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Abstract
In this paper, we develop a Jacobi-Gauss-Lobatto collocation method for solving the
nonlinear fractional Langevin equation with three-point boundary conditions. The
fractional derivative is described in the Caputo sense. The shifted
Jacobi-Gauss-Lobatto points are used as collocation nodes. The main characteristic
behind the Jacobi-Gauss-Lobatto collocation approach is that it reduces such a
problem to those of solving a system of algebraic equations. This system is written in
a compact matrix form. Through several numerical examples, we evaluate the
accuracy and performance of the proposed method. The method is easy to
implement and yields very accurate results.
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1 Introduction
Many practical problems arising in science and engineering require solving initial and
boundary value problems of fractional order differential equations (FDEs), see [, ] and
references therein. Several methods have also been proposed in the literature to solve
FDEs (see, for instance, [–]). Spectral methods are relatively new approaches to pro-
vide an accurate approximation to FDEs (see, for instance, [–]).
In this work, we propose the shifted Jacobi-Gauss-Lobatto collocation (SJ-GL-C)

method to solve numerically the following nonlinear Langevin equation involving two
fractional orders in different intervals:

Dν
(
Dμ + λ

)
u(x) = f

(
x,u(x)

)
,  < μ ≤ ,  < ν ≤ ,x ∈ I = [,L], ()

subject to the three-point boundary conditions

u() = s, u(x) = s, u(L) = s, x ∈ ],L[, ()

where Dνu(x) ≡ u(ν)(x) denotes the Caputo fractional derivative of order ν for u(x), λ is a
real number, s, s, s are given constants and f is a given nonlinear source function.
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The existence and uniqueness of solution of Langevin equation involving two fractional
orders in different intervals ( < μ ≤ ,  < ν ≤ ) have been studied in [], and for other
choices of ν and μ, see [, ].
Fractional Langevin equation is one of the basic equations in the theory of the evolution

of physical phenomena in fluctuating environments and provides a more flexible model
for fractal processes as compared with the usual ordinary Langevin equation. Moreover,
fractional generalized Langevin equation with external force is used to model single-file
diffusion. This equation has been the focus of many studies, see, for instance, [–].
Due to high order accuracy, spectral methods have gained increasing popularity for

several decades, especially in the field of computational fluid dynamics (see, e.g., []
and the references therein). Collocation methods have become increasingly popular for
solving differential equations; also, they are very useful in providing highly accurate so-
lutions to nonlinear differential equations [–]. Bhrawy and Alofi [] proposed the
spectral shifted Jacobi-Gauss collocation method to find the solution of the Lane-Emden
type equation. Moreover, Doha et al. [] developed the shifted Jacobi-Gauss collocation
method for solving nonlinear high-order multi-point boundary value problems. To the
best of our knowledge, there are no results on Jacobi-Gauss-Lobatto collocation method
for three-point nonlinear Langevin equation arising in mathematical physics. This par-
tially motivated our interest in such a method.
The advantage of using Jacobi polynomials for solving differential equations is obtaining

the solution in terms of the Jacobi parameters α and β (see [–]). Some special cases
of Jacobi parameters α and β are used for numerically solving various types of differential
equations (see [–]).
The main concern of this paper is to extend the application of collocation method to

solve the three-point nonlinear Langevin equation involving two fractional orders in dif-
ferent intervals. It would be very useful to carry out a systematic study on Jacobi-Gauss-
Lobatto collocation method with general indexes (α,β > –). The fractional Langevin
equation is collocated only at (N – ) points; for suitable collocation points, we use the
(N – ) nodes of the shifted Jacobi-Gauss-Lobatto interpolation (α,β > –). These equa-
tions together with the three-point boundary conditions generate (N + ) nonlinear alge-
braic equations which can be solved usingNewton’s iterativemethod. Finally, the accuracy
of the proposed method is demonstrated by test problems.
The remainder of the paper is organized as follows. In the next section, we introduce

some notations and summarize a few mathematical facts used in the remainder of the
paper. In Section , the way of constructing the Gauss-Lobatto collocation technique for
fractional Langevin equation is described using the shifted Jacobi polynomials; and in Sec-
tion  the proposed method is applied to some types of Langevin equations. Finally, some
concluding remarks are given in Section .

2 Preliminaries
In this section, we give some definitions and properties of the fractional calculus (see, e.g.,
[, , ]) and Jacobi polynomials (see, e.g., [–]).
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Definition . The Riemann-Liouville fractional integral operator of order μ (μ ≥ ) is
defined as

Jμf (x) =


�(μ)

∫ x


(x – t)μ–f (t)dt, μ > ,x > ,

Jf (x) = f (x).
()

Definition . The Caputo fractional derivative of order μ is defined as

Dμf (x) = Jm–μDmf (x) =


�(m –μ)

∫ x


(x – t)m–μ– dm

dtm
f (t)dt,

m –  < μ ≤ m,x > ,
()

wherem is an integer number and Dm is the classical differential operator of orderm.

For the Caputo derivative, we have

Dμxβ =

⎧⎪⎨
⎪⎩
, for β ∈N and β < �μ�,

�(β + )
�(β +  –μ)

xβ–μ, for β ∈N and β ≥ �μ� or β /∈N and β > �μ	. ()

We use the ceiling function �μ� to denote the smallest integer greater than or equal to
μ and the floor function �μ	 to denote the largest integer less than or equal to μ. Also
N = {, , . . .} and N = {, , , . . .}. Recall that for μ ∈ N , the Caputo differential operator
coincides with the usual differential operator of an integer order.
Let α > –, β > – and P(α,β)

k (x) be the standard Jacobi polynomial of degree k. We have
that

P(α,β)
k (–x) = (–)kP(α,β)

k (x), P(α,β)
k (–) =

(–)k�(k + β + )
k!�(β + )

,

P(α,β)
k () =

�(k + α + )
k!�(α + )

.
()

Besides,

DmP(α,β)
k (x) = –m

�(m + k + α + β + )
�(k + α + β + )

P(α+m,β+m)
k–m (x). ()

Let w(α,β)(x) = ( – x)α( + x)β , then we define the weighted space Lw(α,β) (–, ) as usual,
equipped with the following inner product and norm:

(u, v)w(α,β) =
∫ 

–
u(x)v(x)w(α,β)(x)dx, ‖v‖w(α,β) = (v, v)



w(α,β) .

The set of Jacobi polynomials forms a complete Lwα,β (–, )-orthogonal system, and

∥∥P(α,β)
k

∥∥
w(α,β) = h(α,β)k =

α+β+�(k + α + )�(k + β + )
(k + α + β + )�(k + )�(k + α + β + )

. ()
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Let L > , then the shifted Jacobi polynomial of degree k on the interval (,L) is defined
by P(α,β)

L,k (x) = P(α,β)
k ( xL – ).

By virtue of (), we have that

P(α,β)
L,j () = (–)j

�(j + β + )
�(β + ) j!

. ()

Next, letw(α,β)
L (x) = (L–x)αxβ , then we define the weighted space L

w(α,β)
L

(,L) in the usual

way, with the following inner product and norm:

(u, v)w(α,β)
L

=
∫ L


u(x)v(x)w(α,β)

L (x)dx, ‖v‖w(α,β)
L

= (v, v)


w(α,β)
L

.

The set of shifted Jacobi polynomials is a complete L
w(α,β)
L

(,L)-orthogonal system. More-

over, due to (), we have

∥∥P(α,β)
L,k

∥∥
w(α,β)
L

=
(
L


)α+β+

h(α,β)k = h(α,β)L,k . ()

For α = β one recovers the shifted ultraspherical polynomials (symmetric shifted Jacobi
polynomials) and for α = β = ∓ 

 , α = β = , the shifted Chebyshev of the first and second
kinds and shifted Legendre polynomials respectively; and for the nonsymmetric shifted Ja-
cobi polynomials, the two important special cases α = –β = ± 

 (shifted Chebyshev poly-
nomials of the third and fourth kinds) are also recovered.

3 Shifted Jacobi-Gauss-Lobatto collocationmethod
In this section, we derive the SJ-GL-C method to solve numerically the following model
problem:

Dν
(
Dμ + λ

)
u(x) = f (x,u),  < μ ≤ ,  < ν ≤ ,x ∈ I = (,L), ()

subject to the three-point boundary conditions

u() = s, u(x) = s, u(L) = s, x ∈ ],L[, ()

where Dνu(x) ≡ u(ν)(x) denotes the Caputo fractional derivative of order ν for u(x), λ is a
real number, s, s, s are given constants and f (x,u) is a given nonlinear source function.
For the existence and uniqueness of solution of ()-(), see [].
The choice of collocation points is important for the convergence and efficiency of the

collocation method. For boundary value problems, the Gauss-Lobatto points are com-
monly used. It should be noted that for a differential equation with the singularity at x = 
in the interval [,L] one is unable to apply the collocation method with Jacobi-Gauss-
Lobatto points because the two assigned abscissas  and L are necessary to use as a two
points from the collocation nodes. Also, a Jacobi-Gauss-Radau nodes with the fixed node
x =  cannot be used in this case. In fact, we use the collocation method with Jacobi-
Gauss-Lobatto nodes to treat the nonlinear Langevin differential equation; i.e., we collo-
cate this equation only at the (N – ) Jacobi-Gauss-Lobatto points (,L). These equations
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together with three-point boundary conditions generate (N +) nonlinear algebraic equa-
tions which can be solved.
Let us first introduce some basic notation that will be used in the sequel. We set

SN (,L) = span
{
P(α,β)
L, (x),P(α,β)

L, (x), . . . ,P(α,β)
L,N (x)

}
. ()

We next recall the Jacobi-Gauss-Lobatto interpolation. For any positive integerN , SN (,L)
stands for the set of all algebraic polynomials of degree at most N . If we denote by
x(α,β)N ,j (x(α,β)L,N ,j),  ≤ j ≤ N , and �

(α,β)
N ,j (� (α,β)

L,N ,j ), ( ≤ i ≤ N ), to the nodes and Christoffel num-
bers of the standard (shifted) Jacobi-Gauss-Lobatto quadratures on the intervals (–, ),
(,L) respectively. Then one can easily show that

x(α,β)L,N ,j =
L

(
x(α,β)N ,j + 

)
,  ≤ j ≤ N ,

�
(α,β)
L,N ,j =

(
L


)α+β+

�
(α,β)
N ,j , ≤ j ≤ N .

For any φ ∈ SN+(,L),

∫ L


w(α,β)
L (x)φ(x)dx =

(
L


)α+β+ ∫ 

–
( – x)α( + x)βφ

(
L

(x + )

)
dx

=
(
L


)α+β+ N∑
j=

�
(α,β)
N ,j φ

(
L

(
x(α,β)N ,j + 

))

=
N∑
j=

�
(α,β)
L,N ,j φ

(
x(α,β)L,N ,j

)
.

()

We introduce the following discrete inner product and norm:

(u, v)w(α,β)
L ,N =

N∑
j=

u
(
x(α,β)L,N ,j

)
v
(
x(α,β)L,N ,j

)
�

(α,β)
L,N ,j , ‖u‖w(α,β)

L ,N =
√
(u,u)w(α,β)

L ,N , ()

where x(α,β)L,N ,j and �
(α,β)
L,N ,j are the nodes and the corresponding weights of the shifted Jacobi-

Gauss-quadrature formula on the interval (,L) respectively.
Due to (), we have

(u, v)w(α,β)
L ,N = (u, v)w(α,β)

L
, ∀uv ∈ SN–. ()

Thus, for any u ∈ SN (,L), the norms ‖u‖w(α,β)
L ,N and ‖u‖w(α,β)

L
coincide.

Associating with this quadrature rule, we denote by IP
(α,β)
L

N the shifted Jacobi-Gauss in-
terpolation,

IP
(α,β)
L

N u
(
x(α,β)L,N ,j

)
= u

(
x(α,β)L,N ,j

)
,  ≤ k ≤ N .
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The shifted Jacobi-Gauss collocation method for solving ()-() is to seek uN (x) ∈
SN (,T), such that

Dμ+νuN
(
x(α,β)L,N–,k

)
+ λDνuN

(
x(α,β)L,N–,k

)
= f

(
x(α,β)L,N–,k ,uN

(
x(α,β)L,N–,k

))
, k = , , . . . ,N – .

()

uN () = s, uN (x) = s, uN (L) = s, x ∈ ],L[. ()

We now derive an efficient algorithm for solving ()-(). Let

uN (x) =
N∑
j=

ajP(α,β)
L,j (x), a = (a,a, . . . ,aN )T . ()

We first approximate u(x),Dμ+νu(x) and Dμu(x), as Eq. (). By substituting these approx-
imations in Eq. (), we get

N∑
j=

aj
(
Dμ+νP(α,β)

L,j (x) + λDμP(α,β)
L,j (x)

)
= f

(
x,

N∑
j=

ajP(α,β)
L,j (x)

)
. ()

Here, the fractional derivative of order μ in the Caputo sense for the shifted Jacobi poly-
nomials expanded in terms of shifted Jacobi polynomials themselves can be represented
formally in the following theorem.

Theorem . Let P(α,β)
L,j (x) be a shifted Jacobi polynomial of degree j, then the fractional

derivative of order ν in the Caputo sense for P(α,β)
L,j (x) is given by

DνP(α,β)
L,j (x) =

∞∑
i=

Qν(j, i,α,β)P(α,β)
L,i (x), j = �ν�, �ν� + , . . . , ()

where

Qν(j, i,α,β) =
j∑

k=�ν�

(–)j–kLα+β–ν+�(i + β + )�(j + β + )�(j + k + α + β + )
hi�(i + α + β + )�(k + β + )�(j + α + β + )�(k – ν + )(j – k)!

×
i∑

l=

(–)i–l�(i + l + α + β + )�(α + )�(l + k + β – ν + )
�(l + β + )�(l + k + α + β – ν + )(i – l)!l!

.

Proof This theorem can be easily proved (see Doha et al. []).
In practice, only the first (N + )-terms shifted Jacobi polynomials are considered, with

the aid of Theorem . (Eq. ()), we obtain from () that

N∑
j=

aj

( N∑
i=

Qμ+ν(j, i,α,β)P(α,β)
L,i (x) + λ

N∑
i=

Qμ(j, i,α,β)P(α,β)
L,i (x)

)

= f

(
x,

N∑
j=

ajP(α,β)
L,j (x)

)
.

()
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Also, by substituting Eq. () in Eq. () we obtain

N∑
j=

ajP(α,β)
L,j () = s,

N∑
j=

ajP(α,β)
L,j (x) = s,

N∑
j=

ajP(α,β)
L,j (L) = s.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

()

To find the solution uN (x), we first collocate Eq. () at the (N –) shifted Jacobi-Gauss-
Lobatto notes, yields

N∑
j=

aj

( N∑
i=

Qμ+ν(j, i,α,β)P(α,β)
L,i

(
x(α,β)L,N–,k

)
+ λ

N∑
i=

Qμ(j, i,α,β)P(α,β)
L,i

(
x(α,β)L,N–,k

))

= f

((
x(α,β)L,N–,k

)
,

N∑
j=

ajP(α,β)
L,j

(
x(α,β)L,N–,k

))
,  ≤ k ≤ N – .

()

Next, Eq. (), after using () and (), can be written as

N∑
j=

(–)j
�(j + β + )
�(β + )j!

aj = s,

N∑
j=

( j∑
i=

(–)j–i
�(j + β + )�(j + i + α + β + )

�(i + β + )�(j + α + β + )(j – i)!i!Li
xi

)
aj = s,

N∑
j=

( j∑
i=

(–)j–i
�(j + β + )�(j + i + α + β + )

�(i + β + )�(j + α + β + )(j – i)!i!

)
aj = s.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

()

The scheme ()-() can be rewritten as a compact matrix form. To do this, we intro-
duce the (N + )× (N + ) matrix A with the entries akj as follows:

akj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
i=

Qμ+ν(j, i,α,β)P(α,β)
L,i

(
x(α,β)L,N–,k

)
,

 ≤ k ≤ N – , �μ + ν� ≤ j ≤ N ,

(–)j
�(j + β + )
�(β + )j!

, k =N – , ≤ j ≤ N ,
j∑

i=

(–)j–i
�(j + β + )�(j + i + α + β + )

�(i + β + )�(j + α + β + )(j – i)!i!Li
xi, k =N – ,  ≤ j ≤ N ,

j∑
i=

(–)j–i
�(j + β + )�(j + i + α + β + )

�(i + β + )�(j + α + β + )(j – i)!i!
, k =N , ≤ j ≤ N ,

, otherwise.
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Also, we define the (N + )× (N + ) matrix B with the entries:

bkj =

⎧⎪⎪⎨
⎪⎪⎩

N∑
i=

Qμ(j, i,α,β)P(α,β)
L,i

(
x(α,β)L,N–,k

)
,  ≤ k ≤N – , �μ� ≤ j ≤ N ,

, otherwise,

and the (N – )× (N + ) matrix C with the entries:

ckj = P(α,β)
T ,j

(
x(α,β)T ,N–,k

)
,  ≤ k ≤ N – , ≤ j ≤ N .

Further, let a = (a,a, . . . ,aN )T , and

F(a) =
(
f
(
x(α,β)T ,N–,,uN

(
x(α,β)T ,N–,

))
, . . . , f

(
x(α,β)T ,N–,N–,uN

(
x(α,β)T ,N–,N–

))
, s, s, s

)T ,
where uN (x(α,β)T ,N–,k) is the kth component of Ca. Then we obtain from ()-() that

(A + λB)a = F(a),

or equivalently

a = (A + λB)–F(a). ()

Finally, from (), we obtain (N + ) nonlinear algebraic equations which can be solved
for the unknown coefficients aj by using any standard iteration technique, like Newton’s
iteration method. Consequently, uN (x) given in Eq. () can be evaluated. �

Remark . In actual computation for fixed μ, ν and λ, it is required to compute (A +
λB)– only once. This allows us to save a significant amount of computational time.

4 Numerical results
To illustrate the effectiveness of the proposedmethod in the present paper, two test exam-
ples are carried out in this section. Comparison of the results obtained by various choices
of Jacobi parameters α and β reveal that the present method is very effective and conve-
nient for all choices of α and β .
We consider the following two examples.

Example  Consider the nonlinear fractional Langevin equation

D



(
D


 +




)
u(x) =




(
tan– u(x) + cosx

)
, in I = (, ), ()

subject to three-point boundary conditions:

u() = , u(.) = , u() = . ()

The analytic solution for this problem is not known. In Table  we introduce the ap-
proximate solution for ()-() using SJ-GL-C method at α = β =  and N = . The

http://www.boundaryvalueproblems.com/content/2012/1/62
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Table 1 Approximate solution of ()-() using SJ-GL-C method for N = 12

x Approximate solution

0.1 0.00837437
0.2 0.0101356
0.3 0.00811427
0.4 0.00430877
0.5 –9.994× 10–20

x Approximate solution

0.6 –0.00364602
0.7 –0.00585357
0.8 –0.00615727
0.9 –0.00421287
1.0 6.098× 10–19

Figure 1 Comparing the approximate solutions at N = 4,6, 8, 16, for Example 1.

approximate solutions at α = β = – 
 and a few collocation points (N = ,, , ) of this

problem are depicted in Figure . The approximate solution atN =  agrees very well with
the approximate solution at N = ; this means the numerical solution converges fast as
N increases.

Example  In this example we consider the following nonlinear fractional Langevin dif-
ferential equation

Dν
(
Dμ + 

)
u(x) = u(x) + eu(x) + g(x), ν ∈ (, ),μ ∈ (, ), ()

subject to the following three-point boundary conditions:

u() = , u
(



)
=


,

–
(



)–μ–ν

, u() = , ()

where

g(x) = –ex–x–xμ+ν –
(
x – x – xμ+ν

) + x–μ–ν

�( –μ – ν)
–
,x–μ–ν

�( –μ – ν)

–
xμ�( + μ + ν)

�( +μ)
+ 

(
x–ν

�( – ν)
–
,x–ν

�( – ν)
–
xμ�( + μ + ν)

�( + μ)

)
.

The exact solution of this problem is u(x) = –xν+μ + x – x.

http://www.boundaryvalueproblems.com/content/2012/1/62
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Table 2 Maximum absolute error of u – uN using SJ-GL-C method for α = β = 0

N α β ν = 1.5, μ = 0.5 ν = 1.8, μ = 0.8 ν = 1.999, μ = 0.999

8 0 0 2.09× 10–4 4.91× 10–5 1.07× 10–7

16 1.39× 10–5 4.02× 10–7 3.99× 10–10

24 3.25× 10–6 5.87× 10–8 2.33× 10–11

Table 3 Maximum absolute error of u – uN using SJ-GL-C method for α = β = –1/2

N α β ν = 1.5, μ = 0.5 ν = 1.8, μ = 0.8 ν = 1.999, μ = 0.999

8 –1
2

–1
2 3.64× 10–4 1.15× 10–4 2.83× 10–7

16 9.66× 10–6 1.16× 10–6 1.01× 10–9

24 1.99× 10–6 8.35× 10–8 7.15× 10–11

Figure 2 Approximate solution for ν = 1.2, 1.4, 1.6, 1.8, 2, μ = 1 with 14 nodes and the exact solution
at ν = 2 and μ = 1, for Example 2.

Numerical results are obtained for different choices of ν ,μ, α, β , andN . In Tables  and 
we introduce the maximum absolute error, using the shifted Jacobi collocation method
based on Gauss-Lobatto points, with two choices of α, β , and various choices of ν , μ,
and N .
The approximate solutions are evaluated for ν = ., ., ., ., , μ = , α = β = 

and N = . The results of the numerical simulations are plotted in Figure . In Fig-
ure , we plotted the approximate solutions at fixed ν = , and various choices of μ =
., ., ., .,  with α = β =  andN = . It is evident fromFigure  and Figure  that, as
ν andμ approach close to  and , the numerical solution by shifted Jacobi-Gauss-Lobatto
collocation method with α = β =  for fractional order differential equation approaches to
the solution of integer order differential equation.
In the case of  < ν ≤ , μ =  with α = β = 

 , and N = , the results of the numerical
simulations are shown in Figure . In Figure , we plotted the approximate solutions for
ν = ,  < μ ≤  with α = β = 

 , andN = . In fact, the approximate solutions obtained by
the present method at  < ν ≤ ,  < μ ≤  with N =  are shown in Figure  and Figure 
to make it easier to show that; as ν and μ approach to their integer values, the solution of
fractional order Langevin equation approaches to the solution of integer order Langevin
differential equation.
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Figure 3 Approximate solution for μ = 0.2, 0.4, 0.6, 0.8, 1, ν = 2 with 14 nodes and the exact solution
at ν = 2 and μ = 1, for Example 2.

Figure 4 Approximate solution for 1 < ν ≤ 2, μ = 1 with 12 nodes, for Example 2.

5 Conclusion
An efficient and accurate numerical scheme based on the Jacobi-Gauss-Lobatto colloca-
tion spectral method is proposed for solving the nonlinear fractional Langevin equation.
The problem is reduced to the solution of nonlinear algebraic equations. Numerical ex-
amples were given to demonstrate the validity and applicability of themethod. The results
show that the SJ-GL-C method is simple and accurate. In fact, by selecting a few colloca-
tion points, excellent numerical results are obtained.
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Figure 5 Approximate solution for 0 <μ ≤ 1, ν = 2 with 12 nodes, for Example 2.
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