i)(0) = 0, i = 0, 1, . . . ,m – 1,

u(i)(1) = 0, i =m,m + 1, . . . ,n – 1,

where f : [0, 1]×R
n →R is a Lp-Carathéodory (1≤ p <∞) function and satisfies

superlinear growth conditions. The existence and uniqueness of solutions for the
above right focal boundary value problems are obtained by Leray-Schauder
continuation theorem and analytical technique. Meanwhile, as an application of our
results, examples are given.
MSC: 34B15

Keywords: right focal boundary value problem; Leray-Schauder continuation
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1 Introduction
In this paper, we shall discuss the existence and uniqueness of solutions of right focal
boundary value problems for nth-order nonlinear differential equation

u(n)(t) = f
(
t,u(t),u′(t), . . . ,u(n–)(t)

)
, a.e. t ∈ (, ) (.)

subject to the boundary conditions ( ≤ m≤ n – )
⎧⎨
⎩u(i)() = , i = , , . . . ,m – ,

u(i)() = , i =m,m + , . . . ,n – ,
(.)

where f : [, ] × R
n → R = (–∞, +∞) satisfies the Lp-Carathéodory ( ≤ p < ∞) condi-

tions, that is,
(i) for each (u,u, . . . ,un–) ∈R

n, the function t ∈ [, ] �→ f (t,u,u, . . . ,un–) ∈R is
measurable on [, ];

(ii) for a.e. t ∈ [, ], the function (u,u, . . . ,un–) �→ f (t,u,u, . . . ,un–) is continuous
on R

n;
(iii) for each r > , there exists an αr ∈ Lp[, ] such that |f (t,u,u, . . . ,un–)| ≤ αr for

a.e. t ∈ [, ] and all (u,u, . . . ,un–) ∈R
n with

∑n–
j= uj ≤ r.
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As it is well known, the right focal boundary value problems have attracted many schol-
ars’ attention. Among a substantial number of works dealing with right focal boundary
value problems, we mention [–, –].
Recently, using the Leray-Schauder continuation theorem, Hopkins and Kosmatov []

have obtained sufficient conditions for the existence of at least one sign-changing solution
for third-order right focal boundary value problems such as

⎧⎨
⎩u′′′(t) = f

(
t,u(t),u′(t),u′′(t)

)
, a.e. t ∈ (, ),

u() = u′() = u′′() = 

and
⎧⎨
⎩u′′′(t) = f

(
t,u(t),u′(t),u′′(t)

)
, a.e. t ∈ (, ),

u() = u′() = u′′() = ,

where f : [, ] × R
 → R satisfies the Lp-Carathéodory ( ≤ p < ∞) conditions and the

linear growth conditions.
Motivated by [], in this paper we study the solvability for general nth-order right fo-

cal boundary value problems (.), (.). The existence and uniqueness of sign-changing
solutions for the problems are obtained by Leray-Schauder continuation theorem and an-
alytical technique. We note that the nonlinearity of f in our problem allows up to the
superlinear growth conditions.
The rest of this paper is organized as follows. In Section , we give some lemmas which

help to simplify the proofs of our main results. In Section , we discuss the existence and
uniqueness of sign-changing solutions for nth-order right focal boundary value problems
(.), (.) by Leray-Schauder continuation theorem and analytical technique, and give two
examples to demonstrate our results. Our results improve and generalize the correspond-
ing results in [].

2 Preliminary
In this section, we give some lemmas which help to simplify the presentation of our main
results.
Let AC[, ] denote the space of absolutely continuous functions on [, ], and Cn–[, ]

denote the Banach space of (n – ) times continuously differentiable functions de-
fined on [, ] with the norm ‖u‖Cn– = max{‖u(i)‖∞, i = , , . . . ,n – }, where ‖u(i)‖∞ =
supt∈[,] |u(i)(t)|. Let Lp[, ] be the usual Lebesgue space on [, ] with norm ‖ · ‖p,
 ≤ p < ∞.
For  ≤ p < ∞, we introduce the Sobolev space

Wn,p(, ) =

{
u : [, ]→R

∣∣∣∣∣ u(i) ∈ AC[, ], i = , , . . . ,n – ,
u(n) ∈ Lp[, ]

}

with the norm ‖u‖ = ‖u‖Cn– + ‖u(n)‖p . Let us consider a special subspace

Wn,p
r (, ) =

{
u ∈ Wn,p(, ) : u satisfies (.)

}
.

http://www.boundaryvalueproblems.com/content/2012/1/60
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Then it is clear that Wn,p
r (, ) is closed in Wn,p(, ) and hence is itself a Banach space

with the norm ‖u‖ = ‖u‖Cn– + ‖u(n)‖p.

Lemma . ([]) Let G(t, s) be the Green’s function of the differential equation (–)n–m ×
u(n)(t) =  subject to the boundary conditions (.). Then

G(t, s) =
(–)n–m

(n – )!

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m–∑
i=

(
n – 
i

)
ti(–s)n–i–,  ≤ s ≤ t ≤ ,

–
n–∑
i=m

(
n – 
i

)
ti(–s)n–i–,  ≤ t ≤ s ≤ 

and

∂ i

∂ti
G(t, s) ≥ , ∀(t, s) ∈ [, ]× [, ], i = , , . . . ,m.

Lemma . Let g ∈ Lp[, ]. Then the solution of the differential equation

u(n)(t) = g(t), a.e. t ∈ (, )

subject to the boundary conditions (.) satisfies

∥∥u(j)∥∥∞ ≤ Aj‖g‖p, j = , , . . . ,n – , (.)

where for p >  ( p +

q = ),

Aj =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(–)(n–m)

(n – j – )!

[∫ 



(m–j–∑
i=

(
n – j – 

i

)
(–s)n–j––i

)q

ds

] 
q

, j = , , . . . ,m – ,



(n – j – )![q(n – j – ) + ]

q
, j =m,m + , . . . ,n – 

(.)

and for p = ,

Aj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(–)n–m

(n – j – )!

m–j–∑
i=

(
n – j – 

i

)
(–)n–j––i, j = , , . . . ,m – ,


(n – j – )!

, j =m,m + , . . . ,n – .
(.)

Proof Firstly, let us show the lemma for case p > . Since

u(t) = (–)n–m
∫ 


G(t, s)g(s) ds,

we have that for j = , , . . . ,n – ,

u(j)(t) = (–)n–m
∫ 



∂ j

∂tj
G(t, s)g(s) ds =: (–)n–m

∫ 


Gj(t, s)g(s) ds,

http://www.boundaryvalueproblems.com/content/2012/1/60
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where, for j = , , . . . ,m – ,

Gj(t, s) =
(–)n–m

(n – )!

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m–∑
i=j

(
n – 
i

)
i!

(i – j)!
ti–j(–s)n–i–,  ≤ s ≤ t ≤ ,

–
n–∑
i=m

(
n – 
i

)
i!

(i – j)!
ti–j(–s)n–i–,  ≤ t ≤ s ≤ 

=
(–)n–m

(n – j – )!

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

m–j–∑
i=

(
n – j – 

i

)
ti(–s)n–j––i,  ≤ s ≤ t ≤ ,

–
n–j–∑
i=m–j

(
n – j – 

i

)
ti(–s)n–j––i,  ≤ t ≤ s ≤ 

and for j =m,m + , . . . ,n – ,

Gj(t, s) =
(–)n–m

(n – )!

⎧⎪⎪⎨
⎪⎪⎩
,  ≤ s ≤ t ≤ ,

–
n–∑
i=j

(
n – 
i

)
i!

(i – j)!
ti–j(–s)n–i–,  ≤ t ≤ s ≤ 

=
(–)n–m

(n – j – )!

⎧⎨
⎩,  ≤ s ≤ t ≤ ,

–(t – s)n–j–,  ≤ t ≤ s ≤ .

It follows by Hölder’s inequality that, for each j = , , . . . ,n – ,

∣∣u(j)(t)∣∣ ≤
∫ 



∣∣Gj(t, s)
∣∣∣∣g(s)∣∣ds

≤ ‖g‖p
∥∥Gj(t, ·)

∥∥
q

≤ ‖g‖p max
t∈[,]

∥∥Gj(t, ·)
∥∥
q, t ∈ [, ]

and consequently, for each j = , , . . . ,n – ,

∥∥u(j)∥∥∞ ≤ ‖g‖p max
t∈[,]

∥∥Gj(t, ·)
∥∥
q, t ∈ [, ]. (.)

But for j =m,m + , . . . ,n – ,

max
t∈[,]

∥∥Gj(t, ·)
∥∥q
q = max

t∈[,]

∫ 



∣∣Gj(t, s)
∣∣q ds

= max
t∈[,]

∫ t



∣∣Gj(t, s)
∣∣q ds + max

t∈[,]

∫ 

t

∣∣Gj(t, s)
∣∣q ds

= max
t∈[,]

∫ 

t

∣∣∣∣ (–)n–m

(n – j – )!
[
–(t – s)n–j–

]∣∣∣∣
q

ds

=


[(n – j – )!]q
max
t∈[,]

∫ 

t
(s – t)q(n–j–) ds

=


[(n – j – )!]q
max
t∈[,]

( – t)q(n–j–)+

q(n – j – ) + 

http://www.boundaryvalueproblems.com/content/2012/1/60
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=


[(n – j – )!]q[q(n – j – ) + ]

= Aq
j .

It follows by (.) that for j =m,m + , . . . ,n – ,

∥∥u(j)∥∥∞ ≤ Aj‖g‖p.

For j = , , . . . ,m – , by Lemma ., Gj(t, s) is nondecreasing in t, and thus

max
t∈[,]

∥∥Gj(t, ·)
∥∥q
q = max

t∈[,]

∫ 



[
Gj(t, s)

]q ds
≤

∫ 



[
max
t∈[,]

Gj(t, s)
]q

ds

=
∫ 



[
Gj(, s)

]q ds
=

∫ 



[
(–)n–m

(n – j – )!

m–j–∑
i=

(
n – j – 

i

)
(–s)n–j––i

]q

ds

= Aq
j .

Hence, by (.) we have for j = , , . . . ,m – ,

∥∥u(j)∥∥∞ ≤ Aj‖g‖p.

In summary,

∥∥u(j)∥∥∞ ≤ Aj‖g‖p, j = , , . . . ,n – .

Next, we show the lemma for the case p = . It is easy to see that for j =m,m+, . . . ,n–,

∣∣u(j)(t)∣∣ ≤
∫ 



∣∣Gj(t, s)
∣∣∣∣g(s)∣∣ds

=
∫ 

t

∣∣∣∣ (–)n–m

(n – j – )!
[
–(t – s)n–j–

]∣∣∣∣∣∣g(s)∣∣ds
=


(n – j – )!

∫ 

t
(s – t)n–j–

∣∣g(s)∣∣ds
≤ ( – t)n–j–

(n – j – )!

∫ 

t

∣∣g(s)∣∣ds
≤ 

(n – j – )!
‖g‖

= Aj‖g‖, t ∈ [, ]

and thus for j =m,m + , . . . ,n – ,

∥∥u(j)∥∥∞ ≤ Aj‖g‖.

http://www.boundaryvalueproblems.com/content/2012/1/60
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Also by Lemma ., we have for j = , , . . . ,m,

Gj(t, s)≥ , ∀(t, s) ∈ [, ]× [, ],

so that for each j = , , . . . ,m – , Gj(t, s) is nondecreasing in t, it follows that

∣∣u(j)(t)∣∣ ≤
∫ 



∣∣Gj(t, s)
∣∣∣∣g(s)∣∣ds

≤
∫ 


max
t∈[,]

Gj(t, s)
∣∣g(s)∣∣ds

=
∫ 


Gj(, s)

∣∣g(s)∣∣ds
=

∫ 



[
(–)n–m

(n – j – )!

m–j–∑
i=

(
n – j – 

i

)
(–s)n–j––i

]∣∣g(s)∣∣ds.

(.)

Let

φ(t) =
(–)n–m

(n – j – )!

m–j–∑
i=

(
n – j – 

i

)
(–t)n–j––i, t ∈ [, ].

Then

φ(n–m)(t) =
(–)n–m

(n – j – )!

m–j–∑
i=

(
n – j – 

i

)
(–)n–j––i(n – j –  – i)

· (n – j –  – i – ) · · · (n – j –  – i – n +m + )tm–j––i

=
(–)n–m

(n – j – )!

m–j–∑
i=

(n – j – )!
i!(m – j –  – i)!

(–)n–j––itm–j––i

=


(m – j – )!

m–j–∑
i=

(m – j – )!
i!(m – j –  – i)!

(–t)m–j––i

=


(m – j – )!
( – t)m–j– ≥ , t ∈ [, ].

Since

φ(k)() = , k = n –m – ,n –m – , . . . , , ,

we have for each k = n –m – ,n –m – , . . . , , ,

φ(k)(t)≥ , t ∈ [, ],

in particular

φ′(t) ≥ , t ∈ [, ],

http://www.boundaryvalueproblems.com/content/2012/1/60
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so that φ(t) is nondecreasing on [, ]. Hence by (.), we have

∣∣u(j)(t)∣∣ ≤
∫ 



[
(–)n–m

(n – j – )!

m–j–∑
i=

(
n – j – 

i

)
(–)n–j––i

]∣∣g(s)∣∣ds

=
(–)n–m

(n – j – )!

m–j–∑
i=

(
n – j – 

i

)
(–)n–j––i

∫ 



∣∣g(s)∣∣ds
= Aj‖g‖.

Thus for j = , , . . . ,m – ,

∥∥u(j)∥∥∞ ≤ Aj‖g‖.

In summary,

∥∥u(j)∥∥∞ ≤ Aj‖g‖, j = , , . . . ,n – . �

Lemma . ([] Leray-Schauder continuation theorem) Let X be a real Banach space
and let � be a bounded open neighbourhood of  in X. Let T : �̄ → X be a completely
continuous operator such that for all λ ∈ (, ), and u ∈ ∂�, u �= λTu. Then the operator
equation

u = Tu

has a solution u ∈ �̄.

3 Main results
Nowwe are ready to establish our existence theorems of solutions for nth-order right focal
boundary value problems (.), (.). The Leray-Schauder continuation theorem plays key
roles in the proofs.

Theorem . Let f : [, ]×R
n →R satisfy Lp-Carathéodory’s conditions. Suppose that

(i) there exist functions αj(t),βj(t),γ (t) ∈ Lp[, ], j = , , . . . ,n – , and a constant σ > 
such that

∣∣f (t,u,u, . . . ,un–)∣∣ ≤
n–∑
j=

αj(t)|uj| +
n–∑
j=

βj(t)|uj|σ + γ (t) (.)

for a.e. t ∈ [, ] and all (u,u, . . . ,un–) ∈R
n;

(ii)

a :=  –
n–∑
j=

Aj‖αj‖p > , (.)

where the constants Aj , j = , , . . . ,n –  are given in Lemma .;

http://www.boundaryvalueproblems.com/content/2012/1/60


Pei et al. Boundary Value Problems 2012, 2012:60 Page 8 of 14
http://www.boundaryvalueproblems.com/content/2012/1/60

(iii)

a
σ

σ–
(
σ

σ
–σ – σ


–σ

)
+ b


σ– ‖γ ‖p < , (.)

where b :=
∑n–

j= Aσ
j ‖βj‖p.

Then BVP (.), (.) has at least one solution in Wn,p(, ).

Proof We define a linear mapping L :Wn,p
r (, ) ⊂Wn,p(, ) → Lp[, ], by setting for u ∈

Wn,p
r (, ),

(Lu)(t) = u(n)(t).

We also define a nonlinear mapping N :Wn,p
r (, )→ Lp[, ] by setting for y ∈ Wn,p

r (, ),

(Nu)(t) = f
(
t,u(t),u′(t), . . . ,u(n–)(t)

)
.

Then, we note that N is a bounded continuous mapping by Lebesgue’s dominated con-
vergence theorem. It is easy to see that the linear mapping L : Wn,p

r (, ) → Lp[, ] is a
one-to-one mapping. Also, let the linear mapping K : Lp[, ] →Wn,p

r (, ) for u ∈ Lp[, ]
be defined by

(Ku)(t) = (–)n–m
∫ 


G(t, s)u(s) ds,

where G(t, s) is the Green’s function of BVP in Lemma ..
Then K satisfies that for u ∈ Lp[, ], Ku ∈ Wn,p

r (, ) and LKu = u, and also for u ∈
Wn,p

r (, ), KLu = u. Furthermore, it follows easily by using Arzelà-Ascoli theorem that
KN :Wn,p

r (, )→Wn,p
r (, ) is a completely continuous operator.

Here we also note that u ∈ Wn,p
r (, ) is a solution of BVP (.), (.) if and only if u ∈

Wn,p
r (, ) is a solution of the operator equation

Lu =Nu

which is equivalent to the operator equation

u = KNu.

We now apply the Leray-Schauder continuation theorem to the operator equation u =
KNu. To do this, it is sufficient to verify that the set of all possible solutions of the family
of equations

u(n)(t) = λf
(
t,u(t),u′(t), . . . ,u(n–)(t)

)
,  < t <  (.)

with boundary conditions

⎧⎨
⎩u(i)() = , i = , , . . . ,m – ,

u(i)() = , i =m,m + , . . . ,n – 
(.)

http://www.boundaryvalueproblems.com/content/2012/1/60
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is, a priori, bounded inWn,p
r (, ) by a constant independent of λ ∈ (, ).

Suppose u(t) ∈Wn,p
r (, ) is a solution of BVP (.), (.) for some λ ∈ (, ). Then from

(.), (.) and (.) in Lemma ., we obtain

∥∥u(n)∥∥p = λ
∥∥f (t,u(t),u′(t), . . . ,u(n–)(t)

)∥∥
p

≤ ∥∥f (t,u(t),u′(t), . . . ,u(n–)(t)
)∥∥

p

≤
n–∑
j=

∥∥αju(j)
∥∥
p +

n–∑
j=

∥∥βj
(
u(j)

)σ∥∥
p + ‖γ ‖p

≤
n–∑
j=

‖αj‖p
∥∥u(j)∥∥∞ +

n–∑
j=

‖βj‖p
∥∥u(j)∥∥σ

∞ + ‖γ ‖p

≤
n–∑
j=

Aj‖αj‖p
∥∥u(n)∥∥p +

n–∑
j=

Aσ
j ‖βj‖p

∥∥u(n)∥∥σ

p + ‖γ ‖p

= ( – a)
∥∥u(n)∥∥p + b

∥∥u(n)∥∥σ

p + ‖γ ‖p.

Consequently we obtain

b
∥∥u(n)∥∥σ

p – a
∥∥u(n)∥∥p + ‖γ ‖p ≥ . (.)

Now we have two cases to consider:
Case . b = . In this case (.) becomes –a‖u(n)‖p + ‖γ ‖p ≥ , i.e. ‖u(n)‖p ≤ ‖γ ‖p

a . Thus
from (.) in Lemma ., we have that there exists a constantM >  which is independent
of λ ∈ (, ) such that

‖u‖ =max
{∥∥u(j)∥∥∞, j = , , . . . ,n – 

}
+

∥∥u(n)∥∥p

≤ max{Aj, j = , , . . . ,n – }∥∥u(n)∥∥p +
∥∥u(n)∥∥p

≤ (
 +max{Aj, j = , , . . . ,n – })‖γ ‖p

a

=:M.

(.)

Now, let

� =
{
u ∈ Wn,p

r (, ) : ‖u‖ <M + 
}
.

Then estimate (.) show that λKN has no fixed point on ∂�. Hence KN has a fixed point
in �̄ by the Leray-Schauder continuation theorem.
Case . b > . When ‖γ ‖p =  in (.), it is easy to see that BVP (.), (.) has the trivial

solution u ≡ . Thus assume ‖γ ‖p >  and let h(t) = btσ – at + ‖γ ‖p, t ≥ . Then from
(.), h(‖u(n)‖p) ≥ . It is easy to see that h′(t) =  has a unique positive solution ( a

bσ )


σ– ,
say ρ*. By (.), we have h(ρ*) <  and thus h(t) =  has a minimum positive solution, say
ρ̄ which is less than ρ* and independent of λ ∈ (, ). Hence it follows that if ‖u(n)‖p ≤ ρ*,
then

∥∥u(n)∥∥p ≤ ρ̄ < ρ*. (.)

http://www.boundaryvalueproblems.com/content/2012/1/60
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From (.) in Lemma ., we get

‖u‖ =max
{∥∥u(j)∥∥∞, j = , , . . . ,n – 

}
+

∥∥u(n)∥∥p

≤ (
 +max{Aj, j = , , . . . ,n – })∥∥u(n)∥∥p.

(.)

Now, we let

� =
{
u ∈ Wn,p

r (, ) : ‖u‖ <M + ,
∥∥u(n)∥∥p < ρ*},

whereM = (+max{Aj, j = , , . . . ,n–})ρ*. Then estimates (.) and (.) show that λKN
has no fixed point on ∂�. Consequently, KN has a fixed point in �̄ by the Leray-Schauder
continuation theorem. This completes the proof of the theorem. �

Corollary . Let conditions (i) and (ii) of Theorem . hold. If b =  or b >  is small
enough, then BVP (.), (.) has at least one solution in Wn,p(, ).

Corollary . Let conditions (i) and (ii) of Theorem . hold. If ‖γ ‖p >  is small enough,
then BVP (.), (.) has at least one solution in Wn,p(, ).

Remark . Theorem .-. in [] are special cases of above Theorem ..

Next, we give some results on the uniqueness of solutions for BVP (.), (.).

Theorem . Let f : [, ]×R
n →R satisfy Lp-Carathéodory’s conditions. Suppose that

(i) there exist functions αj(t),βj(t) ∈ Lp[, ], j = , , . . . ,n – , and a constant σ >  such
that

∣∣f (t,u,u, . . . ,un–) – f (t, v, v, . . . , vn–)
∣∣

≤
n–∑
j=

αj(t)|uj – vj| +
n–∑
j=

βj(t)|uj – vj|σ
(.)

for a.e. t ∈ [, ] and all (u,u, . . . ,un–), (v, v, . . . , vn–) ∈R
n;

(ii)

a :=  –
n–∑
j=

Aj‖αj‖p > , (.)

where the constants Aj , j = , , . . . ,n –  are given in Lemma .;
(iii)

a
σ

σ–
(
σ

σ
–σ – σ


–σ

)
+ b


σ–

∥∥f (t, , . . . , )∥∥p < , (.)

where b :=
∑n–

j= Aσ
j ‖βj‖p.

Then BVP (.), (.) has at least one solution u(t) ∈ Wn,p(, ) and in particular has at
most one solution u(t) ∈Wn,p(, ) with ‖u(n)‖p < 

 (
a
b )


σ– .
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Proof We note that assumption (.) implies

∣∣f (t,u,u, . . . ,un–)∣∣ ≤
n–∑
j=

αj(x)|uj| +
n–∑
j=

βj(x)|uj|σ +
∣∣f (t, , . . . , )∣∣

for a.e. x ∈ [, ] and all (u,u, . . . ,un–) ∈ R
n. Accordingly from Theorem ., BVP (.),

(.) has at least one solution inWn,p(, ).
Now, suppose that u(t), u(t) are two solutions of BVP (.), (.) with ‖u(n–)i ‖∞ <


 (

a
b )


σ– , i = , . Let w(t) = u(t) – u(t). Then w(t) satisfies the boundary condition (.)

and

∣∣w(n)(t)
∣∣ ≤

n–∑
j=

αj(t)
∣∣w(j)(t)

∣∣ + n–∑
j=

βj(t)
∣∣w(j)(t)

∣∣σ .

Similarly to the proof of Theorem ., we can show easily that

∥∥w(n)∥∥
p ≤ ( – a)

∥∥w(n)∥∥
p + b

∥∥w(n)∥∥σ

p ,

which gives

b
∥∥w(n)∥∥σ

p – a
∥∥w(n)∥∥

p ≥ . (.)

Now consider two cases. If b = , then ‖w(n)‖p =  from (.). Since ‖w‖∞ ≤ A‖w(n)‖p,
we have w(t) ≡  on [, ], i.e., u(t) ≡ u(t) on [, ].
If b > , let h(t) = btσ – at. Then h(‖w(n)‖p) ≥  from (.). It follows that h() =

h(( ab )


σ– ) =  and h(t) <  on (, ( ab )


σ– ). Since ‖w(n)‖p ≤ ‖u(n) ‖p + ‖u(n) ‖p < ( ab )


σ– , we get
‖w(n)‖p = . Consequently, u(t) ≡ u(t) on [, ]. This completes the proof of the theo-
rem. �

Corollary . Let conditions (i) and (ii) of Theorem . hold. If b = , then BVP (.), (.)
has exactly one solution in Wn,p(, ).

Finally, we give two examples to which our results can be applicable.

Example . Consider the boundary value problem

⎧⎨
⎩u′′′ =




t–

 + t–


 u



(
u′) 

 +



(
u′′), a.e. t ∈ (, ),

u() = u′() = u′′() = .

Let f (t,u,u,u) = 
 t

– 
 + t– 

 u


 u



 + 

u

. Then it is easy to see that f satisfies

L-Carathéodory’s conditions. By the inequality A

p B


q ≤ A

p + B
q for any A,B >  with

p,q >  and 
p +


q = , we get

∣∣f (t,u,u,u)∣∣ ≤ 


t–

 +



t–


 |u| + 


t–


 |u| + 


u.
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Let α(t) = 
 t

– 
 , α(t) = 

 t
– 
 , α(t) = , β(t) = β(t) = , β(t) = 

 , γ (t) =

 t

– 
 , σ = .

Then we have

∣∣f (t,u,u,u)∣∣ ≤
∑
j=

αj(t)|uj| +
∑
j=

βj(t)|uj|σ + γ (t).

It is easy to compute that

‖α‖ =
√



, ‖α‖ = 
√



, ‖α‖ = , ‖γ ‖ =

√



,

‖β‖ = , ‖β‖ = , ‖β‖ = 


,

A =
√



, A =

√



, A = .

Consequently, we have

a =  –
∑
j=

Aj‖αj‖p = 

–

√



> , b =
∑
j=

Aσ
j ‖βj‖ = 


,

and

a
σ

σ– (σ
σ

–σ – σ


–σ ) + b


σ– ‖γ ‖ = –
(


–

√



)

· 

+

√



< .

Thus by Theorem ., the above boundary value problem has at least one solution in
W ,(, ).

Example . Consider the boundary value problem

⎧⎪⎨
⎪⎩
u′′′ =




t–

 +

√



t–

 sin

(
u + u′) +

√



g
(
u′′), a.e. t ∈ (, ),

u() = u′() = u′′() = ,

where

g(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√
u – , u ≥ √

,


u,  ≤ u ≤ √

,

–


u, –

√
 ≤ u ≤ ,

–
√
u – , u ≤ –

√
.

Let f (t,u,u,u) = 
 t

– 
 +

√

 t– 

 sin (u + u) +
√

 g(u′′). Then it is easy to see that f

satisfies L-Carathéodory’s conditions and

∣∣f (t,u,u,u) – f (t, v, v, v)
∣∣

≤
√



t–

 |u – v| +

√



t–

 |u – v| + 


|u – v| +

√



|u – v|.
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Let α(t) =
√

 t– 

 , α(t) =
√

 t– 

 , α(t) = 
 , β(t) = β(t) = , β(t) =

√


 . Then it is easy to
compute that

‖α‖ = 

, ‖α‖ = 


, ‖α‖ = 


,

‖β‖ = , ‖β‖ = , ‖β‖ =
√



,

A =
√



, A =

√



, A = .

Consequently, we have

a =  –
∑
j=

Aj‖αj‖p =  –

√



–

√



–


>


> , b =

√



.

Since ‖f (t, , , )‖ = ‖ 
 t

– 
 ‖ =

√


 and σ = , we have

a
σ

σ–
(
σ

σ
–σ – σ


–σ

)
+ b


σ–

∥∥f (t, , , )∥∥ <
(



)( 

–



)
+

√



·
√



= .

Thus by Theorem ., the above boundary value problem has at least one solution
u(t) ∈ W ,(, ) and in particular has at most one solution u(t) ∈ W ,(, ) with ‖u′′′‖ <

 (

a
b )


σ– = 

√
a.

Also, since from the equation of the boundary value problem we have

∥∥u′′′∥∥
 ≤ 


∥∥t– 


∥∥
 +

√



∥∥t– 

∥∥
 +

√



∥∥u′′∥∥


≤
√



+


+

√



∥∥u′′′∥∥
,

it follows that

∥∥u′′′∥∥
 ≤

√


 + 


 –
√



≈ . <
√



< 
√
a.

Hence above boundary value problem has a unique solution u(t) ∈W ,(, ).
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