
Zhao Boundary Value Problems 2012, 2012:61
http://www.boundaryvalueproblems.com/content/2012/1/61

RESEARCH Open Access

Asymptotic behavior of stochastic
p-Laplacian-type equation with multiplicative
noise
Wenqiang Zhao*

*Correspondence:
zhaowq.ctbu@gmail.com
School of Mathematics and
Statistics, Chongqing Technology
and Business University, Chongqing
400067, China

Abstract
The unique existence of solutions to stochastic p-Laplacian-type equation with forced
term satisfying some growth and dissipative conditions is established for the initial
value in L2(D). The generation of a continuous random dynamical system and the
existence of a random attractor for stochastic p-Laplacian-type equation driven by
multiplicative noise are obtained. Furthermore, we obtain a random attractor
consisting of a single point and thus the system possesses a unique stationary
solution.
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1 Introduction
The purpose of this paper is to investigate the long-time behavior of solutions to stochastic
p-Laplacian-type equation with multiplicative noise, which reads

du +
(��p(�u) + g(x,u)

)
dt = f (x)dt + bu ◦ dW (t), (.)

u(x, ) = u, x ∈D, (.)

�u(t)|∂D = , u(t)|∂D = , (.)

where�p(s) = |s|p–s, p≥ ;D is an open and bounded subset ofRn with regular boundary
∂D; � is the Laplacian with regard to the variable x ∈ D; b is a positive constant; u(t) =
u(x, t) a real-valued variable of x ∈D, t ≥ ;W (t) is mutually independent two-sided real-
valued Wiener process defined on a complete probability space (�,F ,P), where

� =
{
ω ∈ C(R,R) : ω() = 

}

and F is the Borel σ -algebra induced by the compact-open topology of �, and P is the
corresponding Wiener measure on (�,F ). Then we can identifyW (t) with ω(t)

W (t) = ω(t), t ∈R.
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It is known that the random attractor, which characterizes the long-time behavior of
random dynamical systems (RDS) perfectly, was first introduced by [, ] as a general-
ization of a global attractor for deterministic PDE. The existences of the random attractor
for RDS have been richly developed by many authors for all kinds of SPDEs, see [, , ,
, , –, –] and references therein.
In deterministic case, there is a large number of works about the p-Laplacian-type

equation. Temam [] obtained the global attractor for (.) with exterior forcing term
g(x,u) = ku, a simple case. In recent years, Yang et al. [, ] considered the global at-
tractor for a general p-Laplacian-type equation defined both on unbounded domain and
bounded domain, respectively. The uniform attractor was also investigated by Chen and
Zhong [] in nonautonomous case. In random case, Zhao [] obtained random attractors
for the p-Laplacian-type equation driven by additive noise.
In this paper, we consider the existence of a random attractor for (.)-(.) with exterior

forcing term g(x,u) satisfying some growth conditions. Themultiplicative noise cu◦dW (t)
characterizes, to some extent, some of the minimal fluctuations among environment or a
man-made complex system, which we should take into consideration in order to model
perfectly the concrete problem.
One difficulty in our discussions is to estimate the solution operator in the stronger

norm space V , where V ⊂ H ⊂ V ′ is the Gelfand triple, see Section . It seems that the
methods used in unperturbed case (see [, , ]) are completely unavailable because of
the leading term ��p(�u) with high order differentials and the forcing term g(x,u) with
p –  times growth.
We need to develop some techniques to surmount the obstacle, though we also follow

the classic approach (based on the compact embedding) widely used in [, , , –]
and so on. By using the properties of Dirichlet form for the Laplacian, we overcome this
obstacle and obtain the estimate of the solution in the Sobolev space V, which is weaker
than V . Here some basic results about the Laplacian are used.We refer to [] to obtain the
details on Dirichlet forms for a negative definite and self-adjoint operator. The existence
and uniqueness of a continuous RDS are proved by employing the standard in [].
We give the outline of this paper. In Section , we present some preliminaries for the

theory of RDS and the results about the Laplacian which are necessary to our discussion.
In Section , we prove the existence and uniqueness of a continuous RDS which is gen-
erated by the solution to stochastic p-Laplacian-type equation with multiplicative noise.
In Section , we give some estimates for the solution operators in given Hilbert space and
then obtain a random attractor for this RDS. In the last part, we show that the system
possesses a unique stationary point under a given condition.

2 Preliminaries
In this section, we present some basic notions about RDS, which can be found in [, –].
We also list the Sobolev spaces, some results about the Laplacian and its Dirichlet forms.
The basic notion in RDS is a metric dynamical system (MSD) θ ≡ (�,F ,P, {θt}t∈R),

which is a probability space (�,F ,P) with a group θt , t ∈ R, of measure preserving trans-
formations of (�,F ,P).MSD θ is said to be ergodic under P if for any θ -invariant setB ∈F
we have either P(B) =  or P(B) = , where the θ -invariant set is in the sense θtB = B for
B ∈F and all t ∈R.
RDS is an object consisting of a MSD and a cocycle over this MSD, where the MSD is

used to model random perturbations. Let X be complete and separable metric space with
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metric d and Borel sigma-algebra B(X), i.e., the smallest σ -algebra on X which contains
all open subsets.

Definition . () A continuous RDS on (X,d) over a MSD θ is a family of measurable
mappings

ϕ :R+ × � ×X → X, (t,ω,x) 
→ ϕ(t,ω)x

such that for P-a.e. ω ∈ �, the mappings ϕ(t,ω) satisfy the cocycle property

ϕ(,ω) = id, ϕ(t + s,ω) = ϕ(t, θsω)ϕ(s,ω)

for all s, t ∈R
+, and the mappings ϕ(t,ω) : x 
→ ϕ(t,ω)x are continuous in X for all t ∈ R

+.
() A continuous stochastic flow is a family of measurable mappings S(t, s;ω) : X → X,

–∞ ≤ s ≤ t ≤ ∞, such that for P-a.e. ω ∈ �,

S(t, r;ω)S(r, s;ω)x = S(t, s;ω)x, x ∈ X,

S(t, s;ω)x = S(t – s, ; θsω)x, x ∈ X

for all s ≤ r ≤ t, and x 
→ S(t, s;ω)x are continuous in X for all s ≤ t.
() A random compact set {K(ω)}ω∈� is a family of compact sets indexed by ω such that

for every x ∈ X the mapping ω 
→ d(x,K(ω)) is measurable with respect to F .
() A random set {A(ω)}ω∈� is an attracting set if for every deterministic bounded subset

B ⊂ X and P-a.e. ω ∈ �,

lim
t→∞dist

(
ϕ(t, θ–tω)B,A(ω)

)
= ,

where dist(·, ·) is defined by dist(A,B) = supx∈A infy∈B d(x, y).
() A random set {A(ω)}ω∈� is an absorbing set if for every deterministic bounded subset

B ⊂ X and P-a.e. ω ∈ �, there exists tB(ω) >  such that for all t ≥ tB(ω),

ϕ(t, θ–tω)B⊂A(ω),

where ϕ(t, θ–tω)B =
⋃

x∈B ϕ(t, θ–tω)x.

It is obvious that an absorbing set is an attracting set. The attraction in the definition of
the attracting set is a form of pathwise convergence. In fact, the attracting set also attracts
in the weaker convergence in probability, in the sense, for all ε >  and every bounded set
B ⊂ X,

lim
t→∞P

(
distX

(
ϕ(t, θ–tω)B,A(ω)

)
> ε

)
= .

Definition . A random compact set ω 
→ A(ω) is called to be a random attractor for
the RDS ϕ if {A(ω)}ω∈� is an attracting set and ϕ(t,ω)A(ω) = A(θtω) for ω ∈ � and all
t ≥ .
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Theorem . (see []) Assume that ϕ(t,ω) is a continuous RDS on X over MDS θ . If there
exists a compact random absorbing set {K(ω)}ω∈�, then ϕ(t,ω) possesses a random attrac-
tor {A(ω)}ω∈� defined by

A(ω) =
⋃

B∈B(X)

⋂
s≥

⋃
t≥s

ϕ(t, θ–tω)B, (.)

where B(X) denotes all the bounded subsets of X.

Let Lp(D) be the p-times integrable functions space on D with norm denoted by ‖ · ‖p,
and V =W ,p

 (D) with Sobolev equivalent norm (see p. of [])

‖v‖V = ‖�v‖p =
(∫

D
|�v|p dx

) 
p
, v ∈ V .

Put the dual V ′ of V by V ′ =W–,p′ (D), where

u ∈W–,p′
(D) ⇔ u =

∑
|α|≤

Dαfα , fα ∈ Lp
′
(D)

and 
p +


p′ = . Let H = L(D) with the usual scalar product and norm {(·, ·),‖ · ‖}. Then

we have the following Gelfand triple

V ⊂H ≡H ′ ⊂ V ′,

or concretely

W ,p
 (D)⊂ L(D)⊂W–, p

p– (D),

where the injections are continuous and each space is dense in the following one.
We know that the Laplacian �, which is negative definite and self-adjoint, is the gen-

erator (with domain W ,p
 (D)) of a strongly continuous semigroup M(t) on Lp(D) which

is contractive and positive. Here “contractive” means ‖M(t)‖p ≤  and “positive” means
M(t)u ≥  for every  ≤ u ∈ Lp(D). The resolvent of generator � is denoted by R(λ,�),
λ ∈ ρ(�), where ρ(�) is the resolvent set of �. By the Lumer-Phillips Theorem in [], it
follows that (,∞)⊂ ρ(�) and for u ∈ Lp(D)

∥∥λR(λ,�)u
∥∥
p ≤ ‖u‖p, λ > .

Moreover, for u ∈ D(�), R(λ,�)u ∈ D(�) and �R(λ,�)u = R(λ,�)�u, where D(�) is the
domain of �.
Since � is negative definite and self-adjoint, then � is associated with the Dirichlet

forms E by

E (u, v) =
(√

–�u,
√
–�v

)
, u, v ∈H

(D)∩H(D). (.)

http://www.boundaryvalueproblems.com/content/2012/1/61
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E is unique determined by �. For u, v ∈ H
(D)∩H(D), we define a new inner product by

E (λ)(u, v) = λ
(
u – λR(λ,�)u, v

)
, λ > , (.)

where R(λ,�) is the resolvent of�. Then it follows fromRef. [] that E (λ)(u, v) ↑ as λ → ∞,
and

lim
λ→∞E (λ)(u, v) = ε(u, v) (.)

for u, v ∈H
(D)∩H(D).

3 Existence and uniqueness of RDS
In this section, we show the existence and uniqueness of a continuous RDS for the follow-
ing stochastic p-Laplacian-type equation with multiplicative noise,

du +
(
��p(�u) + g(x,u)

)
dt = f (x)dt + bu ◦ dW (t), (.)

u(x, ) = u, x ∈ D, (.)

�u(t)|∂D = , u(t)|∂D = , (.)

where �p(s) = |s|p–s, p ≥ . To study System (.)-(.), we assume that the nonlinearity
g(x,u) defined in D×R satisfies the following conditions:

g(x,u)u≥ k|u|q – φ(x), φ ∈ L(D),k ∈R
+, (.)

∣∣g(x,u)∣∣ ≤ k|u|q– + φ(x), φ ∈ L
q

q– (D),k ∈R
+, (.)

(
g(x,u) – g(x,u)

)
(u – u) ≥ k|u – u|, k ∈R, (.)

where  ≤ q ≤ p < ∞.
For ω ∈ �, we define a nonlinear operator A on V by

A
(
u(t),ω

)
= ��

(
�u(t)

)
+ g

(
x,u(t)

)
– f (x), u(t) ∈ V ,x ∈D. (.)

Then (.) reads

du(t)
dt

+A
(
u(t),ω

)
= bu(t) ◦ dW (t). (.)

Since p ≥ q, by our assumption (.)-(.) and f ∈ V ′, it is easy to check that for given
ω ∈ �, the operatorA : u 
→ A(u,ω) mappingW ,p(D) intoW–,p′ (D) is well defined, where
p′ = p

p– .
Let (�,F ,P) be the probability space as in the introduction. Define the Wiener shift by

θtω(s) = ω(s + t) –ω(t), ω ∈ �, t, s ∈R.

Then θ = (�,F ,P, {θt}t∈R) is an ergodic MDS.

http://www.boundaryvalueproblems.com/content/2012/1/61
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In order to obtain the existence of a continuous RDS, it is necessary to translate
(.)-(.) into a deterministic system parameterized by ω. To this end, we consider the
Ornstein-Uhlenbeck process. Put

t 
→ z(θtω) := –
∫ 

–∞
eτ (θtω)(τ )dτ , t ∈R,

which solves the Itô differential equation

dz(θtω) + z(θtω)dt = dW (t), z(–∞) = ,

where the Ornstein-Uhlenbeck constant equals to .
Note that z(θtω) is a Gaussian process with mathematical expectation E[z(θtω)] ≡  and

variance σ (t) = 
 , see [], whereas limt→∞ 

t
∫ t
 z(θτω)dτ = . Furthermore, from [, ,

], the random variable |z(ω)| is continuous in t for P-a.e. ω ∈ � and grows sublinearly,
i.e., limt→±∞ |z(θtω)|

|t| = .
We now translate (.) by one classical change of variables

v(t) = e–bz(θtω)u(t). (.)

Then we have

du(t) = ebz(θtω) dv(t) – bebz(θtω)z(θtω)v(t)dt + bu(t) ◦ dW (t).

Then, formally, the variable v(t) satisfies the following equations parameterized by ω ∈ �

but without white noise:

dv
dt

+ eb(p–)z(θtω)��(�v) + e–bz(θtω)g
(
x, ebz(θtω)v

)
= e–bz(θtω)f (x) + bz(θtω)v, (.)

v(s) = e–bz(θsω)u(s), x ∈D, s ∈R, (.)

�v(t) = , v(t) = , x ∈ ∂D, t ≥ s, (.)

where g(x,u) satisfies (.)-(.) and f is given in V ′,  ≤ q ≤ p < ∞.
For convenience, we put

A
(
v(t),ω

)
=eb(p–)z(θtω)��(�v) + e–bz(θtω)g

(
x, ebz(θtω)v

)
– e–bz(θtω)f (x) – bz(θtω)v.

(.)

Then we have

dv(t)
dt

+A
(
v(t),ω

)
= . (.)

Note that System (.)-(.) and System (.)-(.) are equivalent by (.). Let
u(t,ω; s,u) and v(t,ω; s, v) be the solution of System (.)-(.) and System (.)-(.)
respectively. It is easy to check that if System (.)-(.) possess a unique solution in V for
all initial values inH then System (.)-(.) possess a unique solution in V for the same

http://www.boundaryvalueproblems.com/content/2012/1/61
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initial value in H . Moreover, if the mapping v 
→ v(t,ω; s, v) is continuous in H for the
initial value in H , then the mapping u 
→ u(t,ω; s,u) is also continuous in H , vice verse.
We now show the existence and uniqueness of solution to System (.)-(.).

Theorem . Assume that g satisfies (.)-(.) and f is given in V ′,  ≤ q ≤ p <∞. Then
for all u ∈H with u = u(s), System (.)-(.) has a unique solution

u(t,ω; s,u) ∈ Lploc
(
[s,∞),V

) ∩C
(
[s,∞),H

)

for all t ≥ s and P-a.e. ω ∈ �. Furthermore, the mapping u 
→ u(t,ω; s,u) from H into H
is continuous for all t ≥ s.

Proof We first show that for every u ∈ H there exists a unique solution u(t,ω; s,u) ∈
Lploc([s,∞),V ). By Theorem .. and Exercise .. in [], it suffices to show that for
every fixed ω ∈ �, A(u(t),ω) possesses Hemi-continuity, Monotonicity, Coercivity, and
Bounded-ness properties (for the definitions of these notions please refer to p. of []).
But the proofs are an analogy of the corresponding works in []. So we omit them here.
We then show that the solution is in C([s,T],H). By our assumptions that p ≥ q and

f ∈ V ′, we can check thatA(v(t),ω)mapsLp([s,T],V ) to Lp′ ([s,T],V ′) forω ∈ �. Thus if v ∈
Lp([s,T],V ), then (.) implies that dv

dt ∈ Lp′ ([s,T],V ′). Now by the general fact (see p.
of []) it follows that v is almost everywhere equal to a function belonging to C([s,T],H).
Hence by the transformation (.) and the continuous property of Ornstein-Uhlenbeck
process, u(t,ω; s,u) is almost everywhere equal to a function belonging to C([s,T],H).
We finally prove the continuity of the mapping u 
→ u(t,ω; s,u) from H into H . It suf-

fices to prove that the mapping v 
→ v(t,ω; s, v) is continuous from H into H .
Let v, v be two different initial values at initial value time s, and corresponding solu-

tions be denoted by v(t,ω; s, v) and v(t,ω; s, v) respectively. Then it follows from (.)
that

d
dt

(
v(t) – v(t)

)
+A

(
v(t),ω

)
–A

(
v(t),ω

)
= , (.)

where A(v(t),ω) is defined in (.). Note that

(
��

(
�v(t)

)
–��

(
�v(t)

)
, v(t) – v(t)

)
=

(∣∣�v(t)
∣∣p–�v(t) –

∣∣�v(t)
∣∣p–�v(t),�v(t) –�v(t)

)

=
∫
D

(∣∣�v(t)
∣∣p + ∣∣�v(t)

∣∣p – ∣∣�v(t)
∣∣p–�v(t)�v(t) –

∣∣�v(t)
∣∣p–�v(t)�v(t)

)
dx

≥
∫
D

(∣∣�v(t)
∣∣p + ∣∣�v(t)

∣∣p – ∣∣�v(t)
∣∣p–∣∣�v(t)

∣∣ – ∣∣�v(t)
∣∣p–∣∣�v(t)

∣∣)dx
=

∫
D

(∣∣�v(t)
∣∣p– – ∣∣�v(t)

∣∣p–)(∣∣�v(t)
∣∣ – ∣∣�v(t)

∣∣)dx≥ .

Because the function up– is increasing for u≥  and p≥ , the last inequality in the above
proof is correct. Then by a simple computation we find that for fixed ω ∈ �,

(
A

(
v(t),ω

)
–A

(
v(t),ω

)
, v(t) – v(t)

) ≥ (
k – bz(θtω)

)∥∥v(t) – v(t)
∥∥
, (.)

http://www.boundaryvalueproblems.com/content/2012/1/61
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where k is in (.). Hence, multiplying (.) by v(t) – v(t), integrating overD, and using
(.), we get that

d
dt

∥∥v(t) – v(t)
∥∥
 + 

(
k – bz(θtω)

)∥∥v(t) – v(t)
∥∥
 ≤ . (.)

Using Gronwall’s lemma to (.) from s to t, it yields that

∥∥v(t) – v(t)
∥∥
 ≤ e

∫ t
s (–k+bz(θτ ω))dτ‖v – v‖. (.)

Then, the continuity of the mapping v 
→ v(t,ω; s, v) from H into H is followed from the
contraction property (.). This finishes the total proofs of Theorem .. �

We now define

S(t, s;ω)u = u(t,ω; s,u), t ≥ s ∈R, (.)

with u = u(s). By the uniqueness part of the solution in Theorem ., we immediately get
that S(t, s;ω) is a stochastic flow; that is, for every u ∈H and t ≥ r ≥ s ∈R

S(t, s;ω)u = S(t, r;ω)S(r, s;ω)u, (.)

S(t, s;ω)u = S(t – s, ; θsω)u. (.)

Hence if we define

ψ(t,ω)u = S(t, ;ω)u = u(t,ω; ,u)

with u = u(), then by Theorem . ψ is a continuous RDS associated with System (.)-
(.).
We define

ϕ(t,ω)v = v(t,ω; , v) = e–bz(θtω)ψ(t,ω)u = e–bz(θtω)u(t,ω; ,u).

Then ϕ is a continuous RDS associated with System (.)-(.), with the following fact

ϕ(t, θ–tω)v = v(,ω; –t, v) for all t ≥ . (.)

That is to say, ϕ(t, θ–tω)v can be interpreted as the position of the trajectory at time ,
which was in v at time –t (see []).
It is easy to check that ψ possesses a random attractor provided that ϕ possesses a ran-

dom attractor. Hence in the following we only concentrate on the RDS ϕ.

4 Existence of compact random attractor for RDS
In this section, we will compute some estimates in space H = L(D) and V =H

(D). Note
that in the following ω ∈ �; the results will hold for P-a.e. ω ∈ � and the generic constants
c or ci, i = , , . . . are independent of λ >  in the context, where λ ∈ ρ(�).

http://www.boundaryvalueproblems.com/content/2012/1/61
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Lemma . Suppose that g satisfies (.)-(.) and f is given in V ′. Then there exist ran-
dom radii r(ω), r(ω) > , such that for all � >  there exists s = s(ω,�) ≤ – such that for all
s ≤ s(ω,�) and all v ∈H with ‖v‖ ≤ �, the following inequalities hold for P-a.e. ω ∈ �,

∥∥v(t,ω; s, v)∥∥
 ≤ r (ω) for all t ∈ [–, ],

∫ 

–

(∥∥�v(τ ,ω; s, v)
∥∥p
p +

∥∥v(τ ,ω; s, v)∥∥q
q

)
dτ ≤ r(ω),

where v(t,ω; s, v) is the solution to Equation (.) with v = v(s).

Proof For simplicity, we abbreviate v(t) =: v(t,ω; s, v) for t ≥ s with v = v(s). Multiplying
both sides of (.) by v(t) and then integrating over D, we obtain that



d
dt

‖v‖ + eb(p–)z(θtω)
(
��(�v), v

)
+ e–bz(θtω)

∫
D
g
(
x, ebz(θtω)v

)
vdx

= e–bz(θtω)(f , v) + bz(θtω)‖v‖,
(.)

where

eb(p–)z(θtω)
(
��(�v), v

)
= eb(p–)z(θtω)‖�v‖pp, (.)

e–bz(θtω)
∫
D
g
(
x, ebz(θtω)v

)
vdx ≥ keb(q–)z(θtω)‖v‖qq – e–bz(θtω)‖φ‖, (.)

e–bz(θtω)(f , v)≤ e–bz(θtω)‖f ‖p′ ‖v‖p ≤ 

eb(p–)z(θtω)‖�v‖pp + ce–bz(θtω)‖f ‖p′

p′ . (.)

Then by (.)-(.), we have

d
dt

‖v‖ + eb(p–)z(θtω)‖�v‖pp + keb(q–)z(θtω)‖v‖qq
≤ bz(θtω)‖v‖ + e–bz(θtω)

(
c‖f ‖p′

p′ + ‖φ‖
)

(.)

≤ bz(θtω)‖v‖ + ce–bz(θtω).

Since q ≥ , then by using Sobolev’s embedding inequality and inverse Young’s inequality
we see that

keb(q–)z(θtω)‖v‖qq ≥ ckeb(q–)z(θtω)‖v‖q ≥ ‖v‖ – ce–bz(θtω). (.)

Then it follows from (.) and (.) that

d
dt

‖v‖ ≤ (
– + bz(θtω)

)‖v‖ + ce–bz(θtω). (.)

By employing Gronwall’s lemma over interval [s, t] with t ∈ [–, ], we find that

∥∥v(t)∥∥
 ≤ e

∫ t
s (–+bz(θτ ω))dτ

∥∥v(s)∥∥
 + c

∫ t

s
e–bz(θτ ω)e

∫ t
τ (–+bz(θσ ω))dσ dτ

= e
∫ 
t (–bz(θτ ω))dτ

(
e
∫ 
s (–+bz(θτ ω))dτ

∥∥v(s)∥∥
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+ c
∫ 

–∞
e–bz(θτ ω)+

∫ 
τ bz(θσ ω)dσ+τ dτ

)
(.)

≤ e
∫ 
–(+b|z(θτ ω)|)dτ

(
e
∫ 
s (–+bz(θτ ω))dτ �

+ c
∫ 

–∞
e–bz(θτ ω)+

∫ 
τ bz(θσ ω)dσ+τ dτ

)

for ‖v(s)‖ ≤ �. By the properties of the Ornstein-Uhlenbeck process, we deduce that

lim
s→–∞ e

∫ 
s (–+bz(θτ ω))dτ � =  (.)

and

∫ 

–∞
e–bz(θτ ω)+

∫ 
τ bz(θσ ω)dσ+τ dτ < +∞. (.)

Hence, given every fixed � >  and ‖v(s)‖ ≤ �, we can choose s(ω,�) ≤ –, depending
only on ω and �, such that for all s ≤ s(ω,�) and t ∈ [–, ],

∥∥v(t,ω; s, v)∥∥
 ≤ e

∫ 
–(+b|z(θτ ω)|)dτ

(
 + c

∫ 

–∞
e–bz(θτ ω)+c

∫ 
τ bz(θσ ω)dσ+τ dτ

)
, (.)

which gives an expression for r (ω). Replacing t by τ in (.) and integrating for τ over
intervals [–, ], then using (.) it yields that for all s≤ s(ω,�),

∫ 

–

(
eb(p–)z(θτ ω)∥∥�v(τ ,ω; s, v)

∥∥p
p + keb(q–)z(θτ ω)∥∥v(τ ,ω; s, v)∥∥q

q

)
dτ

≤ b
∫ 

–
z(θτω)

∥∥v(τ )∥∥
 dτ + c

∫ 

–
e–bz(θτ ω) dτ +

∥∥v(–)∥∥
 (.)

≤ br (ω)
∫ 

–
z(θτω)dτ + c

∫ 

–
e–bz(θτ ω) dτ + r (ω).

Then we have

∫ 

–

(∥∥�v(τ ,ω; s, v)
∥∥p
p +

∥∥v(τ ,ω; s, v)∥∥q
q

)
dτ

≤ m(ω)
(
br (ω)

∫ 

–
z(θτω)dτ + c

∫ 

–
e–bz(θτ ω) dτ + r (ω)

)
,

(.)

where

m(ω)– =min
{
min

–≤t≤

{
eb(p–)z(θτ ω)}, min

–≤t≤

{
keb(q–)z(θτ ω)}}.

Thus the right-hand side of (.) gives an expression for r(ω). �

In the following, we shall obtain the regularity of the solution to stochastic p-Laplacian-
type equation. This is the most challenging part in our discussion. Because of the non-
linearity of driven ��(�u) and function g(x,u) in Equation (.), it seems difficult to
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derive the V -norm estimate as in [], where the author only deals with a linear case, i.e.,
g(x,u) = ku. So we relax to estimate the solution in a weaker Sobolev V = H

(D) with
equivalent norms denoted by ‖∇v‖ for v ∈ V. Here, just as stated in the introduction,
we use the properties of Dirichlet forms for the Laplacian �.

Lemma . Suppose that g satisfies (.)-(.) and f is given in V ′. Then there exists a
random radius r(ω) > , such that for all � >  there exists s = s(ω,�)≤ – such that for all
s ≤ s(ω,�) and all v ∈H with ‖v‖ ≤ �, the following inequality holds for P-a.e. ω ∈ �

∥∥∇v(t,ω; s, v)
∥∥
 ≤ r(ω) for all t ∈ [–, ],

where v(t,ω; s, v) is the solution to (.) with v = v(s).

Proof Taking the inner product of (.) with –λ�R(λ,�)v where λ >  and v ∈ V , we get
that

–
∫
D
vtλ�R(λ,�)vdx

= eb(p–)z(θtω)
∫
D

��(�v)λ�R(λ,�)vdx

+ e–bz(θtω)
∫
D
g
(
x, ebz(θtω)v

)
λ�R(λ,�)vdx

– e–bz(θtω)
∫
D
f (x)λ�R(λ,�)vdx – bz(θtω)

∫
D
vλ�R(λ,�)vdx.

(.)

By the semigroup theory (see []) we have

�R(λ,�)v = R(λ,�)�v = λR(λ,�)v – v (.)

for v ∈ D(�), the domain of Laplacian �. We now estimate all terms on the right-hand
side of (.). Employing (.) and integrating by parts, it yields that

∫
D

��(�v)λ�R(λ,�)v = λ

∫
D

��(�v)
(
λR(λ,�)v – v

)
dx

= –λ

∫
D

�
(|�v|p–�v

)
vdx

+ λ

∫
D

�
(|�v|p–�v

)
λR(λ,�)vdx

= –λ‖�v‖pp + λ

∫
D

(|�v|p–�v
)
λ�R(λ,�)vdx (.)

≤ –λ‖�u‖pp + λ

∫
D

|�u|p–∣∣λR(λ,�)�v
∣∣dx

≤ –λ‖�v‖pp + λ‖�v‖p–p
∥∥λR(λ,�)�v

∥∥
p

≤ –λ‖�v‖pp + λ‖�v‖pp = ,

where we use the contraction property of λR(λ,�) on Lp(D), i.e.,

∥∥λR(λ,�)�v
∥∥
p ≤ ‖�v‖p (.)

http://www.boundaryvalueproblems.com/content/2012/1/61
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for�v ∈ Lp(D) and every λ > . By our assumption (.), alongwith (.) for q, the second
term on the right-hand side of (.) is estimated as

e–bz(θtω)
∫
D
g
(
x, ebz(θtω)v

)
λ�R(λ,�)vdx

≤ e–bz(θtω)
∫
D

∣∣g(x, ebz(θtω)v)∣∣∣∣λR(λ,�)�v
∣∣dx

≤ e–bz(θtω)
∫
D

(
keb(q–)z(θtω)|v|q– + φ(x)

)∣∣λR(λ,�)�v
∣∣dx

≤ keb(q–)z(θtω)‖v‖q–q
∥∥λR(λ,�)�v

∥∥
q + e–bz(θtω)‖φ‖q′

∥∥λR(λ,�)�v
∥∥
q

≤ keb(q–)z(θtω)‖v‖q–q ‖�v‖q + e–bz(θtω)‖φ‖q′ ‖�v‖q
≤ keb(q–)z(θtω)‖v‖qq + keb(q–)z(θtω)‖�v‖qq + e–bz(θtω)‖�v‖qq + e–bz(θtω)‖φ‖q′

q′ ,

(.)

where we employ Young’s inequality ab ≤ ar + b r
r– for r >  twice. But, by Sobolev’s in-

equality and Young’s inequality, it yields that

keb(q–)z(θtω)‖�v‖qq ≤ ceb(q–)z(θtω)‖�v‖qp
= e

bq(p–)
p z(θtω)‖�v‖qp.ce

b(q–p)
p z(θtω) (.)

≤ eb(p–)z(θtω)‖�v‖pp + ce–bz(θtω)

and by (.) we have

e–bz(θtω)‖�v‖qq =

k
e–b(q–)z(θtω) · keb(q–)z(θtω)‖�v‖qq

≤ 
k
e–b(q–)z(θtω)

(
eb(p–)z(θtω)‖�v‖pp + ce–bz(θtω)

)
(.)

≤ 
k
eb(p–q–)z(θtω)‖�v‖pp + ce–b(q+)z(θtω).

Then by (.)-(.), there exist positive constants c such that

e–bz(θtω)
∫
D
g
(
x, ebz(θtω)v

)
λ�R(λ,�)vdx

≤
(
eb(p–)z(θtω) +


k
eb(p–q–)z(θtω)

)
‖�v‖pp (.)

+ keb(q–)z(θtω)‖v‖qq + c
(
e–bz(θtω) + e–bz(θtω) + e–b(q+)z(θtω)

)
.

For the third term on the right-hand side of (.), by (.) we see that

–e–bz(θtω)
∫
D
f (x)λ�R(λ,�)vdx ≤ e–bz(θtω)‖f ‖p′

∥∥λR(λ,�)�v
∥∥
p

≤ e–bz(θtω)‖f ‖p′ ‖�v‖p (.)

≤ eb(p–)z(θtω)‖�v‖pp + e–bz(θtω)‖f ‖p′
p′ .
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On the other hand, by (.) and the Dirichlet forms E (.), we have

–
∫
D
vtλ�R(λ,�)vdx = E (λ)(v, vt), –

∫
D
vλ�R(λ,�)vdx = E (λ)(v, v). (.)

Then it follows from (.), (.) and (.)-(.) that

E (λ)(v, vt) ≤ p(θtω)‖�v‖pp + p(θtω)‖v‖qq + p(θtω) + bz(θtω)E (λ)(v, v), (.)

where

p(θtω) = eb(p–)z(θtω) +

k
eb(p–q–)z(θtω),

p(θtω) = keb(q–)z(θtω),

p(θtω) = c
(
e–bz(θtω) + e–bz(θtω) + e–b(q+)z(θtω)

)

and c is a positive constant independent of λ. So taking limit on both sides of (.) for
λ → ∞ and associating with (.) and (.), we deduce that



d
dt

∥∥∇v(t)
∥∥
 ≤ p(θtω)‖�v‖pp + p(θtω)‖v‖qq + bz(θtω)

∥∥∇v(t)
∥∥
 + p(θtω). (.)

Replacing t by τ in (.) and integrating τ from s to t (– ≤ s≤ t ≤ ), it yields that

∥∥∇v(t)
∥∥
 ≤ 

∫ t

s
p(θτω)

∥∥�v(τ )
∥∥p
p dτ + 

∫ t

s
p(θτω)

∥∥v(τ )∥∥q
q dτ

+ 
∫ t

s
p(θτω)dτ + b

∫ t

s
z(θτω)

∥∥∇v(τ )
∥∥
 dτ +

∥∥∇v(s)
∥∥


≤ 
∫ 

–
p(θτω)

∥∥�v(τ )
∥∥p
p dτ + 

∫ 

–
p(θτω)

∥∥v(τ )∥∥q
q dτ

+ 
∫ 

–
p(θτω)dτ + b

∫ 

–
z(θτω)

∥∥∇v(τ )
∥∥
 dτ +

∥∥∇v(s)
∥∥
.

(.)

Put

M(ω) =max
{
max

–≤τ≤

{
p(θτω)

}
, max
–≤τ≤

{
p(θτω)

}
, max
–≤τ≤

{
p(θτω)

}
, max
–≤τ≤

{
z(θτω)

}}
.

Then by Lemma ., (.) reads

∥∥∇v(t)
∥∥
 ≤ M(ω)r(ω) + M(ω) + bM(ω)

∫ 

–

∥∥∇v(τ )
∥∥
 dτ +

∥∥∇v(s)
∥∥
. (.)

Integrating (.) for s over intervals [–, ], we have

∥∥∇v(t)
∥∥
 ≤ M(ω)r(ω) + M(ω) +

(
bM(ω) + 

)∫ 

–

∥∥∇v(τ )
∥∥
 dτ (.)
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for all t ∈ [–, ]. By Poincare’s inequality and Young’s inequality, there exists positive con-
stant c such that

∥∥∇v(s)
∥∥
 ≤ c

∥∥�v(s)
∥∥
 ≤ ∥∥�v(s)

∥∥p
p + c. (.)

Hence by using Lemma . again, along with (.), it follows from (.) that

∥∥∇v(t)
∥∥
 ≤ M(ω)r(ω) + M(ω) +

(
bM(ω) + 

)
r(ω) + c,

with t ∈ [–, ], which gives an expression for r(ω). This completes the proof. �

By Theorem . and Lemma ., we have obtained our main result in this section.

Theorem . Assume that g satisfies (.)-(.) and f is given in V ′. Then the RDS ϕ(t,ω)
generated by System (.)-(.) possesses a random attractor {A(ω)}ω∈� defined by

A(ω) =
⋃

B∈B(H)

⋂
s≥

⋃
t≥s

ϕ(t, θ–tω)B,

where B(H) denotes all the bounded subsets of H and the closure is the H-norm.

5 The single point attractor
In this section, we consider a special case, that is, k >  in (.), in which case we find that
the random attractor is just composed of a single point. This shows that System (.)-
(.) possesses an unique stationary solution for every given initial value in the space H .
We begin with a lemma.

Lemma . Assume that g satisfies (.)-(.) and f is given in V ′, k > . Then for s ≤
s ≤ t and v(s), v(s) ∈H, there exists a positive constant k < k such that

∥∥v(t,ω; s, v(s)) – v
(
t,ω; s, v(s)

)∥∥


≤ 
{∥∥v(s)∥∥

e
∫ 
s
(–k–bz(θτ ω))dτ +

(
e
∫ 
s
(–k+bz(θτ ω))dτ

∥∥v(s)∥∥


+ c
∫ 

–∞
e–bz(θτ ω)+c

∫ 
τ (–k+bz(θσ ω))dσ dτ

)
e
∫ 
s
(k–k–bz(θτ ω))dτ

}
e–

∫ t
(k–bz(θτ ω))dτ .

In particular, for each fixed t ∈R and ω ∈ � there exists a single point ςt(ω) in H such that

lim
s→–∞ v

(
t,ω; s, v(s)

)
= ςt(ω), (.)

for every v(s) belonging to the bounded subset B of H. Furthermore, the convergence in (.)
is uniform with respect to all v(s) ∈ B.

Proof Let v(t,ω; si, v(si)) be the solutions to (.) with initial values v(si) ∈H , i = , . Then
we can deduce from (.) that

d
dt

(
v
(
t,ω; s, v(s)

)
– v

(
t,ω; s, v(s)

))

+A
(
v
(
t,ω; s, v(s)

)
,ω

)
–A

(
v
(
t,ω; s, v(s)

)
,ω

)
= .

(.)
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Multiplying (.) by v(t,ω; s, v(s)) – v(t,ω; s, v(s)), integrating over D and using (.),
we find that

d
dt

∥∥v(t,ω; s, v(s)) – v
(
t,ω; s, v(s)

)∥∥


+
(
k – bz(θtω)

)∥∥v(t,ω; s, v(s)) – v
(
t,ω; s,u(s)

)∥∥
 ≤ .

(.)

Now, applying Gronwall’s lemma to (.) from s to t, it yields that

∥∥v(t,ω; s, v(s)) – v
(
t,ω; s, v(s)

)∥∥


≤ ∥∥v(s,ω; s, v(s)) – v(s)
∥∥
e

–
∫ t
s
(k–bz(θτ ω))dτ

≤ 
(∥∥v(s,ω; s, v(s))∥∥

 +
∥∥v(s)∥∥



)
e–

∫ t
s
(k–bz(θτ ω))dτ

= e–
∫ t
(k–bz(θτ ω))dτ

(∥∥v(s,ω; s, v(s))∥∥
 +

∥∥v(s)∥∥


)
e–

∫ 
s
(k–bz(θτ ω))dτ .

(.)

We then estimate ‖v(s,ω; s, v(s))‖. By (.) we have

d
dt

∥∥v(t,ω; s, v(s))∥∥
 + keb(q–)z(θtω)

∥∥v(t,ω; s, v(s))∥∥q
q

≤ bz(θtω)
∥∥v(t,ω; s, v(s))∥∥

 + ce–bz(θtω).
(.)

By the Sobolev’s embedding inequality and the inverse Young’s inequality, we can choose
 < k < k such that

keb(q–)z(θtω)
∥∥v(t,ω; s, v(s))∥∥q

q ≥ ckeb(q–)z(θtω)
∥∥v(t,ω; s, v(s))∥∥q



≥ k
∥∥v(t,ω; s, v(s))∥∥

 – ce–bz(θtω).
(.)

So by (.) and (.) we get that

d
dt

∥∥v(t,ω; s, v(s))∥∥
 ≤ (

–k + bz(θtω)
)∥∥v(t,ω; s, v(s))∥∥

 + ce–bz(θtω). (.)

Using Gronwall’s lemma to (.) from s to s with s ≤ s ≤ , we get that

∥∥v(s,ω; s, v(s))∥∥


≤ ∥∥v(s)∥∥
e

∫ s
s

(–k+bz(θτ ω))dτ + c
∫ s

s
e–bz(θτ ω)+

∫ s
τ (–k+bz(θσ ω))dσ dτ

= e
∫ 
s
(k–bz(θτ ω))dτ

(
e
∫ 
s
(–k+bz(θτ ω))dτ

∥∥v(s)∥∥
 (.)

+ c
∫ s

s
e–bz(θτ ω)+

∫ 
τ (–k+bz(θσ ω))dσ dτ

)

≤ e
∫ 
s
(k–bz(θτ ω))dτ

(
e
∫ 
s
(–k+bz(θτ ω))dτ

∥∥v(s)∥∥
 + c

∫ 

–∞
e–bz(θτ ω)+

∫ 
τ (–k+bz(θσ ω))dσ dτ

)
.

Similar to the argument of (.), we know that the integral in the last term on the right-
hand side of (.) is convergent. Hence, it follows from (.) and (.) that for every
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fixed t ∈R,

∥∥v(t,ω; s, v(s)) – v
(
t,ω; s, v(s)

)∥∥


≤ 
{∥∥v(s)∥∥

e
∫ 
s
(–k+bz(θτ ω))dτ +

(
e
∫ 
s
(–k+bz(θτ ω))dτ

∥∥v(s)∥∥
 (.)

+ c
∫ 

–∞
e–bz(θτ ω)+c

∫ 
τ (–k+bz(θσ ω))dσ dτ

)
e
∫ 
s
(k–k–bz(θτ ω))dτ

}
e–

∫ t
(k–bz(θτ ω))dτ .

So for every bounded subset B of H and v(s), v(s) ∈ B, it follows from (.) that

∥∥v(t,ω; s, v(s)) – v
(
t,ω; s, v(s)

)∥∥
 →  as s, s → –∞, (.)

since by the properties of the Ornstein-Uhlenbeck process, we have

lim
s→–∞

∥∥v(s)∥∥
e

∫ 
s
(–k+bz(θτ ω))dτ =  (.)

and

lim
s→–∞

∥∥v(s)∥∥
e

∫ 
s
(–k+bz(θτ ω))dτ =  (.)

and

lim
s→–∞

(∫ 

–∞
e–bz(θτ ω)+

∫ 
τ (–k+bz(θσ ω))dσ dτ

)
e
∫ 
s
(k–k–bz(θτ ω))dτ = . (.)

Moreover, the convergence in (.)-(.) is uniformwith respect to v(s), v(s) belonging
to every bounded subset of H . Then (.) implies that for fixed t ∈ R, v(t,ω; s, v(s)) is a
Cauchy sequence in H with respect to s→ –∞. Therefore, by the completeness of H , for
every fixed t ∈R and ω ∈ �, v(t,ω; s, v(s)) has a limit in H denoted by ςt(ω), i.e.,

lim
s→–∞ v

(
t,ω; s, v(s)

)
= ςt(ω). �

Theorem . Assume that g satisfies (.)-(.) and f is given in V ′, k > . Then the
RDS ϕ(t,ω) generated by the solution to (.)-(.) possesses a single point attractor
{A(ω)}ω∈�, i.e., there exists a single point ς(ω) in H such that

A(ω) =
{
ς(ω)

}
.

Proof Put

S(t, s;ω) = v
(
t,ω; s, v(s)

)
.

Then S(t, s;ω) is a stochastic flow associated with System (.)-(.) and the RDS
ϕ(t,ω) = S(t, ;ω). By Lemma . we define

ς(ω) = lim
s→–∞S(, s;ω)v,
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where v = v(s). Thenweneed to prove that {A(ω)}ω∈� = {ς(ω)}ω∈� is a compact attractor.
It is obvious that {ς(ω)}ω∈� is a compact random set. Hence by Definition . it suffices
to prove the invariance and attracting property for {ς(ω)}ω∈�. Since by the continuity of
ϕ(t,ω) and the flow properties of S(t, s;ω), we have

ϕ(t,ω)ς(ω) = ϕ(t,ω) lim
s→–∞S(, s;ω)v = lim

s→–∞ϕ(t,ω)S(, s;ω)v

= lim
s→–∞S(t, ;ω)S(, s;ω)v = lim

s→–∞S(t, s;ω)v

= lim
s→–∞S(t – s, ; θsω)v = lim

s→–∞S(, s – t; θtω)v = ς(θtω).

That is to say, ϕ(t,ω)A(ω) = A(θtω). On the other hand, by the uniform convergence of
(.), it follows from (.) that for every bounded subset B⊂H ,

dist
(
ϕ(t, θ–tω)B,A(ω)

)
= sup

v∈B

∥∥ϕ(t, θ–tω)v – ς(ω)
∥∥


= sup
v∈B

∥∥S(,–t,ω)v – ς(ω)
∥∥
 → 

as t → +∞. This shows that {A(ω)}ω∈� is an attracting set, and thus we complete the
proof. �
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