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Abstract
A class of nonlinear fractional order differential equation

Dα
0+u(t) + f (t,u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) =
1

ηα–1
u(η)

is investigated in this paper, where Dα
0+ is the standard Riemann-Liouville fractional

derivative of order 1 < α ≤ 2, 0 < η < 1, f ∈ C([0, 1]× R,R). Using intermediate value
theorem, we obtain a sufficient condition for the existence of the solutions for the
above fractional order differential equations.

1 Introduction
Consider the following boundary value problem

Dα
+u(t) + f

(
t,u(t)

)
= ,  < t < , (.)

u() = , u() =


ηα– u(η), (.)

where Dα
+ is the standard Riemann-Liouville fractional derivative of order  < α ≤ ,  <

η <  and f ∈ C([, ]× R,R).
In the last few decades, many authors have investigated fractional differential equations

which have been applied in many fields such as physics, mechanics, chemistry, engineer-
ing etc. (see references [, , , –]). Especially, many works have been devoted to the
study of initial value problems and bounded value problems for fractional order differen-
tial equations [, , , ].
Recently, the existence of positive solutions of fractional differential equations has at-

tracted many authors’ attention [–, , , , , –, , ]. Using some fixed point
theorems, they obtained some nice existence conditions for positive solutions.
Inmore recent works, Jiang and Yuan [] considered the following boundary value prob-

lem of fractional differential equations

Dα
+u(t) + f

(
t,u(t)

)
= ,  < t < , (.)
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u() = u() = , (.)

where Dα
+ is the standard Riemann-Liouville fractional derivative of order  < α <  and

f : [, ] × R+ → R+ is continuous. Using some properties of the Green function G(t, s),
they obtain some new sufficient conditions for the existence of positive solutions for the
above problem.
Further, Li, Luo, and Zhou [] investigated the following fractional order three-point

boundary value problems

Dα
+u(t) + f

(
t,u(t)

)
= ,  < t < , (.)

u() = , Dβ
+u() = aDβ

+u(ξ ), (.)

where Dα
+ is the standard Riemann-Liouville fractional derivative of order  < α ≤ ,  ≤

β ≤ ,  ≤ a ≤ , ξ ∈ (, ), aξα–β– ≤  – β ,  ≤ α – β – , and f : [, ] × R+ → R+ is
continuous.
In this paper, we discuss the boundary value problem (.)-(.). Using some properties

of the Green functionG(t, s) and intermediate value theorem, we establish some sufficient
conditions for the existence of the positive solutions of the problem (.)-(.).
The paper is arranged as follows: In Section , we introduce some definitions for frac-

tional order differential equations and give our main results for the boundary value prob-
lem (.)-(.). We give some lemmas for our results in Section . In Section , we prove
our main result; and finally, we give an example to illustrate our results.

2 Main results
In this section, we introduce some definitions and preliminary facts which are used in this
paper.

Definition . ([, ]) The fractional integral of order α with the lower limit t for a
function f is defined as

Iαt+
(
f (t)

)
=


�(α)

∫ t

t

f (s)
(t – s)–α

ds, t > t,α > ,

provided that the integral on the right-hand side is point-wise defined on [t,∞), where
� is the Gamma function.

Definition . ([, ]) Riemann-Liouville derivative of order α with the lower limit t for
a function f : [,∞)→ R can be written as

Dα
t+

(
f (t)

)
=


�(n – α)

dn

dtn

∫ t

t

f (s)
(t – s)α+–n

ds, t > t,n –  < α ≤ n,

where n is a positive integer.

We call the function u(t) a solution of (.)-(.) if u(t) ∈ C[, ] ∩ L[, ] with a frac-
tional derivative of order α belongs to C[, ]∩ L[, ] and satisfies Equation (.) and the
boundary condition (.).

http://www.boundaryvalueproblems.com/content/2012/1/68
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We also need to introduce some lemmas as follows, which will be used in the proof of
our main theorems.

Lemma . ([]) Assume that h(t) ∈ C(, )∩L(, ) with a fractional derivative of order
α >  belongs to C(, )∩ L(, ). Then, the fractional equation

Dα
t+

(
h(t)

)
=  (.)

has solutions

h(t) = ctα– + ctα– + · · · + cntα–n, ci ∈ R, i = , , . . . ,n,n = [α] + . (.)

Lemma . ([]) Assume that h(t) ∈ C(, )∩L(, ) with a fractional derivative of order
α >  belongs to C(, )∩ L(, ). Then

Iαt+D
α
t+h(t) = h(t) + ctα– + ctα– + · · · + cntα–n (.)

for some ci ∈ R, i = , , . . . ,n, n = [α] + .

Lemma . ([]) Suppose that X be a Banach space, C ⊂ X is closed and convex. Assume
thatU is a relatively open subset of C with  ∈ U, andT :U → C is a completely continuous
operator. Then, either

(i) T has a fixed point in U , or
(ii) there exist u ∈ ∂U and γ ∈ (, ) with u = γTu.

Throughout this paper, we assume that f (t,u) satisfies the following:

(H) f (t,u) ∈ C([, ]× R,R), and there exist two positive functions a(t) ∈ C([, ],R+) and
b(t) ∈ C([, ],R+) such that

∣∣f (t, tα–u)∣∣ ≤ a(t) + b(t)|u|p, t ∈ [, ], (.)

where  ≤ p≤ . Furthermore,

lim
u→±∞ f

(
t, tα–u

)
= ±∞ (.)

for any t ∈ (, ).

We have our main results:

Theorem . Suppose that (H) holds. If

∫ 


G*(s, s)b(s)ds < , (.)

then the boundary value problem (.)-(.) has at least one solution, where

G*(s, s) =


�(α)( – ηα–)

⎧⎨
⎩( – s)α– – (η – s)α–,  ≤ s ≤ η,

( – s)α–, η ≤ s ≤ .

http://www.boundaryvalueproblems.com/content/2012/1/68
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3 Some lemmas
Let 	 = C[, ], u ∈ 	 equipped the norm

‖u‖ = sup
≤t≤

∣∣u(t)∣∣, (.)

then 	 is a Banach space.
We first give some lemmas as follows:

Lemma . Problem (.)-(.) is equivalent to the following integral equation

u(t) =
∫ 


G(t, s)f

(
s,u(s)

)
ds + u()tα–, (.)

where

G(t, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tα–( – s)α– – tα–(η – s)α– – ( – ηα–)(t – s)α–

�(α)( – ηα–)
,

 ≤ s ≤ min{t,η} ≤ ;
tα–( – s)α– – tα–(η – s)α–

�(α)( – ηα–)
,  ≤ t ≤ s ≤ η ≤ ;

tα–( – s)α– – ( – ηα–)(t – s)α–

�(α)( – ηα–)
,  ≤ η ≤ s≤ t ≤ ;

tα–( – s)α–

�(α)( – ηα–)
,  ≤ max{t,η} ≤ s ≤ .

(.)

Proof The sufficiency is obvious, we only need to prove the necessity.
Suppose that u(t) is a solution of the problem (.)-(.). Integrating both sides of (.)

of α order from  to t with respect to t, it follows that

u(t) = –


�(α)

∫ t


(t – s)α–f

(
s,u(s)

)
ds + ctα– + ctα–. (.)

According to (.) and (.), we have

c = ,

c =


�(α)( – ηα–)

{∫ 


( – s)α–f

(
s,u(s)

)
ds –

∫ η


(η – s)α–f

(
s,u(s)

)
ds

}
+ u().

(.)

Combining (.) and (.), we obtain

u(t) = –


�(α)( – ηα–)

∫ t



(
 – ηα–)(t – s)α–f

(
s,u(s)

)
ds

+


�(α)( – ηα–)

{∫ 


tα–( – s)α–f

(
s,u(s)

)
ds –

∫ η


tα–(η – s)α–f

(
s,u(s)

)
ds

}

+ u()tα–.

According to (.), it is easy to show that (.) holds. The proof is completed. �

http://www.boundaryvalueproblems.com/content/2012/1/68
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Lemma. For any (t, s) ∈ [, ]× [, ], G(t, s) is continuous, and G(t, s) >  for any (t, s) ∈
(, )× (, ).

Proof The continuity of G(t, s) for (t, s) ∈ [, ]× [, ] is obvious.
Let

g(t, s) = tα–( – s)α– – tα–(η – s)α– –
(
 – ηα–)(t – s)α–,

we only need to show that g(t, s) >  for  ≤ s ≤ min{t,η} ≤ , the rest of the proof is
similar or obvious. From the definition of g(t, s), we have

g(t, s) = tα–
{
( – s)α– – (η – s)α– –

(
 – ηα–)( – s

t

)α–}

≥ tα–
{
( – s)α– – (η – s)α– –

(
 – ηα–)( – s)α–

}
≥ tα–

{
ηα–( – s)α– – (η – s)α–

}
≥ tα–

{
(η – ηs)α– – (η – s)α–

}
> 

for  ≤ s ≤ min{t,η} ≤ . The proof is completed. �

Let

G(t, s) = tα–G*(t, s),

then

G*(t, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( – s)α– – (η – s)α– – ( – ηα–)( – s
t )

α–

�(α)( – ηα–)
,

 ≤ s≤ min{t,η} ≤ ;
( – s)α– – (η – s)α–

�(α)( – ηα–)
,  ≤ t ≤ s ≤ η ≤ ;

( – s)α– – ( – ηα–)( – s
t )

α–

�(α)( – ηα–)
 ≤ η ≤ s ≤ t ≤ ;

( – s)α–

�(α)( – ηα–)
,  ≤ max{t,η} ≤ s≤ .

(.)

The new Green’s function G*(t, s) has the following properties:

Lemma . G*(t, s) is continuous for (t, s) ∈ (, )× (, ), and

lim
t→

G*(t, s) :=G*(, s) =

⎧⎪⎨
⎪⎩


�(α)( – ηα–)

{
( – s)α– – (η – s)α–

}
,  ≤ s ≤ η,


�(α)( – ηα–)

( – s)α–, η ≤ s ≤ .

Furthermore, G*(t, s) >  for (t, s) ∈ (, )× (, ).

Lemma . For any s ∈ (, ), G*(t, s) is nonincreasing with respect to t ∈ [, ]. Especially,
for any s ∈ [, ], ∂G*

∂t ≤  for t ∈ [s, ], and ∂G*

∂t =  for t ∈ [, s]. That is G*(, s) ≤ G*(t, s) ≤

http://www.boundaryvalueproblems.com/content/2012/1/68
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G*(s, s), where

G*(, s) =


�(α)( – ηα–)

⎧⎨
⎩ηα–( – s)α– – (η – s)α–,  ≤ s≤ η,

ηα–( – s)α–, η ≤ s ≤ ,
(.)

and

G*(s, s) =


�(α)( – ηα–)

⎧⎨
⎩( – s)α– – (η – s)α–,  ≤ s ≤ η,

( – s)α–, η ≤ s ≤ .
(.)

Let

u(t) = tα–x(t). (.)

Then, u() = x(), we have from Lemma ., (.) and (.) that the integral Equation (.)
can be rewritten as follows:

x(t) =
∫ 


G*(t, s)f

(
s, sα–x(s)

)
ds + x(). (.)

Let

y(t) = x(t) – x(). (.)

Then, y() =  and (.) is equivalent to the following

y(t) =
∫ 


G*(t, s)f

(
s, sα–

(
y(s) + x()

))
ds. (.)

We can divide our proof into the following two steps:
First, we replace x() by any real number μ, then (.) can be rewritten as

y(t) =
∫ 


G*(t, s)f

(
s, sα–

(
y(s) +μ

))
ds. (.)

It suffices to show that for any given real numberμ, (.) has a solution y(t), which implies
that Equation (.) has a solution u(t) which satisfies the first boundary value condition
u() = .
Second,we show that there exists aμ such that the solution y(t) of (.) satisfies y() = ,

which implies that the solution u(t) of (.) also satisfies the boundary value condition
u() = 

ηα– u(η).
In this section, we will prove the first step. For convenience sake, we define an operator

T on the set 	 as follows:

Ty(t) =
∫ 


G*(t, s)f

(
s, sα–

(
y(s) +μ

))
ds. (.)

Lemma . Suppose that f ∈ C([, ]× R,R), and (.) hold, then the operator T is com-
pletely continuous in 	.

http://www.boundaryvalueproblems.com/content/2012/1/68
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Proof It is easy to show that the operator T maps 	 into itself. We divide the proof into
the following three steps.
Step . Ty(t) is continuous with respect to y(t) ∈ 	.
In fact, suppose that {yn(t)} is a sequence in 	, and {yn(t)} converges to y(t) ∈ 	. Since

f (t, tα–y) is continuous with respect to y ∈ R, and it is obvious that G*(t, s) is uniformly
continuous with respect to (t, s) ∈ [, ]× [, ] from Lemma ., then for any ε > , there
exists an integer N , when n >N ,

∥∥f (t, tα–(yn(t) +μ
))

– f
(
t, tα–

(
y(t) +μ

))∥∥ ≤ ε∫ 
 G*(t, s)ds

, (.)

which follows from (.)-(.) that

∥∥(Tyn)(t) – (Ty)(t)
∥∥ =

∥∥∥∥
∫ 


G*(t, s)

{
f
(
s, sα–

(
yn(s) +μ

))
– f

(
s, sα–

(
y(s) +μ

))}
ds

∥∥∥∥
≤

∫ 


G*(t, s)ds

∥∥f (t, tα–(yn(t) +μ
))

– f
(
t, tα–

(
y(t) +μ

))∥∥
≤ ε.

Thus, the operator T is continuous in 	.
Step . T maps bounded set in 	 into bounded set.
Suppose that B ∈ 	 is a bounded set with ‖y(t)‖ ≤ r for any y ∈ B. Then, we have from

(.) and (.) that

∥∥(Ty)(t)∥∥ =
∥∥∥∥
∫ 


G*(t, s)f

(
s, sα–

(
y(s) +μ

))
ds

∥∥∥∥
≤

∫ 


G*(t, s)a(s)ds +

∫ 


G*(t, s)b(s)

∣∣y(s) +μ
∣∣p ds

≤
∫ 


G*(t, s)a(s)ds +

∫ 


G*(t, s)b(s)ds

(∥∥y(t)∥∥ + ‖μ‖)p
≤

∫ 


G*(t, s)a(s)ds +

∫ 


G*(t, s)b(s)ds

(
r + ‖μ‖)p := l.

This gives that the operator T maps bounded set into bounded set in 	.
Step . T is equicontinuous in 	.
It suffices to show that for any y(t) ∈ B and any  < t < t < , Ty(t) → Ty(t) as t → t.

We consider the following three cases:
(i)  < t < t < η;
(ii)  < t < η < t;
(iii)  < η < t < t.

We only prove the case (i), the rest two cases are similar. Since B is bounded, then there
exists aM >  such that f ≤ M. According to (.), we have

∥∥(Ty)(t) – (Ty)(t)
∥∥

≤
∫ 



∣∣G*(t, s) –G*(t, s)
∣∣∣∣f (s, sα–(y(s) +μ

))∣∣ds

http://www.boundaryvalueproblems.com/content/2012/1/68
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=
∫ t




�(α)

[(
 –

s
t

)α–

–
(
 –

s
t

)α–]∣∣f (s, sα–(y(s) +μ
))∣∣ds

+
∫ t

t


�(α)

(
 –

s
t

)α–∣∣f (s, sα–(y(s) +μ
))∣∣ds + ∫ 

t
ds

≤ M
�(α)

(∫ t



[(
 –

s
t

)α–

–
(
 –

s
t

)α–]
ds +

∫ t

t

(
 –

s
t

)α–

ds
)

=
M

�(α + )
(t – t)α →  as t → t.

According to Step -Step , the operator T is completely continuous in 	. The proof is
completed. �

Further, we have

Lemma . Suppose that f ∈ C([, ]× R,R), and (.) and (.) holds, then, for any real
number μ, the integral Equation (.) has at least one solution.

Proof We only need to show that the operator T is priori bounded. Let

r =max

{
,

∫ 
 G

*(s, s)a(s)ds +
∫ 
 G

*(s, s)b(s)ds|μ|p
 –

∫ 
 G*(s, s)b(s)ds

}
. (.)

Define a set K ∈ 	 as follows

K =
{
y ∈ 	|∥∥y(t)∥∥ ≤ r

}
. (.)

To show the existence of a fixed point of T by Lemma ., we need to verify that the
second possibility in Lemma . cannot happen.
In fact, assume that there exists y ∈ ∂K with ‖y(t)‖ = r and γ ∈ (, ) such that y = γTy.

It follows that

y(t) = γ
∣∣(Ty)(t)∣∣ = γ

∫ 


G*(t, s)f

(
s, sα–

(
y(s) +μ

))
ds,

and

∥∥y(t)∥∥ =
∥∥∥∥γ

∫ 


G*(t, s)f

(
s, sα–

(
y(s) +μ

))
ds

∥∥∥∥
≤ γ

∫ 


G*(s, s)

∣∣f (s, sα–(y(s) +μ
))∣∣ds

<
∫ 


G*(s, s)a(s)ds +

∫ 


G*(s, s)b(s)ds

∥∥y(t) +μ
∥∥p

≤
∫ 


G*(s, s)a(s)ds +

∫ 


G*(s, s)b(s)ds‖μ‖p +

∫ 


G*(s, s)b(s)ds‖r‖p

≤
∫ 


G*(s, s)a(s)ds +

∫ 


G*(s, s)b(s)ds‖μ‖p +

∫ 


G*(s, s)b(s)ds‖r‖

≤ ‖r‖.

(.)

http://www.boundaryvalueproblems.com/content/2012/1/68
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Here we have the use of the inequality

(a + b)p ≤ ap + bp for a,b ≥ ,≤ p ≤ .

It is obvious that (.) contradicts our assumption that ‖y(t)‖ = r. Therefore, by Lem-
ma ., it follows that T has a fixed point y ∈ K . Hence, the integral Equation (.) has at
least a solution y(t). The proof is completed. �

4 The proof of themain results
Now, we prove Theorem . by Lemma .-. and the intermediate value theorem.

Proof of Theorem . It is obvious that the right-hand side of (.) is continuously de-
pendent on the parameter μ, so we need to find a μ such that y() = , which implies that
u() = μ.
For any given real number μ, we rewrite (.) as follows:

yμ(t) =
∫ 


G*(t, s)f

(
s, sα–

(
yμ(s) +μ

))
ds, t ∈ [, ]. (.)

From (.), it suffices to show that there exists a μ such that

L(μ) := yμ() =
∫ 


G*(, s)f

(
s, sα–

(
yμ(s) +μ

))
ds. (.)

It is obvious that yμ() is continuously dependent on the parameter μ. In order to prove
that there exists a μ* such that yμ* () = , we only need to show that limμ→∞ L(μ) = ∞,
and limμ→–∞ L(μ) = –∞.
Now, we show that limμ→∞ L(μ) = ∞. On the contrary, we assume that limμ→∞L(μ) <

∞. Then, there exists a sequence {μn}, limn→∞ μn = ∞ such that limμn→∞ L(μn) < ∞,
which implies that the sequence {L(μn)} is bounded from above. Notice that the func-
tion f (t, tα–y) is continuous with respect to t ∈ [, ] and y ∈ R. We first claim that it is
impossible to have

f
(
t, tα–

(
yμn (t) +μn

)) ≥  for all t ∈ [, ] (.)

as μn is large enough. Indeed, assume that (.) is true. Then, by (.), we have

yμn (t)≥  (.)

for all t ∈ [, ]. Thus, we get

lim
μn→∞

(
yμn (t) +μn

)
= ∞ (.)

for all t ∈ [, ]. Since we have assumed in (H) that

lim
u→∞ f

(
t, tα–u

)
= ∞, t ∈ (, ), (.)

http://www.boundaryvalueproblems.com/content/2012/1/68
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by (.), (.)-(.), we have

lim
μn→∞ yμn () = lim

μn→∞

∫ 


G*(, s)f

(
s, sα–

(
yμn (s) +μn

))
ds

= lim
μn→∞

∫ 





G*(, s)f
(
s, sα–

(
yμn (s) +μn

))
ds (.)

= ∞,

which contradicts our assumption.
Now, for large μn, we define

In =
{
t ∈ [, ]|f (t, tα–(yμn (t) +μn

))
< 

}
.

Then, In is not empty.
Further, we divide the set In into two sets Ĩn and În as follows:

Ĩn =
{
t ∈ In|yμn (t) +μn > 

}
, În =

{
t ∈ In|yμn (t) +μn ≤ 

}
.

It is easy to know that Ĩn ∩ În = φ, and Ĩn ∪ În = In, and we have from (H) that În is not
empty.
From (H) again, the function f (t, tα–u) is bounded below by a constant for t ∈ [, ] and

u ∈ [,∞). Thus, there exists a constantM (< ), independent of t and μn, such that

f
(
t, tα–

(
yμn (t) +μn

)) ≥ M, t ∈ Ĩn. (.)

Let

m(μn) =min
t∈In

yμn (t).

From the definitions of Ĩn and În, we have

m(μn) =min
t∈̂In

yμn (t) = –
∥∥yμn (t)

∥∥̂
In
,

and it follows that m(μn) → –∞ as μn → ∞ (since if m(μn) is bounded below by a con-
stant as μn → ∞, then (.) holds). Therefore, we can choose μn large enough so that

m(μn) <min

{
–,

M
∫ 
 G

*(s, s)ds –
∫ 
 G

*(s, s)a(s)ds
 –

∫ 
 G*(s, s)b(s)ds

}
(.)

for n > n. From (H), (.), (.)-(.), and the definitions of Ĩn and În, for any μn > μn , we
have

yμn (t) =
∫ 


G*(t, s)f

(
s, sα–

(
yμn (s) +μn

))
ds

≥
∫
In
G*(s, s)f

(
s, sα–

(
yμn (s) +μn

))
ds

http://www.boundaryvalueproblems.com/content/2012/1/68
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≥
∫
Ĩn
G*(s, s)f

(
s, sα–

(
yμn (s) +μn

))
ds

+
∫
În
G*(s, s)

(
–a(s) – b(s)

∣∣yμn (s) +μn
∣∣p)ds

≥
(
M

∫
Ĩn
G*(s, s)ds –

∫
În
G*(s, s)a(s)ds

)

–
∫
În
G*(s, s)b(s)ds

∥∥yμn (t) +μn
∥∥p,

from which it follows that

yμn (t) ≥ M
∫ 


G*(s, s)ds –

∫ 


G*(s, s)a(s)ds

–
∫ 


G*(s, s)b(s)ds

∥∥yμn (t)
∥∥p
In

≥ M
∫ 


G*(s, s)ds –

∫ 


G*(s, s)a(s)ds

+
∫ 


G*(s, s)b(s)dsm(μn), t ∈ In,

which implies that

m(μn) ≥ M
∫ 
 G

*(s, s)ds –
∫ 
 G

*(s, s)a(s)ds
 –

∫ 
 G*(s, s)b(s)ds

.

This contradicts (.).
Now, we have proved that limμ→∞ L(μ) = ∞. By a similar method, we can prove that

limμ→–∞ L(μ) = –∞. The detail is omitted.
Notice that L(μ) is continuous with respect to μ ∈ (–∞,∞). It follows from the inter-

mediate value theorem [] that there exists a μ* ∈ (–∞,∞) such that L(μ*) = , that is
y() = yμ* () = , which satisfies the second boundary value condition of (.). The proof
is completed. �

5 Examples
Example . Consider the following boundary value problem

⎧⎪⎨
⎪⎩
D/u(t) + t +

u

= , t ∈ [, ],

u() = , u() = 

 u

(



)
,

(.)

where

α = /, η =


, 


 ·

(



) 
 –

= ,

and

f (t,u) = t +
u

, f

(
t, t


 u

)
= t + t



u

, b(t) =

t 



.
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It is easy to show that

lim
u→±∞ f

(
t, t


 u

)
= ±∞, t ∈ (, ),

and

∫ 


G*(s, s)b(s)ds ≤ 


· 
�(  )( – (  )


 )

∫ 


( – s)


 s


 ds

=



· 
�(  )( – (  )


 )

· �(  )�(

 )

�()

≈ . < .

Thus, the conditions of Theorem . are satisfied. Therefore, the problem (.) has at least
a nontrivial solution.
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