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Abstract
This paper investigates the existence and uniqueness of nontrivial solutions to a class
of fractional nonlocal multi-point boundary value problems of higher order fractional
differential equation, this kind of problems arise from viscoelasticity, electrochemistry
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proof is based on Leray-Schauder nonlinear alternative and Schauder fixed point
theorem.
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1 Introduction
The purpose of this paper is to establish the existence and uniqueness of nontrivial solu-
tions to the following higher fractional differential equation:

⎧⎪⎪⎨
⎪⎪⎩
–Dαx(t) = f

(
t,x(t),Dμx(t),Dμx(t), . . . ,Dμn–x(t)

)
,  < t < ,

x() = , Dμi x() = , Dμx() =
p–∑
j=

ajDμx(ξj),  ≤ i≤ n – ,
(.)

where n≥ , n ∈N, n– < α ≤ n, n– l– < α–μl < n– l, for l = , , . . . ,n–, andμ–μn– >
, α –μn– ≤ , α –μ > , aj ∈ [, +∞),  < ξ < ξ < · · · < ξp– < ,

∑p–
j= ajξα–μ–

j �= , Dα is
the standard Riemann-Liouville derivative, and f : [, ]×R

n →R is continuous.
Differential equations of fractional order occur more frequently in different research ar-

eas such as engineering, physics, chemistry, economics, etc. Indeed, we can find numerous
applications in viscoelasticity, electrochemistry control, porous media, electromagnetic
and signal processing of wireless communication system, etc. [–].
For an extensive collection of results about this type of equations, we refer the reader to

the monograph by Kilbas et al. [], Miller and Ross [], Podlubny [], the papers [–]
and the references therein.
Recently, Salem [] has investigated the existence of Pseudo solutions for the nonlin-

earm-point boundary value problem of a fractional type. In particular, he considered the
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following boundary value problem:

⎧⎪⎪⎨
⎪⎪⎩

Dαx(t) + q(t)f
(
t,x(t)

)
= ,  < t < ,α ∈ (n – ,n],n≥ ,

x() = x′() = x′′() = · · · = x(n–)() = , x() =
m–∑
i=

ξix(ηi),
(.)

where x takes values in a reflexive Banach space E,  < η < η < · · · < ηm– <  and ξi >
 with

∑m–
j= ξjη

α–
j < . x(k) denotes the kth Pseudo-derivative of x and Dα denotes the

Pseudo fractional differential operator of order α. By means of the fixed point theorem
attributed to O’Regan, a criterion was established for the existence of at least one Pseudo
solution for the problem (.).
More recently, Zhang [] has considered the following problem whose nonlinear term

and boundary condition contain integer order derivatives of unknown functions:

⎧⎨
⎩Dαx(t) + q(t)f

(
x,x′, . . . ,x(n–)

)
= ,  < t < ,n –  < α ≤ n,

x() = x′() = · · · = x(n–)() = x(n–)() = ,
(.)

where Dα is the standard Riemann-Liouville fractional derivative of order α, q may be
singular at t =  and f may be singular at x = , x′ = , . . . ,x(n–) = . By using the fixed point
theorem of a mixed monotone operator, a unique existence result of positive solution to
the problem (.) was established. And then, Goodrich [] was concerned with a partial
extension of the problem (.) by extending boundary conditions

⎧⎨
⎩–Dαx(t) = f

(
t,x(t)

)
,  < t < ,n –  < α ≤ n,n > ,

x(i)() = ,  ≤ i≤ n – , Dαx() = ,  ≤ α ≤ n – .
(.)

The author derived the Green’s function for the problem (.) and showed that it satisfies
certain properties. Then, by using cone theoretic techniques, a general existence theorem
for (.) was obtained when f (t,x) satisfies some growth conditions.
In recentwork [], Rehman andKhan have investigated themulti-point boundary value

problems for fractional differential equations of the form

⎧⎪⎪⎨
⎪⎪⎩

Dαy(t) = f
(
t, y(t),Dβy(t)

)
, t ∈ (, ),

y() = , Dβy() –
m–∑
i=

ζiD
βy(ξi) = y,

(.)

where  < α ≤ ,  < β < ,  < ξi < , ζi ∈ [, +∞) with
∑m–

i= ζiξ
α–β–
i < . By using the

Schauder fixed point theorem and the contraction mapping principle, the authors estab-
lished the existence and uniqueness of nontrivial solutions for BVP (.) provided that
the nonlinear function f : [, ]×R×R is continuous and satisfies certain growth condi-
tions. However, Rehman and Khan only considered the case  < α ≤  and the case of the
nonlinear term f was not considered comprehensively.
Notice that the results dealing with the existence and uniqueness of solution for multi-

point boundary value problems of fractional order differential equations are relatively
scarce when the nonlinear term f and the boundary conditions all involve fractional
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derivatives of unknown functions. Thus, the aim of this paper is to establish the exis-
tence and uniqueness of nontrivial solutions for the higher nonlocal fractional differential
equations (.) where nonlinear term f and the boundary conditions all involve fractional
derivatives of unknown functions. In our study, the proof is based on the reduced order
method as in [] and the main tool is the Leray-Schauder nonlinear alternative and the
Schauder fixed point theorem.

2 Basic definitions and preliminaries
Definition . A function x is said to be a solution of BVP (.) if x ∈ C[, ] and satisfies
BVP (.). In addition, x is said to be a nontrivial solution if x �≡  for t ∈ (, ) and x is
solution of BVP (.).

For the convenience of the reader, we present somedefinitions, lemmas, and basic results
that will be used later. These and other related results and their proofs can be found, for
example, in [–].

Definition . (see []) Let α >  with α ∈ R. Suppose that x : [a,∞) → R then the αth
Riemann-Liouville fractional integral is defined by

Iαx(t) =


�(α)

∫ t

a
(t – s)α–x(s)ds

whenever the right-hand side is defined. Similarly, with α >  with α ∈ R, we define the
αth Riemann-Liouville fractional derivative to be

Dαx(t) =


�(n – α)

(
d
dt

)(n) ∫ t

a
(t – s)n–α–x(s)ds,

where n ∈N is the unique positive integer satisfying n –  ≤ α < n and t > a.

Remark . If x, y : (, +∞) →R with order α > , then

Dα
(
x(t) + y(t)

)
= Dαx(t) +Dαy(t).

Lemma . (see [])
() If x ∈ L(, ), ρ > σ > , then

IρIσx(t) = Iρ+σx(t), Dσ Iρx(t) = Iρ–σx(t), Dσ Iσx(t) = x(t).

() If ρ > , ν > , then

Dρtν– =
�(ν)

�(ν – ρ)
tν–ρ–.

Lemma . (see []) Assume that x ∈ C(, )∩L(, )with a fractional derivative of order
α > , then IαDαx(t) = x(t) + ctα– + ctα– + · · · + cntα–n, where ci ∈ R, i = , , . . . ,n (n =
[α]+). Here Iα stands for the standard Riemann-Liouville fractional integral of order α > 
and Dα denotes the Riemann-Liouville fractional derivative as Definition ..
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Lemma. If  < α–μn– ≤ , α–μ >  and h ∈ L[, ], then the boundary value problem

⎧⎪⎪⎨
⎪⎪⎩
–Dα–μn–w(t) = h(t),

w() = , Dμ–μn–w() =
p–∑
j=

ajDμ–μn–w(ξj),
(.)

has the unique solution

w(t) =
∫ 


K(t, s)h(s)ds,

where K(t, s) is the Green function of BVP (.), and

K(t, s) = k(t, s) +
tα–μn––

 –
∑p–

j= ajξα–μ–
j

p–∑
j=

ajk(ξj, s), (.)

k(t, s) =

⎧⎪⎪⎨
⎪⎪⎩
tα–μn––( – s)α–μ– – (t – s)α–μn––

�(α –μn–)
,  ≤ s≤ t ≤ ,

tα–μn––( – s)α–μ–

�(α –μn–)
,  ≤ t ≤ s≤ ,

k(t, s) =

⎧⎪⎪⎨
⎪⎪⎩
(t( – s))α–μ– – (t – s)α–μ–

�(α –μn–)
,  ≤ s≤ t ≤ ,

(t( – s))α–μ–

�(α –μn–)
,  ≤ t ≤ s≤ .

(.)

Proof By applying Lemma ., we may reduce (.) to an equivalent integral equation

w(t) = –Iα–μn–h(t) + ctα–μn–– + ctα–μn––, c, c ∈R. (.)

Note that w() =  and (.), we have c = . Consequently, a general solution of (.) is

w(t) = –Iα–μn–h(t) + ctα–μn––. (.)

By (.) and Lemma ., we have

Dμ–μn–w(t) = –Dμ–μn– Iα–μn–h(t) + cDμ–μn– tα–μn––

= –Iα–μh(t) + c
�(α –μn–)
�(α –μ)

tα–μ–

= –
∫ t



(t – s)α–μ–

�(α –μ)
h(s)ds + c

�(α –μn–)
�(α –μ)

tα–μ–.

(.)

So, from (.), we have

Dμ–μn–w() = –
∫ 



( – s)α–μ–

�(α –μ)
h(s)ds + c

�(α –μn–)
�(α –μ)

,

Dμ–μn–w(ξj) = –
∫ ξj



(ξj – s)α–μ–

�(α –μ)
h(s)ds + c

�(α –μn–)
�(α –μ)

ξ
α–μ–
j ,

for j = , , . . . ,p – .

(.)

http://www.boundaryvalueproblems.com/content/2012/1/70
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By Dμ–μn–w() =
∑p–

j= ajDμ–μn–w(ξj), combining with (.), we obtain

c =
∫ 
 ( – s)α–μ–h(s)ds –

∑p–
j= aj

∫ ξj
 (ξj – s)α–μ–h(s)ds

�(α –μn–)( –
∑p–

j= ajξα–μ–
j )

.

So, substituting c into (.), the unique solution of the problem (.) is

w(t) = –
∫ t



(t – s)α–μn––

�(α –μn–)
h(s)ds +

tα–μn––

 –
∑p–

j= ajξα–μ–
j

×
{∫ 



( – s)α–μ–

�(α –μn–)
h(s)ds –

p–∑
j=

aj
∫ ξj



(ξj – s)α–μ–

�(α –μn–)
h(s)ds

}

= –
∫ t



(t – s)α–μn––

�(α –μn–)
h(s)ds +

( –
∑p–

j= ajξα–μ–
j +

∑p–
j= ajξα–μ–

j )tα–μn––

 –
∑p–

j= ajξα–μ–
j

×
∫ 



( – s)α–μ–

�(α –μn–)
h(s)ds –

tα–μn––

 –
∑p–

j= ajξα–μ–
j

p–∑
j=

aj
∫ ξj



(ξj – s)α–μ–

�(α –μn–)
h(s)ds

= –
∫ t



(t – s)α–μn––

�(α –μn–)
h(s)ds +

∫ 



( – s)α–μ–tα–μn––

�(α –μn–)
h(s)ds

+
tα–μn––

 –
∑p–

j= ajξα–μ–
j

p–∑
j=

aj
∫ 



( – s)α–μ–ξ
α–μ–
j

�(α –μn–)
h(s)ds

–
tα–μn––

 –
∑p–

j= ajξα–μ–
j

p–∑
j=

aj
∫ ξj



(ξj – s)α–μ–

�(α –μn–)
h(s)ds

=
∫ 



(
k(t, s) +

tα–μn––

 –
∑p–

j= ajξα–μ–
j

p–∑
j=

ajk(ξj, s)

)
h(s)ds

=
∫ 


K(t, s)h(s)ds.

The proof is completed. �

Lemma . |K(t, s)| ≤ M( – s)α–μ–, for t, s ∈ [, ], where

M =
 +

∑p–
j= aj

|–∑p–
j= ajξ

α–μ–
j |

�(α –μn–)
. (.)

Proof Obviously, for t, s ∈ [, ], we have ki(t, s)≤ (–s)α–μ–

�(α–μn–)
, i = , . Thus

|K(t, s)| =
∣∣∣∣∣k(t, s) + tα–μn––

 –
∑p–

j= ajξα–μ–
j

p–∑
j=

ajk(ξj, s)

∣∣∣∣∣
≤ ( – s)α–μ–

�(α –μn–)
+

∑p–
j= aj( – s)α–μ–

�(α –μn–)| –∑p–
j= ajξα–μ–

j |

http://www.boundaryvalueproblems.com/content/2012/1/70
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≤
(
 +

∑p–
j= aj

| –∑p–
j= ajξα–μ–

j |
)
( – s)α–μ–

�(α –μn–)
.

This completes the proof. �

Now let us consider the following modified problem of BVP (.)

⎧⎪⎪⎨
⎪⎪⎩
–Dα–μn–v(t) = f

(
t, Iμn–v(t), Iμn––μv(t), . . . , Iμn––μn–v(t), v(t)

)
,

v() = , Dμ–μn–v() =
p–∑
j=

ajDμ–μn–v(ξj).
(.)

Lemma . Let x(t) = Iμn–v(t), v(t) ∈ C[, ]. Then (.) can be transformed into (.).
Moreover, if v ∈ C([, ],R) is a solution of the problem (.), then the function x(t) =
Iμn–v(t) is a solution of the problem (.).

Proof Substituting x(t) = Iμn–v(t) into (.), by Lemmas . and ., we can obtain that

Dαx(t) =
dn

dtn
In–αx(t) =

dn

dtn
In–αIμn–v(t)

=
dn

dtn
In–α+μn–v(t) = Dα–μn–v(t),

Dμx(t) = Dμ Iμn–v(t) = Iμn––μv(t),

Dμx(t) = Dμ Iμn–v(t) = Iμn––μv(t), (.)
...

...

Dμn–x(t) = Dμn– Iμn–v(t) = Iμn––μn–v(t),

Dμn–x(t) = Dμn– Iμn–v(t) = v(t),

and also Dμn–x() = v() = . It follows from Dμx(t) = DμIμn–v(t) = dn
dtn I

n–μIμn–v(t) =
Dμ–μn–v(t) that Dμ–μn–v() =

∑p–
j= ajDμ–μn–v(ξj). Using x(t) = Iμn–v(t), v ∈ C[, ],

(.) is transformed into (.).
Now, let v ∈ C([, ],R) be a solution for the problem (.). Then, from Lemma ., (.)

and (.), one has

–Dαx(t) = –
dn

dtn
In–αx(t) = –

dn

dtn
In–αIμn–v(t)

= –
dn

dtn
In–α+μn–v(t) = –Dα–μn–v(t)

= f
(
t, Iμn–v(t), Iμn––μv(t), . . . , Iμn––μn–v(t), v(t)

)
= f

(
t,x(t),Dμx(t),Dμx(t), . . . ,Dμn–x(t)

)
,  < t < .

Notice

Iαv(t) =


�(α)

∫ t


(t – s)α–v(s)ds,

http://www.boundaryvalueproblems.com/content/2012/1/70
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which implies that Iαv() = . Thus from (.), for i = , , . . . ,n – , we have

x() = , Dμi x() = , Dμx() =
p–∑
j=

ajDμx(ξj).

Moreover, it follows from the monotonicity and property of Iμn– that

Iμn–v ∈ C
(
[, ], [, +∞)

).

Consequently, x(t) = Iμn–v(t) is a solution of the problem (.). �

Now let us define an operator T : C[, ] → C[, ] by

(Tv)(t) =
∫ 


K(t, s)f

(
s, Iμn–v(s), Iμn––μv(s), . . . , Iμn––μn–v(s), v(s)

)
ds. (.)

Clearly, the fixed point of the operator T is a solution of BVP (.); and consequently is
also a solution of BVP (.) from Lemma ..

Lemma . T : C[, ]→ C[, ] is a completely continuous operator.

Proof Noticing that f : [, ]×R
n →R is continuous, by using the Ascoli-Arzela theorem

and standard arguments, the result can easily be shown. �

Lemma . (see []) Let X be a real Banach space, � be a bounded open subset of X,
where θ ∈ �, T : � → X is a completely continuous operator. Then, either there exists x ∈
∂�, λ >  such that T(x) = λx, or there exists a fixed point x* ∈ �.

3 Main results
For the convenience of expression in rest of the paper, we let μ = .

Theorem . Suppose f (t, , . . . , ) �≡  for any t ∈ [, ]. Moreover, there exist nonnegative
functions p,p, . . . ,pn,q ∈ L[, ] such that

∣∣f (t,u,u, . . . ,un)∣∣ ≤
n∑
i=

pi(t)|ui| + q(t), a.e. (t,u,u, . . . ,un) ∈ [, ]×R
n, (.)

and

M
∫ 


( – s)α–μ–

n∑
i=

pi(s)ds <

(
 +

n–∑
i=


�(μn– –μi)

)–

, (.)

where M is defined by (.). Then BVP (.) has at least one nontrivial solution.

Proof Since f (t, , . . . , ) �≡ , there exists [σ , τ ] ∈ [, ] such that

min
t∈[σ ,τ ]

|f (t, , . . . , )| > .

http://www.boundaryvalueproblems.com/content/2012/1/70
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By condition (.), we have q(t) ≥ |f (t, , . . . , )|, a.e. t ∈ [, ], thus

∫ 


( – s)α–μ–q(s)ds > .

On the other hand, from (.), we know

(
 +

n–∑
i=


�(μn– –μi)

)
M

∫ 


( – s)α–μ–

n∑
i=

pi(s)ds < .

Take

r =
M

∫ 
 ( – s)α–μ–q(s)ds

 – ( +
∑n–

i=


�(μn––μi)
)M

∫ 
 ( – s)α–μ– ∑n

i= pi(s)ds

then r > .
Now let �r = {v ∈ C[, ] : ‖x‖ < r}, suppose v ∈ ∂�r , λ >  such that Tv = λv. Then

λr = λ‖v‖ = ‖Tv‖ = max
t∈[,]

∣∣Tv(t)∣∣
≤ M

∫ 


( – s)α–μ–f

(
s, Iμn–v(s), Iμn––μv(s), . . . , Iμn––μn–v(s), v(s)

)
ds.

(.)

Moreover, for i = , , , . . . ,n – ,

∣∣Iμn––μi v(t)
∣∣ = ∣∣∣∣

∫ t



(t – s)μn––μi–v(s)
�(μn– –μi)

ds
∣∣∣∣ ≤ ‖v‖

�(μn– –μi)
,

thus we have, by hypothesis (.),

∣∣f (s, Iμn–v(s), Iμn––μv(s), . . . , Iμn––μn–v(s), v(s)
)∣∣

≤ p(s)
∣∣Iμn–v(s)

∣∣ + p(s)
∣∣Iμn––μv(s)

∣∣ + · · ·
+ pn–(s)

∣∣Iμn––μn–v(s)
∣∣ + pn(s)

∣∣v(s)∣∣ + q(s)

≤ ‖v‖
�(μn–)

p(s) +
‖v‖

�(μn– –μ)
p(s) + · · ·

+
‖v‖

�(μn– –μn–)
pn–(s) + ‖v‖pn(s) + q(s)

≤
(
 +

n–∑
i=


�(μn– –μi)

)
‖v‖[p(s) + p(s) + · · · + pn–(s) + pn(s)

]
+ q(s).

Consequently, from (.), we have

λr ≤
(
 +

n–∑
i=


�(μn– –μi)

)
M

∫ 


( – s)α–μ–

n∑
i=

pi(s)ds‖v‖

+M
∫ 


( – s)α–μ–q(s)ds

http://www.boundaryvalueproblems.com/content/2012/1/70
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= r

(
 +

n–∑
i=


�(μn– –μi)

)
M

∫ 


( – s)α–μ–

n∑
i=

pi(s)ds +M
∫ 


( – s)α–μ–q(s)ds.

Therefore,

λ ≤
(
 +

n–∑
i=


�(μn– –μi)

)
M

∫ 


( – s)α–μ–

n∑
i=

pi(s)ds +
M

∫ 
 ( – s)α–μ–q(s)ds

r

= .

This contradicts λ > . By Lemma ., T has a fixed point v* ∈ �, since f (t, , . . . , ) �≡ ; so
then, by Lemma ., BVP (.) has a nontrivial solution v*. This completes the proof. �

Theorem. Suppose f (t, , . . . , ) �≡  for any t ∈ [, ]. Moreover, there exist nonnegative
functions p,p, . . . ,pn,q ∈ L[, ] such that

∣∣f (t,u,u, . . . ,un)∣∣ ≤
n∑
i=

pi(t)|ui|σi + q(t), a.e. (t,u,u, . . . ,un) ∈ [, ]×R
n, (.)

where  < σ,σ, . . . ,σn <  are nonnegative constants. Then BVP (.) has at least one non-
trivial solution.

Proof By Lemma ., we know T : C[, ] → C[, ] is a completely continuous operator.
Let

a =

(
 +

n–∑
i=


�σi+ (μn– –μi)

)
M

∫ 


( – s)α–μ–

n∑
i=

pi(s)ds,

b =M
∫ 


( – s)α–μ–q(s)ds.

Choose

R ≥ {
(n + )b,

[
(n + )a

] 
–σ ,

[
(n + )a

] 
–σ , . . . ,

[
(n + )a

] 
–σn

}

and define a ballM = {v ∈ C[, ] : ‖v‖ ≤ R, t ∈ [, ]}. For every v ∈M, we have

∣∣Tv(t)∣∣ ≤
∫ 


K(t, s)

∣∣f (s, Iμn–v(s), Iμn––μv(s), . . . , Iμn––μn–v(s), v(s)
)∣∣ds

≤ M
∫ 


( – s)α–μ–∣∣f (s, Iμn–v(s), Iμn––μv(s), . . . , Iμn––μn–v(s), v(s)

)∣∣ds.
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On the other hand, it follows from (.) that

∣∣f (s, Iμn–v(s), Iμn––μv(s), . . . , Iμn––μn–v(s), v(s)
)∣∣

≤ p(s)
∣∣Iμn–v(s)

∣∣σ + p(s)
∣∣Iμn––μv(s)

∣∣σ + · · ·
+ pn–(s)

∣∣Iμn––μn–v(s)
∣∣σn– + pn(s)

∣∣v(s)∣∣σn + q(s)

≤ ‖v‖σ

�σ (μn–)
p(s) +

‖v‖σ

�σ (μn– –μ)
p(s) + · · ·

+
‖v‖σn–

�σn– (μn– –μn–)
pn–(s) + ‖v‖σnpn(s) + q(s)

≤
(

‖v‖σn +
n–∑
i=

‖v‖σi+

�σi+ (μn– –μi)

)[
p(s) + p(s) + · · · + pn–(s) + pn(s)

]
+ q(s)

≤
(
 +

n–∑
i=


�σi+ (μn– –μi)

) n∑
i=

‖v‖σi
n∑
i=

pi(s) + q(s).

(.)

In view of (.), we have the following estimate:

∣∣Tv(t)∣∣ ≤
(
 +

n–∑
i=


�σi+ (μn– –μi)

)
M

∫ 


( – s)α–μ–

n∑
i=

pi(s)ds
n∑
i=

‖v‖σi

+M
∫ 


( – s)α–μ–q(s)ds

= a
n∑
i=

‖v‖σi + b ≤ nR
n + 

+
R

n + 
= R.

Therefore, ‖Tv‖ ≤ R. Thus we have T :M →M. Hence the Schauder fixed point theorem
implies the existence of a solution in M for BVP (.). Since f (t, , . . . , ) �≡ , then by
Lemma ., BVP (.) has a nontrivial solution v*. This completes the proof. �

Theorem. Suppose f (t, , . . . , ) �≡  for any t ∈ [, ]. Moreover, there exist nonnegative
functions p,p, . . . ,pn,q ∈ L[, ] such that

∣∣f (t,u,u, . . . ,un)∣∣ ≤
n∑
i=

pi(t)|ui|σi + q(t), a.e. (t,u,u, . . . ,un) ∈ [, ]×R
n, (.)

where σ,σ, . . . ,σn >  are nonnegative constants. Then BVP (.) has at least one nontrivial
solution.

Proof The proof is similar to that of Theorem ., so it is omitted. �

Remark . In [], the authors studied the cases  < α ≤ , μ = μ = · · · = μn– = β ,
 < β < , but the case of σi = , i = , , . . . ,n was not considered. Here we extend the
results of [] and fill the case σi = , i = , , . . . ,n.
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Theorem. Suppose f (t, , . . . , ) �≡  for any t ∈ [, ]. Moreover, there exist nonnegative
functions p,p, . . . ,pn ∈ L[, ] such that

∣∣f (t,u,u, . . . ,un) – f (t, v, v, . . . , vn)
∣∣ ≤

n∑
i=

pi(t)|ui – vi|,

a.e. (t,u,u, . . . ,un), (t, v, v, . . . , vn) ∈ [, ]×R
n,

(.)

and (.) holds. Then BVP (.) has a unique nontrivial solution.

Proof In fact, if v = v = · · · = vn ≡ , then we have

∣∣f (t,u,u, . . . ,un)∣∣ ≤
n∑
i=

pi(t)|ui| +
∣∣f (t, , , . . . , )∣∣.

From Theorem ., we know BVP (.) has a nontrivial solution.
But in this case, we prefer to concentrate on the uniqueness of a nontrivial solution for

BVP (.). Let T be given in (.), we shall show that T is a contraction. In fact, by (.),
a similar method to Theorem ., we have

∣∣f (s, Iμn–u(s), Iμn––μu(s), . . . , Iμn––μn–u(s),u(s)
)

– f
(
s, Iμn–v(s), Iμn––μv(s), . . . , Iμn––μn–v(s), v(s)

)∣∣
≤

(
 +

n–∑
i=


�(μn– –μi)

)
‖u – v‖

n∑
i=

pi(s).

And then

‖Tu – Tv‖ ≤ M
∫ 


( – s)α–μ–∣∣f (s, Iμn–u(s), Iμn––μu(s), . . . , Iμn––μn–u(s),u(s)

)
– f

(
s, Iμn–v(s), Iμn––μv(s), . . . , Iμn––μn–v(s), v(s)

)∣∣ds
≤

(
 +

n–∑
i=


�(μn– –μi)

)
M

∫ 


( – s)α–μ–

n∑
i=

pi(s)ds‖u – v‖.

Then (.) implies that T is indeed a contraction. Finally, we use the Banach fixed point
theorem to deduce the existence of a unique nontrivial solution to BVP (.). �

Corollary . Suppose f (t, , . . . , ) �≡  for any t ∈ [, ], and (.) holds. Then BVP (.)
has at least one nontrivial solution if one of the following conditions holds
() There exists a constant p >  such that

∫ 



[ n∑
i=

pi(s)

]p

ds <
(
p(α –μ – )

p – 
+ 

)p–
(
M +

n–∑
i=

M
�(μn– –μi)

)–p

. (.)

() There exists a constant λ > – such that

n∑
i=

pi(s) <
�(α + λ –μ – )
�(α –μ)�(λ + )

(
M +

n–∑
i=

M
�(μn– –μi)

)–

sλ. (.)

http://www.boundaryvalueproblems.com/content/2012/1/70


Jia et al. Boundary Value Problems 2012, 2012:70 Page 12 of 16
http://www.boundaryvalueproblems.com/content/2012/1/70

() There exists a constant λ > – such that

n∑
i=

pi(s) < (α + λ –μ)

(
M +

n–∑
i=

M
�(μn– –μi)

)–

( – s)λ. (.)

() pi(s) (i = , , . . . ,n) satisfy

n∑
i=

pi(s) < (α –μ)

(
M +

n–∑
i=

M
�(μn– –μi)

)–

. (.)

Proof Let

R =M
∫ 


( – s)α–μ–

n∑
i=

pi(s)ds.

From the proof of Theorem ., we only need to prove

R <

(
 +

n–∑
i=


�(μn– –μi)

)–

.

() If (.) holds, let 
p +


q = , and by using Hölder inequality,

R ≤ M

(∫ 



[ n∑
i=

pi(s)

]p

ds

) 
p (∫ 


( – s)q(α–μ–) ds

) 
q

= M
[
q(α –μ – ) + 

]– 
q

(∫ 



[ n∑
i=

pi(s)

]p

ds

) 
p

= M
[
p(α –μ – )

p – 
+ 

]– p–
p

(∫ 



[ n∑
i=

pi(s)

]p

ds

) 
p

<

(
 +

n–∑
i=


�(μn– –μi)

)–

.

() In this case, it follows from (.) that

R < M
�(α + λ –μ – )
�(α –μ)�(λ + )

(
M +

n–∑
i=

M
�(μn– –μi)

)– ∫ 


( – s)α–μ–sλ ds

=

(
 +

n–∑
i=


�(μn– –μi)

)–

.

() In this case, it follows from (.) that

R < M(α + λ –μ)

(
M +

n–∑
i=

M
�(μn– –μi)

)– ∫ 


( – s)α–μ–( – s)λ ds

http://www.boundaryvalueproblems.com/content/2012/1/70
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=

(
 +

n–∑
i=


�(μn– –μi)

)–

.

() If (.) is satisfied, we have

R < M(α –μ)

(
M +

n–∑
i=

M
�(μn– –μi)

)– ∫ 


( – s)α–μ– ds

=

(
 +

n–∑
i=


�(μn– –μi)

)–

.

This completes the proof of Corollary .. �

Corollary . Suppose f (t, , . . . , ) �≡  for any t ∈ [, ]. Moreover,

 ≤ lim sup∑n
i= |ui|→+∞

max
t∈[,]

|f (t,u,u, . . . ,un)|∑n
i= |ui|

<
α –μ

M

(
 +

n–∑
i=


�(μn– –μi)

)–

. (.)

Then BVP (.) has at least one nontrivial solution.

Proof Take ε >  such that

α –μ

M

(
 +

n–∑
i=


�(μn– –μi)

)–

– ε > ,

by (.), there exists a large enough constant R >  such that for any t ∈ [, ],
∑n

i= |ui| ≥
R, one has

|f (t,u,u, . . . ,un)| ≤
(

α –μ

M

(
 +

n–∑
i=


�(μn– –μi)

)–

– ε

) n∑
i=

|ui|.

Let

� = max
t∈[,],∑n

i= |ui|≤R

∣∣f (t,u,u, . . . ,un)∣∣.
Then for any (t,u,u, . . . ,un) ∈ [, ]×R

n, we have

∣∣f (t,u,u, . . . ,un)∣∣ ≤ � +

(
α –μ

M

(
 +

n–∑
i=


�(μn– –μi)

)–

– ε

) n∑
i=

|ui|.

Let

n∑
i=

pi(s) =

(
α –μ

M

(
 +

n–∑
i=


�(μn– –μi)

)–

– ε

)
, q(s) = �,

we prove

R <

(
 +

n–∑
i=


�(μn– –μi)

)–

.
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In fact,

R = M
∫ 


( – s)α–μ–

n∑
i=

pi(s)ds

≤ M

(
α –μ

M

(
 +

n–∑
i=


�(μn– –μi)

)–

– ε

)∫ 


( – s)α–μ– ds

<

(
 +

n–∑
i=


�(μn– –μi)

)–

.

Then it follows from Theorem . that BVP (.) has at least one nontrivial solution. �

4 Examples
Example . Consider the boundary value problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

–D

 x(t) =

t sinx(t)


√
π + |x(t)| –

D

 x(t)


√
 + |D 

 x(t)|
+
( + t)D


 x(t)


+ t


 + cos t, t ∈ (, ),

x() =D

 x() =D


 x() = , D


 x() =

√



D



(



)
+


D




(



)
.

(.)

Proof Let α = 
 , μ = 

 , μ = 
 , μ = 

 , and set

f (t,u,u,u) =
t sinu


√

π + |u| –
u


√
 + |u| +

( + t)u


+ t

 + cos t,

p(t) =
t


√

π
, p(t) =




√

, p(t) =

 + t


, q(t) = t


 + cos t.

Then

∣∣f (t,u,u,u)∣∣ ≤ p(t)|u| + p(t)|u| + p(t)|u| + q(t),

and

(
 +

n–∑
i=


�(μn– –μi)

)–

=
(


�(  )

+


�(  )
+ 

)–

≈ .,

M =
 +

∑p–
j= aj

|–∑p–
j= ajξ

α–μ–
j |

�(α –μn–)
≈ ..

Thus we have

M
∫ 


( – s)α–μ–

n∑
i=

pi(s)ds = .
∫ 


( – s)α–μ–

n∑
i=

pi(s)ds

≈ .× .≈ . < ..
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Thus the condition (.) in Theorem . is satisfied, and from Theorem ., BVP (.) has
a nontrivial solution. �

Example . Consider the boundary value problem

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

–D

 x(t) =



(
t – t

)
x(t) –

(
sin t + et

)[
D


 x(t)

] 


+ t
[
D


 x(t)

] + et +
√
t, t ∈ (, ),

x() =D

 x() = D


 x() = ,

D

 x() =


π

D



(



)
– D




(



)
+


D




(



)
.

(.)

Proof Let

f (t,u,u,u) =


(
t – t

)|u| + (
sin t + et

)|u|  + t|u| + et +
√
t,

p(t) =


(
t – t

)
, p(t) = sin t + et , p(t) = t, q(t) = et +

√
t.

Then

∣∣f (t,u,u,u)∣∣ ≤ p(t)|u| + p(t)|u|  + p(t)|u| + q(t), t ∈ [, ].

Thus Theorem . guarantees a nontrivial solution for BVP (.). �
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