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1 Introduction
The subject of fractional calculus has gained considerable popularity during the past
decades, due mainly to its frequent appearance in a variety of different areas such as
physics, aerodynamics, polymer rheology, etc. (see [–]).Manymethods have been intro-
duced for solving fractional differential equations (FDEs for short in the remaining), such
as the Laplace transform method, the iteration method, the Fourier transform method,
etc. (see []).
Recently, there have beenmanyworks related to the existence of solutions formultipoint

boundary value problems (BVPs for short in the remaining) at nonresonance of FDEs (see
[–]). Motivated by the above articles and recent studies on FDEs (see [–]), we con-
sider the existence of solutions for a nonlinear fractional multipoint BVPs at resonance in
this article.
In [], Zhang and Bai considered the following fractional three-point boundary value

problems at resonance:
⎧⎨
⎩Dα

+u(t) = f
(
t,u(t),Dα–(n–)

+ u(t), . . . ,Dα–
+ u(t)

)
+ e(t),  < t < ,

In–α
+ u() =Dα–(n–)

+ u() = · · · =Dα–
+ u() = , u() = σu(η),

where n >  is a natural number; n– < α ≤ n is a real number;Dα
+ and Iα+ are the standard

Riemann-Liouville derivative and integral respectively; f : [, ] × Rn �→ R is continuous;
e(t) ∈ L[, ]; σ ∈ (, +∞), η ∈ (, ) are given constants such that σηα– = . In their article,
they made the operator Lu = Dα

+u and got dimKerL = . In [], Bai discussed fractional
m-point boundary value problems at resonance with the case of dimKerL = .
In , Bai and Jiang studied the fractional differential equation of boundary value

problems at resonance with the case of dimKerL =  respectively (see [, ]), and we
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can see that they obtained the results by the assumption that a specific algebraic expres-
sion is not equal to zero; for example,

R =

α

ηα �(α)�(α – )
�(α – )

[
 –

m∑
i=

αiη
α–
i

]
–


α – 

ηα– �(α)
�(α)

[
 –

m∑
i=

αiη
α–
i

]
�= 

is referred to as a condition in []. We will show that the assumption like above R �=  is
not necessary.
In this article, we will use the coincidence degree theory to study the existence of solu-

tions for a nonlinear FDEs at resonance which is given by

Dα
+u(t) = f

(
t,u(t),Dα–

+ u(t),Dα–
+ u(t)

)
,  < t < , (.)

with boundary conditions

I–α
+ u(t)|t= = , Dα–

+ u() =
m∑
i=

aiDα–
+ u(ξi),

Dα–
+ u() =

m∑
i=

biDα–
+ u(ηi),

(.)

where  < α ≤ ;  < ξ < · · · < ξm < ;  < η < · · · < ηm < ; ai,bi ∈ R; f : [, ] × R �→ R
with satisfying Carathéodory conditions; Dα

+ and Iα+ are the standard Riemann-Liouville
fractional derivative and fractional integral respectively.
BVPs (.)-(.) being at resonancemeans that the associated linear homogeneous equa-

tion Dα
+u(t) =  with boundary conditions (.) has u(t) = atα– + btα– as a nontrivial

solution, where  < t < , a,b ∈ R.
We will always suppose that the following conditions hold:

m∑
i=

ai = ,
m∑
i=

biηi = ,
m∑
i=

bi = . (C)

The rest of this article is organized as follows: In Section , we give some definitions,
lemmas and notations. In Section , we establish theorems of existence result for BVPs
(.)-(.). In Section , we give an example to illustrate our result.

2 Preliminaries
Wepresent here some necessary basic knowledge and definitions of the fractional calculus
theory, which can be found in [–].

Definition . The Riemann-Liouville fractional integral of order α >  of a function y :
(,∞) �→ R is given by

Iα+y(t) =


�(α)

∫ t


(t – s)α–y(s) ds,

where �(·) is the Gamma function, provided the right side is pointwise defined on (,∞).
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Definition . The Riemann-Liouville fractional derivative of order α >  of a function
y : (,∞) �→ R is given by

Dα
+y(t) =


�(n – α)

(
d
dt

)n ∫ t



y(s)
(t – s)α–n+

ds,

where n = [α] + , provided the right side is pointwise defined on (,∞).

Definition . ([]) We say that the map f : [, ]×Rn �→ R satisfies Carathéodory con-
ditions with respect to L[, ] if the following conditions are satisfied:

(i) for each z ∈ Rn, the mapping t �→ f (t, z) is Lebesgue measurable;
(ii) for almost every t ∈ [, ], the mapping t �→ f (t, z) is continuous on Rn;
(iii) for each E > , there exists a ρE ∈ L[, ] such that, for a.e. t ∈ [, ] and every

|u| ≤ E, we have f (t,u) ≤ ρE(t).

Lemma . ([]) Assume y(t) ∈ C[, ] ∩ L[, ],  ≤ β ≤ α, then Dβ

+ I
α
+y(t) = Iα–β

+ y(t).
And, for all α ≥ , β > –, we have that

Iα+ t
β =

�(β + )
�(α + β + )

tα+β , Dα
+ t

β =
�(β + )

�(β – α + )
tβ–α .

Lemma . ([]) Let α > , n = [α] +  and assume that y, Dα
+y ∈ L(, ), then the following

equality holds almost everywhere on [, ],

(
Iα+D

α
+y

)
(t) = y(t) –

n∑
i=

((In–α
+ y)(t))n–i|t=
�(α – i + )

tα–i.

Now, we briefly recall some notations and an abstract existence result, which can be
found in []. Let Y , Z be real Banach spaces, L : domL ⊂ Y �→ Z be a Fredholm map of
index zero, and P : Y �→ Y , Q : Z �→ Z be continuous projectors such that

ImP =KerL, KerQ = ImL, Y =KerL⊕KerP, Z = ImQ⊕ ImL.

It follows that L|domL∩KerP : domL ∩ KerP �→ ImL is invertible. We denote the inverse by
Kp. If 	 is an open bounded subset of Y such that domL∩ 	 �=∅, the map N : Y �→ Z will
be called L-compact on 	 if QN(	̄) is bounded and Kp(I –Q)N : 	̄ �→ Y is compact.

Lemma . ([]) Let L be a Fredholm operator of index zero and N be L-compact on 	̄.
The equation Lx =Nx has at least one solution in domL∩ 	̄ if the following conditions are
satisfied:

(i) Lx �= λNx for each (x,λ) ∈ [domL \KerL∩ ∂	]× [, ];
(ii) Nx /∈ ImL for each x ∈KerL∩ ∂	;
(iii) deg(JQN |KerL,KerL∩ 	, ) �= ,

where Q : Z �→ Z is a projection such that KerQ = ImL and J : ImQ �→ KerL is a any iso-
morphism.

In this article, we use the Banach space C[, ] with the norm ‖u‖∞ =maxt∈[,] |u(t)|.
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Lemma. ([]) Givenμ >  andN = [μ]+, for any x ∈ C[, ], ci ∈ R (i = , , . . . ,N –),
we can define a Banach space

Cμ[, ] =
{
u(t)|u(t) = Iμ+x(t) + ctμ– + ctμ– + · · · + cN–tμ–(N–), t ∈ (, )

}
,

with the norm defined by ‖u‖Cμ = ‖Dμ

+u‖∞ + · · · + ‖Dμ–(N–)
+ u‖∞ + ‖u‖∞.

Lemma . ([]) E ⊂ Cμ[, ] is a sequentially compact set if and only if E is uniformly
bounded and equicontinuous. Here, a uniform bound means that there exists a constant
M >  with each u ∈ E, such that

‖u‖Cμ =
∥∥Dμ

+u
∥∥∞ + · · · + ∥∥Dμ–(N–)

+ u
∥∥∞ + ‖u‖∞ <M,

and equicontinuation means that there exists a δ >  with |t – t| < δ for any t, t ∈ [, ],
u ∈ E and ε > , such that

∣∣u(t) – u(t)
∣∣ < ε,

∣∣Dα–i
+ u(t) –Dα–i

+ u(t)
∣∣ < ε (i = , , . . . ,N – ).

In this article, let Z = L[, ] with the norm ‖y‖ =
∫ 
 |y(s)|ds and Y = Cα–[, ] with the

norm ‖u‖Y = ‖Dα–
+ u‖∞ + ‖Dα–

+ u‖∞ + ‖u‖∞. Define the operator L : domL∩ Y �→ Z by

Lu =Dα
+u, (.)

where domL = {u ∈ Cα–[, ]|Dα
+u ∈ Z,u satisfies (.)}. Define the operator N : Y �→ Z

by

Nu(t) = f
(
t,u(t),Dα–

+ u(t),Dα–
+ u(t)

)
, ∀t ∈ [, ]. (.)

Thus, BVP (.) can be written as Lu =Nu for each u ∈ domL.

3 Main results
First, let us introduce the followingnotations for convenience,with setting p ∈ {, , . . . ,m–
} and q ∈ Z+ with q ≥ p + ,

� :=


p(p + )

(
 –

m∑
i=

biη
p+
i

)
, � :=


q(q – )

(
 –

m∑
i=

biη
q
i

)
,

� :=

p

(
 –

m∑
i=

aiξ
p
i

)
, � :=


q – 

(
 –

m∑
i=

aiξ
q–
i

)
,

� := �� –��, μ :=  +


�(α)
+


�(α – )

,

ω :=  +


�(α)
, ρ :=  +


�(α)

+


�(α – )
.

Then, let us make some assumptions which will be used throughout the article.
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(H) There exist functions h(t), r(t), s(t),w(t), e(t) ∈ L[, ] and a constant θ ∈ [, ) such
that for all (x, y, z) ∈ R, t ∈ [, ],

∣∣f (t,x, y, z)∣∣≤ h(t)|x| + r(t)|y| + s(t)|z| +w(t)|z|θ + e(t);

(H) For any u ∈ domL, t ∈ [, ], there exists a constant A >  such that if Dα–
+ u(t) > A,

then either

�TNu –�TNu < , or �TNu –�TNu > ;

(H) For any u ∈ domL, t ∈ [, ], there exists a constant B >  such that if Dα–
+ u(t) > B,

then either

�TNu –�TNu > , or �TNu –�TNu < .

Theorem . If conditions (C), (H)-(H) hold, then BVPs (.)-(.) have at least one so-
lution provided that ρ(‖h‖ + ‖r‖ + ‖s‖) < .

In order to obtain our main result, we first present and prove Lemmas .-.. Now, let
us define operators Tj : Z �→ Z (j = , ) as follows:

Tx(t) =
∫ 


x(s) ds –

m∑
i=

ai
∫ ξi


x(s) ds, ∀t ∈ [, ],

Tx(t) =
∫ 


( – s)x(s) ds –

m∑
i=

bi
∫ ηi


(ηi – s)x(s) ds, ∀t ∈ [, ].

Lemma . If condition (C) holds and L is defined by (.), then

KerL =
{
atα– + btα–|a,b ∈ R

}
, ImL = {x ∈ Z|Tjx = , j = , }.

Proof By (.) and Lemma ., Dα
+u(t) =  has a solution

u(t) =
Dα–

+ u(t)|t=
�(α)

tα– +
Dα–

+ u(t)|t=
�(α – )

tα– +
I–α
+ u(t)|t=
�(α – )

tα–.

Combining with the condition (.), we get KerL = {atα– + btα–|a,b ∈ R} ∼= R.
Suppose ∀x ∈ ImL, then there exists u ∈ domL such that x = Lu, i.e., u ∈ Y , x =Dα

+u. By
Lemma ., we have

Iα+x(t) = u(t) –
Dα–

+ u(t)|t=
�(α)

tα– –
Dα–

+ u(t)|t=
�(α – )

tα– –
I–α
+ u(t)|t=
�(α – )

tα–.

Then in view of condition (C), (.) and Lemma ., x satisfies
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ 


x(s) ds –

m∑
i=

ai
∫ ξi


x(s) ds = ,

∫ 


( – s)x(s) ds –

m∑
i=

bi
∫ ηi


(ηi – s)x(s) ds = .

(.)

http://www.boundaryvalueproblems.com/content/2012/1/65
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On the other hand, suppose ∀x ∈ Z and it satisfies (.), let u(t) = Iα+x(t), then u ∈ domL,
Dα

+u(t) = x(t), i.e., x ∈ ImL. Therefore, we obtain that

ImL = {x ∈ Z|Tjx = , j = , }. �

Lemma . If condition (C) holds, then there exist two constants q ∈ Z+ and p ∈
{, , . . . ,m – } with q ≥ p +  such that � �= .

Proof From
∑m

i= ai = , we obtain that for any nonnegative integer l, there exists kl –  ∈
{lm+, . . . , (l+)m} such that∑m

i= aiξ
kl–
i �= . If else, we obtain that

∑m
i= aiξ

kl–
i = , kl– =

, lm + , . . . , (l + )m.
If l = , we have

⎛
⎜⎜⎜⎜⎝

  · · · 
ξ ξ · · · ξm
...

. . .
...

ξm
 ξm

 · · · ξm
m

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
a
a
...
am

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝


...


⎞
⎟⎟⎟⎟⎠ .

It is equal to

⎛
⎜⎜⎜⎜⎝

 – ξ  – ξ · · ·  – ξm

ξ( – ξ) ξ( – ξ) · · · ξm( – ξm)
...

. . .
...

ξm–
 ( – ξ) ξm–

 ( – ξ) · · · ξm–
m ( – ξm)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
a
a
...
am

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝


...


⎞
⎟⎟⎟⎟⎠ .

Since the determinant of coefficients is not equal to zero, we have that ai =  (i =
, , . . . ,m), which is a contradiction to condition (C).
If l ∈ Z+, we get

⎛
⎜⎜⎜⎜⎝

  · · · 
ξ lm+
 ξ lm+

 · · · ξ lm+
m

...
. . .

...
ξ lm+m
 ξ lm+m

 · · · ξ lm+m
m

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
a
a
...
am

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝


...


⎞
⎟⎟⎟⎟⎠ .

Similarly, we can deduce that the determinant of coefficients is not equal to zero, so we
have that ai =  (i = , , . . . ,m), which is a contradiction to condition (C). Thus, there exists
kl –  ∈ {lm + , . . . , (l + )m} such that

∑m
i= aiξ

kl–
i �= .

Similarly, from
∑m

i= bi =
∑m

i= biηi = , we have that there exists a constant p ∈ {, , . . . ,
m – } such that

m∑
i=

biη
p+
i �= . (.)

Let

S =

{
(kl – ) ∈ Z+

∣∣∣ (p + )( –
∑m

i= biη
kl
i )( –

∑m
i= aiξ

p
i )

kl( –
∑m

i= aiξ
kl–
i )

=  –
m∑
i=

biη
p+
i

}
,
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we shall prove that S is a finite set. If else, there exists a strict increasing sequence {kln}∞n=
such that

(p + )( –
∑m

i= biη
kln
i )( –

∑m
i= aiξ

p
i )

kln( –
∑m

i= aiξ
kln–
i )

=  –
m∑
i=

biη
p+
i .

Since
∑m

i= biη
p+
i �= , we have

∑m
i= aiξ

p
i �= . Thus,

 –
m∑
i=

biη
p+
i = lim

kln→+∞
(p + )( –

∑m
i= biη

kln
i )( –

∑m
i= aiξ

p
i )

kln( –
∑m

i= aiξ
kln–
i )

= ,

which is a contradiction to (.). Therefore, there exists two constants p ∈ {, , . . . ,m– }
and q ∈ Z+ with q ≥ p +  such that � �= . �

Lemma . If the condition (C) holds and L is defined by (.), then L is a Fredholm op-
erator of index zero. Define the linear operator Kp : ImL �→ domL∩KerP with KPx = Iα+x,
then it is the inverse of L. Furthermore, we have

‖Kpx‖Y ≤ ω‖x‖.

Proof For each p ∈ {, , . . . ,m–} and q ∈ Z+ with q ≥ p+, define operatorQ : Z �→ Z by

Qx(t) =
(
Qx(t)

)
tp– +

(
Qx(t)

)
tq–, ∀t ∈ [, ], (.)

where

Qx(t) =

�

[
–�Tx(t) +�Tx(t)

]
, Qx(t) =


�

[
�Tx(t) –�Tx(t)

]
. (.)

It is clear that dim ImQ = . It follows from (.), the definition of T and T that

Q
(
(Qx)tp–

)
=


�

[
–�T

(
(Qx)tp–

)
+�T

(
(Qx)tp–

)]
=


�

[
–��(Qx) +��(Qx)

]
=Qx,

(.)

similarly, we can derive that

Q
(
(Qx)tq–

)
= , Q

(
(Qx)tp–

)
= , Q

(
(Qx)tq–

)
=Qx. (.)

Hence, for each x ∈ Z and t ∈ [, ], it follows from the (.)-(.) that

Qx = Q
[
(Qx)tp– + (Qx)tq–

]
tp– +Q

[
(Qx)tp– + (Qx)tq–

]
tq–

= (Qx)tp– + (Qx)tq– =Qx.

Furthermore, Q is a continuous linear projector.

http://www.boundaryvalueproblems.com/content/2012/1/65
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For each x ∈ ImL, we have Qx = , i.e., x ∈KerQ. On the other hand, for each x ∈KerQ,
we have that

⎧⎨
⎩–�Tx +�Tx = ,

�Tx –�Tx = .

However, the determinant of coefficients is as follows
∣∣∣∣∣–� �

� –�

∣∣∣∣∣ = –� �= 

then we have Tjx =  (j = , ), i.e., x ∈ ImL. Thus, KerQ = ImL.
Take any x ∈ Z in the type x = (x –Qx) +Qx, obviously, x –Qx ∈ KerQ = ImL and Qx ∈

ImQ, so Z = ImL+ ImQ. For any x ∈ ImL∩ ImQ with x = atp– + btq–, by Lemma ., we
have

∫ 



(
asp– + bsq–

)
ds –

m∑
i=

ai
∫ ξi



(
asp– + bsq–

)
ds = ,

∫ 


( – s)

(
asp– + bsq–

)
ds –

m∑
i=

bi
∫ ηi


(ηi – s)

(
asp– + bsq–

)
ds = .

That is,
⎧⎨
⎩a� + b� = ,

a� + b� = ,

but the determinant of coefficients is as follows
∣∣∣∣∣� �

� �

∣∣∣∣∣ = –� �= ,

we can deduce that a = b = . Hence, ImL ∩ ImQ = . Furthermore, we get Z = ImL ⊕
ImQ. Therefore, dimKerL = dim ImQ = codim ImL = , which means that L is a Fredholm
operator of index zero.
Let operator P : Y �→ Y and

Pu(t) =
Dα–

+ u(t)|t=
�(α)

tα– +
Dα–

+ u(t)|t=
�(α – )

tα–, ∀t ∈ [, ]. (.)

It is easy to calculate that Pu(t) = Pu(t); furthermore, P is a continuous linear projector.
Obviously

KerP =
{
u ∈ Y |Dα–

+ u() =Dα–
+ u() = 

}
.

It is clear that Y =KerL⊕KerP.
For any x ∈ ImL, in view of the definition of operators Kp and L, we have LKPx = LIα+x =

Dα
+Iα+x = x. On the other hand, if u ∈ domL ∩ KerP, we have Dα–

+ u() = Dα–
+ u() = ,

http://www.boundaryvalueproblems.com/content/2012/1/65
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u ∈ domL. Therefore, by Lemma . and definitions of operators Kp and L, we know that
(KpL)u = u, which implies that Kp = [L|domL∩KerP]–. By the definition of Kp, we have

Kpx(t) = Iα+x(t) =


�(α)

∫ t


(t – s)α–x(s) ds, ∀x ∈ ImL.

It follows from Lemma . that

Dα–
+ (Kpx)(t) =

∫ t


(t – s)x(s) ds, Dα–

+ (Kpx)(t) =
∫ t


x(s) ds.

Then, we have

‖Kpx‖∞ ≤ 
�(α)

‖x‖,
∥∥Dα–

+ (Kpx)
∥∥∞ ≤ ‖x‖,

∥∥Dα–
+ (Kpx)

∥∥∞ ≤ ‖x‖.

By the definition of the norm in space Y , we get ‖Kpx‖Y ≤ ω‖x‖. �

Lemma . Assume 	 ⊂ Y is an open bounded subset such that domL∩ 	̄ �=∅, and N is
defined by (.), then N is L-compact on 	̄.

Proof In order to proveN is L-compact, we only need to prove thatQN(	̄) is bounded and
Kp(I –Q)N(u) : 	̄ �→ Y is compact. Since the function f satisfies Carathéodory conditions
and u ∈ 	̄, for each E > , there exists a ρE(t) ∈ L[, ] such that, for a.e. t ∈ [, ] and every
|u| ≤ E, we have f ≤ ρE . By the definition of operators Q and Kp on the interval [, ], it
is easy to get that QN(	̄) and Kp(I –Q)N(	̄) are bounded. Thus, there exists a constant
r >  with each t ∈ [, ], such that |QNu(t)| ≤ r.
For all  ≤ t < t ≤ ,  < α ≤ , u ∈ 	̄, we have

∣∣Kp(I –Q)Nu(t) –Kp(I –Q)Nu(t)
∣∣

=


�(α)

∣∣∣∣
∫ t



[
(t – s)α– – (t – s)α–

]
(I –Q)Nu(s) ds

+
∫ t

t
(t – s)α–(I –Q)Nu(s) ds

∣∣∣∣
≤ 

�(α)

{∫ t



[
(t – s)α– – (t – s)α–

](
r +

∣∣ρE(s)
∣∣)ds

+
∫ t

t
(t – s)α–

(
r +

∣∣ρE(s)
∣∣)ds}

≤ 
�(α)

{∫ t



∣∣ρE(s)
∣∣(t – s)α– ds –

∫ t



∣∣ρE(s)
∣∣(t – s)α– ds

}
+

r
�(α + )

(
tα – tα

)
,

and

∣∣Dα–Kp(I –Q)Nu(t) –Dα–Kp(I –Q)Nu(t)
∣∣

=
∣∣∣∣
∫ t


(I –Q)Nu(s) ds –

∫ t


(I –Q)Nu(s) ds

∣∣∣∣
≤ r(t – t) +

∫ t

t

∣∣ρE(s)
∣∣ds.
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Since tα is uniformly continuous on [, ] and ρE(t) ∈ L[, ], so Kp(I – Q)N(	̄) and
Dα–Kp(I –Q)N(	̄) are equicontinuous. By Lemma ., we get that Kp(I –Q)N : Y �→ Y is
completely continuous. �

Lemma . Suppose (H)-(H) hold, then the set 	 = {u ∈ domL\KerL : Lu = λNu,λ ∈
[, ]} is bounded.

Proof Taking any u ∈ 	, then we have Lu = λNu, which yields λ �=  and Nu ∈ ImL =
KerQ, i.e.,QNu =  for all t ∈ [, ]. It follows from (H) and (H) that there exists t ∈ [, ]
such that |Dα–

+ u(t)| + |Dα–
+ u(t)| ≤ A + B. Then we can get that

Dα–
+ u(t) =Dα–

+ u(t) +
∫ t

t
Dα

+u(s) ds,

Dα–
+ u(t) =Dα–

+ u(t) +
∫ t

t
Dα–

+ u(s) ds.

Furthermore, we have that, with settingM = A + B,

∣∣Dα–
+ u()

∣∣≤ ∥∥Dα–
+ u(t)

∥∥∞ ≤ ∣∣Dα–
+ u(t)

∣∣ + ∥∥Dα
+u

∥∥


≤ M + ‖Lu‖ ≤ M + ‖Nu‖,
(.)

∣∣Dα–
+ u()

∣∣≤ ∥∥Dα–
+ u(t)

∥∥∞ ≤ ∣∣Dα–
+ u(t)

∣∣ + ∥∥Dα–
+ u

∥∥∞

≤ ∣∣Dα–
+ u(t)

∣∣ + ∣∣Dα–
+ u(t)

∣∣ + ∥∥Dα
+u

∥∥


≤ M + ‖Lu‖ ≤ M + ‖Nu‖.
(.)

By (.)-(.) and Lemma ., we have that

‖Pu‖Y ≤ μ
(
M + ‖Nu‖

)
.

As before, for any u ∈ 	, we have (I – P)(u) ∈ domL ∩ KerP and LP(u) = . From
Lemma . and for each λ ∈ (, ], we can get

∥∥(I – P)(u)
∥∥
Y =

∥∥KpL(I – P)(u)
∥∥
Y =

∥∥Kp(Lu)
∥∥
Y ≤ ω‖Nu‖.

Furthermore, we have

‖u‖Y ≤ ∥∥(I – P)(u)
∥∥
Y +

∥∥P(u)∥∥Y ≤ ρ‖Nu‖ +μM.

By (H) and the definition of N , we have

‖u‖Y ≤ ρ
[‖h‖‖u‖∞ + ‖r‖

∥∥Dα–
+ u

∥∥∞‖s‖
∥∥Dα–

+ u
∥∥∞ + ‖w‖

∥∥Dα–
+ u

∥∥θ

∞ +D
]
,

where D = ‖e‖ + μM/ρ . Since max{‖u‖∞,‖Dα–
+ u‖∞,‖Dα–

+ u‖∞} ≤ ‖u‖Y and ρ(‖h‖ +
‖r‖ + ‖s‖) <  hold true, we can get that

‖u‖∞ ≤ ρ

 – ρ‖h‖
[‖r‖∥∥Dα–

+ u
∥∥∞ + ‖s‖

∥∥Dα–
+ u

∥∥∞ + ‖w‖
∥∥Dα–

+ u
∥∥θ

∞ +D
]
,
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which yield that

∥∥Dα–
+ u

∥∥∞ ≤ ρ

 – ρ‖h‖ – ρ‖r‖
[‖s‖∥∥Dα–

+ u
∥∥∞ + ‖w‖

∥∥Dα–
+ u

∥∥θ

∞ +D
]
.

Furthermore, from the previous inequalities, we know that

∥∥Dα–
+ u

∥∥∞ ≤ ρ

 – ρ‖h‖ – ρ‖r‖ – ρ‖s‖
(‖w‖

∥∥Dα–
+ u

∥∥θ

∞ +D
)
.

Since θ ∈ [, ), there exist constantsm,m,m >  such that

∥∥Dα–
+ u

∥∥∞ ≤ m,
∥∥Dα–

+ u
∥∥∞ ≤ m, ‖u‖∞ ≤ m.

Therefore, 	 is bounded. �

Lemma . Suppose (H) and (H) hold, then the set 	 = {u ∈ KerL : Nu ∈ ImL} is
bounded.

Proof For any u ∈ 	 and a,b ∈ R, then u(t) = atα– + btα– and QNu = . By (H),
we get that |Dα–

+ u(t)| = |a�(α)| ≤ A, then we have |a| ≤ A/�(α). By (H), we have that
|Dα–

+ u(t)| = |at�(α) + b�(α – )| ≤ B, thus |b| ≤ (B + A)/�(α – ). Therefore, 	 is
bounded. �

Lemma . If the first parts of (H) and (H) hold, then the set 	 = {u ∈ KerL : λJ–u +
( – λ)QNu = ,λ ∈ [, ]} is bounded.

Proof Taking any u ∈ 	 and a,b ∈ R, we have u(t) = atα– + btα–. For all t ∈ [, ], we
define the isomorphism J– :KerL �→ ImQ by

J–
(
atα– + btα–

)
=
a

�
tp– +

b

�
tq–.

By the definition of the set 	, we can get that

⎧⎨
⎩λa + ( – λ)

[
–�TN

(
atα– + btα–

)
+�TN

(
atα– + btα–

)]
= ,

λb + ( – λ)
[
�TN

(
atα– + btα–

)
–�TN

(
atα– + btα–

)]
= .

(.)

If λ = , we have

TN
(
atα– + btα–

)
= , TN

(
atα– + btα–

)
= .

By the first parts of (H) and (H), similar to the proof of Lemma ., then

|a| ≤ A
�(α)

, |b| ≤ B +A
�(α – )

.

Therefore, 	 is bounded.
If λ = , we have a = b = .
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If  < λ < , we get that |Dα–u(t)| ≤ A and |Dα–u(t)| ≤ B, similar to the proof of
Lemma ., 	 is bounded. If else, we have that �TNu – �TNu <  and �TNu –
�TNu > . It contradicts (.), thus 	 is bounded. �

Remark . If the other parts of (H) and (H) hold, then the set 	 = {u ∈ KerL :
–λJ–u + ( – λ)QNu = ,λ ∈ [, ]} is bounded.

Now with Lemmas .-. in hands, we can begin to prove our main result - Theo-
rem ..

Proof of Theorem . Assume that 	 is a bounded open set of Y with
⋃

i= 	̄ ⊂ 	. By
Lemma ., N is L-compact on 	̄. Then by Lemmas . and ., we have

(i) Lu �= λNu for every (u,λ) ∈ [domL \KerL∩ ∂	]× [, ];
(ii) Nu /∈ ImL for every u ∈ KerL∩ ∂	.
Finally, we will prove that (iii) of Lemma . is satisfied. We let I as the identity operator

in the Banach space Y andH(u,λ) = ±λJ–(u) + ( –λ)QN(u), according to Lemma . (or
Remark .) we know that for all u ∈ ∂	 ∩KerL, H(u,λ) �= . By the homotopic property
of degree, we have

deg(JQN |KerL,KerL∩ 	, ) = deg
(
H(·, ),KerL∩ 	, 

)
= deg

(
H(·, ),KerL∩ 	, 

)
= deg(±I,KerL∩ 	, ) �= ,

so (iii) of Lemma . is satisfied.
Consequently, by Lemma ., the equation Lu =Nu has at least one solution in domL∩

	̄. Namely, BVPs (.)-(.) have at least one solution in the space Y . �

According to Theorem ., we have the following corollary.

Corollary . Suppose that (H) is replaced by the following condition,
(H) there exist functions h(t), r(t), s(t),w(t), e(t) ∈ L[, ] and a constant θ ∈ [, ) such

that for all (x, y, z) ∈ R, t ∈ [, ],

∣∣f (t,x, y, z)∣∣≤ h(t)|x| + r(t)|y| + s(t)|z| +w(t)|y|θ + e(t),

or

∣∣f (t,x, y, z)∣∣≤ h(t)|x| + r(t)|y| + s(t)|z| +w(t)|x|θ + e(t),

and the others in Theorem . are not changed, then BVPs (.)-(.) have at least one so-
lution.
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4 An example
Example Consider the following boundary value problem for all t ∈ (, ):

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

D

 u(t) =

u(t)


+
D



+u(t)


+
D



+u(t)


+
 sin


 u(t)


+ cos t + ,

I


+u() = , D



+u() =



D



+u

(



)
+


D



+u

(



)
,

D


+u() = –D



+u

(



)
+ D



+u

(



)
.

(.)

Let α = /, and a = /, ξ = /, a = /, ξ = /, b = –, η = /, b = , η =
/. We can get that the condition (C) holds, i.e.,

∑
i= ai = ,

∑
i= biηi = ,

∑
i= bi = .

Moreover,

f (t,x, y, z) =



x +




y +



z +



sin/ x + cos t + .

Thus, we have

∣∣f (t,x, y, z)∣∣≤ 


|x| + 


|y| + 


|z| + 


|x|/ + .

Taking h = /, r = /, s = /, w = /, e = , � = ( –
∑

i= biη
i )/, � =

( –
∑

i= biη
i )/, � =  –

∑
i= aiξi, � =  –

∑
i= aiξi, μ =  + �–(/) + �–(/),

ω =  + �–(/), ρ =  + �–(/) + �–(/), we can calculate that (H)-(H) hold.
Furthermore, we can get

ρ
(‖h‖ + ‖r‖ + ‖s‖

)
= ..

By Corollary ., the BVP (.) has at least one solution in C/[, ].
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