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Abstract
In this article, the theory of positive semigroup of operators and the monotone
iterative technique are extended for the impulsive fractional evolution equations with
nonlocal initial conditions. The existence results of extremal mild solutions are
obtained. As an application that illustrates the abstract results, an example is given.
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1 Introduction
In this article, we use the monotone iterative technique to investigate the existence of
extremalmild solutions of the impulsive fractional evolution equationwith nonlocal initial
conditions in an ordered Banach space X

⎧⎪⎪⎨
⎪⎪⎩
Dαu(t) +Au(t) = f (t,u(t)), t ∈ I, t �= tk ,

�u|t=tk = Ik(u(tk)), k = , , . . . ,m,

u() + g(u) = x ∈ X,

(.)

where Dα is the Caputo fractional derivative of order  < α < , A : D(A) ⊂ X → X is
a linear closed densely defined operator, –A is the infinitesimal generator of an ana-
lytic semigroup of uniformly bounded linear operators T(t) (t ≥ ), I = [,T], T > ,
 = t < t < t < · · · < tm < tm+ = T , f : I × X → X is continuous, g : PC(I,X) → X is
continuous (PC(I,X) will be defined in Section ), the impulsive function Ik : X → X is
continuous, �u|t=tk = u(t+k ) – u(t–k ), where u(t

+
k ) and u(t–k ) represent the right and left lim-

its of u(t) at t = tk , respectively.
Fractional calculus is a generalization of ordinary differentiation and integration to ar-

bitrary real or complex order. The subject is as old as differential calculus, and goes back
to the time when Leibnitz and Newton invented differential calculus. Fractional deriva-
tives have been extensively applied in many fields which have been seen an overwhelming
growth in the last three decades. Examples abound:models admitting backgrounds of heat
transfer, viscoelasticity, electrical circuits, electro-chemistry, economics, polymer physics,
and even biology are always concerned with fractional derivative [–]. Fractional evolu-
tion equations have attracted many researchers in recent years, for example, see [–].
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A strong motivation for investigating the problem (.) comes form physics. For example,
fractional diffusion equations are abstract partial differential equations that involve frac-
tional derivatives in space and time. The time fractional diffusion equation is obtained
from the standard diffusion equation by replacing the first-order time derivative with a
fractional derivative of order α ∈ (, ), namely

∂α
t u(y, t) = Au(y, t), t ≥ , y ∈ R, (.)

we can take A = ∂
β
y , for β ∈ (, ], or A = ∂y + ∂

β
y for β ∈ (, ], where ∂α

t , ∂
β
y , ∂β

y are the
fractional derivatives of order α, β, β, respectively.
The existence results to evolution equations with nonlocal conditions in Banach space

was studied first by Byszewski [, ]. Deng [] indicated that, using the nonlocal condi-
tion u()+ g(u) = x to describe for instance, the diffusion phenomenon of a small amount
of gas in a transparent tube can give better result than using the usual local Cauchy prob-
lem u() = x. For example, g(u) can be given by

g(u) =
n∑
i=

ciu(τi), (.)

where ci (i = , , . . . ,n) are given constants and  < τ < τ < · · · < τn < T . On the other
hand, the differential equations involving impulsive effects appear as a natural description
of observed evolution phenomena introduction of the basic theory of impulsive differen-
tial equations, we refer the reader to [] and the references therein. The study of impulsive
evolution equations with nonlocal initial conditions has attracted a great deal of attention
in fractional dynamics and its theory has been treated in several works [–]. They use
the contractionmapping principle, the Krasnoselskii fixed point theorem and the Schaefer
fixed point theorem.
To the authors’ knowledge, there are no studies on the existence of solutions for the im-

pulsive fractional evolution equations with nonlocal initial conditions by using the mono-
tone iterative technique in the presence of lower and upper solutions. Nevertheless, the
monotone iterative technique concerning upper and lower solutions is a powerful tool to
solve the differential equations with various kinds of boundary conditions, see [–].
This technique is that, for the considered problem, starting from a pair ordered lower and
upper, one constructs twomonotone sequences such that them uniformly converge to the
extremal solutions between the lower and upper solutions. In this article, based on Mu
[], we obtained the existence of extremal mild solutions of the problem (.) by using the
monotone iterative technique.
In following section, we introduce some preliminaries which are used throughout this

article. In Section , by combining the theory of positive semigroup of linear operators and
the monotone iterative technique coupled with the method of upper and lower solutions,
we construct two groups ofmonotone iterative sequences, and then prove these sequences
monotonically converge to the maximal and minimal mild solutions of the problem (.),
respectively, under some monotone conditions and noncompactness measure conditions
of f , g , and Ik . In Section , in order to illustrate our results, an impulsive fractional partial
differential equation with nonlocal initial condition is also considered.
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2 Preliminaries
In this section, we introduce notations, definitions, and preliminary facts which are used
throughout this article.

Definition . [] The fractional integral of order α with the lower limit zero for a func-
tion f ∈ AC[,∞) is defined as

Iαf (t) =


�(α)

∫ t



f (s)
(t – s)–α

ds, t > , < α < , (.)

provided the right side is pointwise defined on [,∞), where �(·) is the gamma function.

Definition . [] The Riemann-Liouville derivative of order α with the lower limit zero
for a function f ∈ AC[,∞) can be written as

LDαf (t) =


�( – α)
d
dt

∫ t



f (s)
(t – s)α

ds, t > , < α < . (.)

Definition . [] The Caputo fractional derivative of order α for a function f ∈
AC[,∞) can be written as

Dαf (t) = LDα
(
f (t) – f ()

)
, t > , < α < . (.)

Remark .
(i) If f ∈ C[,∞), then

Dαf (t) =


�( – α)

∫ t



f ′(s)
(t – s)α

ds, t > , < α < . (.)

(ii) The Caputo derivative of a constant is equal to zero.
(iii) If f is an abstract function with values in X , then the integrals and derivatives which

appear in Definitions .-. are taken in Bochner’s sense.

Let X be an ordered Banach space with norm ‖ · ‖ and partial order ≤, whose pos-
itive cone P = {y ∈ X|y ≥ θ} (θ is the zero element of X) is normal with normal con-
stant N . Let C(I,X) be the Banach space of all continuous X-value functions on inter-
val I with norm ‖u‖C = maxt∈I ‖u(t)‖. Let PC(I,X) = {u : I → X|u(t) is continuous at t �=
tk , left continuous at t = tk , and u(t+k ) exists, k = , , . . . ,m}. Evidently, PC(I,X) is an or-
dered Banach space with norm ‖u‖PC = supt∈I ‖u(t)‖ and the partial order ≤ reduced
by the positive cone KPC = {u ∈ PC(I,X)|u(t) ≥ θ , t ∈ I}. KPC is also normal with the
same normal constant N . For u, v ∈ PC(I,X), u ≤ v if u(t) ≤ v(t) for all t ∈ I . For
v,w ∈ PC(I,X) with v ≤ w, denote the ordered interval [v,w] = {u ∈ PC(I,X)|v ≤ u ≤ w}
in PC(I,X), and [v(t),w(t)] = {y ∈ X|v(t) ≤ y ≤ w(t)} (t ∈ I) in X. Set Cα(I,X) = {u ∈
C(I,X)|Dαu exists and Dαu ∈ C(I,X)}. Let I ′ = I \ {t, t, . . . , tm}. By X we denote the Ba-
nach space D(A) with the graph norm ‖ · ‖ = ‖ · ‖ + ‖A · ‖. An abstract function u ∈
PC(I,X) ∩ Cα(I ′,X) ∩ C(I ′,X) is called a solution of (.) if u(t) satisfies all the equalities
of (.). We note that –A is the infinitesimal generator of a uniformly bounded analytic
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semigroup T(t) (t ≥ ). This means there existsM ≥  such that

∥∥T(t)∥∥ ≤ M, t ≥ . (.)

Definition . If v ∈ PC(I,X)∩Cα(I ′,X)∩C(I ′,X) and satisfies inequalities

⎧⎪⎪⎨
⎪⎪⎩
Dαv(t) +Av(t) ≤ f (t, v(t)), t ∈ I, t �= tk ,

�v|t=tk ≤ Ik(v(tk)), k = , , . . . ,m,

v() + g(v) ≤ x,

(.)

then v is called a lower solution of problem (.); if all inequalities of (.) are inverse, we
call it an upper solution of the problem (.).

Lemma . [] If h satisfies a uniform Hölder condition, with exponent β ∈ (, ], then
the unique solution of the linear initial value problem (LIVP) for the fractional evolution
equation

⎧⎨
⎩Dαu(t) +Au(t) = h(t), t ∈ I,

u() = x ∈ X,
(.)

is given by

u(t) =U(t)x +
∫ t


(t – s)α–V (t – s)h(s)ds, (.)

where

U(t) =
∫ ∞


ζα(θ )T

(
tαθ

)
dθ , V (t) = α

∫ ∞


θζα(θ )T

(
tαθ

)
dθ , (.)

ζα(θ ) is a probability density function defined on (,∞).

Remark . [, ]

ζα(θ ) =

α

θ–– 
α ρα

(
θ– 

α
)
, (.)

ρα(θ ) =

π

∞∑
n=

(–)n–θ–αn– �(nα + )
n!

sin(nπα), θ ∈ (,∞). (.)

Remark . [] ζα(θ )≥ , θ ∈ (,∞),
∫ ∞
 ζα(θ )dθ = ,

∫ ∞
 θζα(θ )dθ = 

�(+α) .

Definition . If h ∈ C(I,X), by the mild solution of IVP (.), we mean that the function
u ∈ C(I,X) satisfying the integral Equation (.).

Form Definition ., we can easily obtain the following result.

http://www.boundaryvalueproblems.com/content/2012/1/71
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Lemma . For any h ∈ PC(I,X), yk ∈ X, k = , , . . . ,m, the LIVP for the linear impulsive
fractional evolution equation

⎧⎪⎪⎨
⎪⎪⎩
Dαu(t) +Au(t) = h(t), t ∈ I, t �= tk ,

�u|t=tk = yk , k = , , . . . ,m,

u() = x ∈ X,

(.)

has the unique mild solution u ∈ PC(I,X) given by

u(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

U(t)x +
∫ t
 (t – s)α–V (t – s)h(s)ds, t ∈ [, t],

U(t)[u(t) + y] +
∫ t
t
(t – s)α–V (t – s)h(s)ds, t ∈ (t, t],

...

U(t)[u(tm) + ym] +
∫ t
tm (t – s)α–V (t – s)h(s)ds, t ∈ (tm,T],

(.)

where U(t) and V (t) are given by (.).

Remark . We note that U(t) and V (t) do not possess the semigroup properties. The
mild solution of (.) can be expressed only by using piecewise functions.

Definition . A C-semigroup {T(t)}t≥ is called a positive semigroup, if T(t)x≥ θ for
all x ≥ θ and t ≥ .

Definition . A bounded linear operator K on X is called to be positive, if Kx ≥ θ for
all x ≥ θ .

Remark . By (.) and Remark .,U(t) and V (t) are positive, if {T(t)}t≥ is a positive
semigroup.

Remark . From Remark ., if T(t) (t ≥ ) is a positive semigroup generated by –A,
h≥ θ , x ≥ θ and yk ≥ θ , k = , , . . . ,m, then the mild solution u ∈ PC(I,X) of (.) satis-
fies u≥ θ . For the applications of positive operators semigroup, one can refer to [–].

Now, we recall some properties of the measure of noncompactness will be used later.
Let μ(·) denotes the Kuratowski measure of noncompactness of the bounded set. For the
details of the definition and properties of the measure of noncompactness, see []. For
any B ⊂ C(I,X) and t ∈ I , set B(t) = {u(t)|u ∈ B}. If B is bounded in C(I,X), then B(t) is
bounded in X, and μ(B(t))≤ μ(B). If E is a precompact set in X, then μ(E) = .

Lemma . [] Let B = {un} ⊂ C(I,X) (n = , , . . .) be a bounded and countable set.
Then μ(B(t)) is Lebesgue integral on I, and

μ

({∫
I
un(t)dt

∣∣∣n = , , . . .
})

≤ 
∫
I
μ

(
B(t)

)
dt. (.)

In order to prove our results, we also need a generalized Gronwall inequality for frac-
tional differential equation.

http://www.boundaryvalueproblems.com/content/2012/1/71


Mu Boundary Value Problems 2012, 2012:71 Page 6 of 12
http://www.boundaryvalueproblems.com/content/2012/1/71

Lemma . [] Suppose b ≥ , β > , and a(t) is a nonnegative function locally inte-
grable on  ≤ t < T (some T ≤ +∞), and suppose u(t) is nonnegative and locally integrable
on  ≤ t < T with

u(t) ≤ a(t) + b
∫ t


(t – s)β–u(s)ds (.)

on this interval; then

u(t) ≤ a(t) +
∫ t



[ ∞∑
n=

(b�(β))n

�(nβ)
(t – s)nβ–a(s)

]
ds,  ≤ t < T . (.)

3 Main results
Theorem. Let X be an ordered Banach space, whose positive cone P is normal with nor-
mal constant N. Assume that T(t) (t ≥ ) is positive, the Cauchy problem (.) has a lower
solution v ∈ C(I,X) and an upper solution w ∈ C(I,X) with v ≤ w, and the following
conditions are satisfied:

(H) There exists a constant C ≥  such that

f (t,x) – f (t,x) ≥ –C(x – x), (.)

for any t ∈ I , and v(t) ≤ x ≤ x ≤ w(t). That is, f (t,x) + Cx is increasing in x for
x ∈ [v(t),w(t)].

(H) g(u) is decreasing in u for u ∈ [v,w].
(H) Ik(x) is increasing in x for x ∈ [v(t),w(t)] (t ∈ I).
(H) There exists a constant L ≥  such that

μ
({
f (t,xn)

}) ≤ Lμ
({xn}), (.)

for any t ∈ I , and increasing or decreasing monotonic sequence {xn} ⊂ [v(t),w(t)].
(H) {g(un)} is precompact inX , for any increasing or decreasingmonotonic sequence {un} ⊂

[v,w]. That is, μ({g(un)}) = .

Then the Cauchy problem (.) has the minimal and maximal mild solutions between v
and w, which can be obtained by a monotone iterative procedure starting from v and w,
respectively.

Proof It is easy to see that –(A + CI) generates an positive analytic semigroup S(t) =
e–CtT(t). Let �(t) =

∫ ∞
 ζα(θ )S(tαθ )dθ , (t) = α

∫ ∞
 θζα(θ )S(tαθ )dθ . By Remark ., �(t)

(t ≥ ) and (t) (t ≥ ) are positive. By (.) and Remark ., we have that

∥∥�(t)
∥∥ ≤ M,

∥∥(t)
∥∥ ≤ α

�(α + )
M�M, t ≥ . (.)

http://www.boundaryvalueproblems.com/content/2012/1/71
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Let D = [v,w], J ′ = [t, t] = [, t], J ′k = (tk–, tk], k = , , . . . ,m+ .We define a mapping
Q :D → PC(I,X) by

Qu(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(t)[x – g(u)] +
∫ t
 (t – s)α–(t – s)[f (s,u(s)) +Cu(s)]ds, t ∈ J ′,

�(t)[u(t) + I(u(t))]

+
∫ t
t
(t – s)α–(t – s)[f (s,u(s)) +Cu(s)]ds, t ∈ J ′,

...

�(t)[u(tm) + Im(u(tm))]

+
∫ t
tm (t – s)α–(t – s)[f (s,u(s)) +Cu(s)]ds, t ∈ J ′m+.

(.)

Clearly, Q :D→ PC(I,X) is continuous. By Lemma ., u ∈ D is a mild solution of prob-
lem (.) if and only if

u =Qu. (.)

For u,u ∈ D and u ≤ u, from the positivity of operators �(t) and (t), (H), (H), and
(H), we have inequality

Qu ≤ Qu. (.)

Now, we show that v ≤ Qv, Qw ≤ w. Let Dαv(t) + Av(t) + Cv(t)� σ (t). By Defini-
tion ., Lemma ., the positivity of operators �(t) and (t), for t ∈ J ′, we have that

v(t) = �(t)v() +
∫ t


(t – s)α–(t – s)σ (s)ds

≤ �(t)
[
x – g(v)

]
+

∫ t


(t – s)α–(t – s)

[
f
(
s, v(s)

)
+Cv(s)

]
ds. (.)

For t ∈ J ′, we have that

v(t) = �(t)
[
v(t) +�v|t=t

]
+

∫ t

t
(t – s)α–(t – s)σ (s)ds

≤ �(t)
[
v(t) + I

(
v(t)

)]
+

∫ t

t
(t – s)α–(t – s)

× [
f
(
s, v(s)

)
+Cv(s)

]
ds. (.)

Continuing such a process interval by interval to J ′m+, by (.), we obtain that v ≤ Qv.
Similarly, we can show that Qw ≤ w. For u ∈ D, in view of (.), then v ≤ Qv ≤ Qu ≤
Qw ≤ w. Thus, Q :D → D is a continuous increasing monotonic operator. We can now
define the sequences

vn =Qvn–, wn =Qwn–, n = , , . . . , (.)

and it follows from (.) that

v ≤ v ≤ · · · vn ≤ · · · ≤ wn ≤ · · · ≤ w ≤ w. (.)

http://www.boundaryvalueproblems.com/content/2012/1/71
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Let B = {vn} and B = {vn–}, n = , , . . . . By (.) and the normality of the positive cone P,
then B and B are bounded. It follows from B = B∪ {v} that μ(B(t)) = μ(B(t)) for t ∈ I .
Let

ϕ(t) = μ
(
B(t)

)
= μ

(
B(t)

)
, t ∈ I. (.)

From (H), (H), (.), (.), (.), (.), Lemma . and the positivity of operator (t),
for t ∈ J ′, we have that

ϕ(t) = μ
(
B(t)

)
= μ

(
QB(t)

)
= μ

({
�(t)

[
x – g(vn–)

]

+
∫ t


(t – s)α–(t – s)

[
f
(
s, vn–(s)

)
+Cvn–(s)

]
ds

∣∣∣n = , , . . .
})

≤ Mμ
({
g(vn–)

})
+μ

({∫ t


(t – s)α–(t – s)

[
f
(
s, vn–(s)

)
+Cvn–(s)

]
ds

∣∣∣n = , , . . .
})

≤ 
∫ t


μ

({
(t – s)α–(t – s)

[
f
(
s, vn–(s)

)
+Cvn–(s)

]|n = , , . . .
})

ds

≤ M

∫ t


(t – s)α–(L +C)μ

(
B(s)

)
ds

= M(L +C)
∫ t


(t – s)α–ϕ(s)ds. (.)

By (.) andLemma., we obtain thatϕ(t) ≡  on J ′. In particular,μ(B(t)) = μ(B(t)) =
ϕ(t) = . This means that B(t) and B(t) are precompact in X. Thus, I(B(t)) is precom-
pact in X and μ(I(B(t))) = . For t ∈ J ′, using the same argument as above for t ∈ J ′, we
have that

ϕ(t) = μ
(
B(t)

)
= μ

(
QB(t)

)
= μ

({
�(t)

[
vn–(t) + I

(
vn–(t)

)]

+
∫ t

t
(t – s)α–(t – s)

[
f
(
s, vn–(s)

)
+Cvn–(s)

]
ds

∣∣∣n = , , . . .
})

≤ M
[
μ

(
B(t)

)
+μ

(
I

(
B(t)

))]
+ M(L +C)

∫ t

t
(t – s)α–ϕ(s)ds

= M(L +C)
∫ t

t
(t – s)α–ϕ(s)ds. (.)

By (.) and Lemma ., ϕ(t) ≡  on J ′. Then, μ(B(t)) = μ(I(B(t))) = . Continuing
such a process interval by interval to J ′m+, we can prove that ϕ(t) ≡  on every J ′k , k =
, , . . . ,m+. This means {vn(t)} (n = , , . . .) is precompact in X for every t ∈ I . So, {vn(t)}
has a convergent subsequence in X. In view of (.), we can easily prove that {vn(t)} itself
is convergent in X. That is, there exist u(t) ∈ X such that vn(t) → u(t) as n→ ∞ for every

http://www.boundaryvalueproblems.com/content/2012/1/71
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t ∈ I . By (.) and (.), we have that

vn(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(t)[x – g(vn–)]

+
∫ t
 (t – s)α–(t – s)[f (s, vn–(s)) +Cvn–(s)]ds, t ∈ J ′,

�(t)[vn–(t) + I(vn–(t))]

+
∫ t
t
(t – s)α–(t – s)[f (s, vn–(s)) +Cvn–(s)]ds, t ∈ J ′,

...

�(t)[vn–(tm) + Im(vn–(tm))]

+
∫ t
tm (t – s)α–(t – s)[f (s, vn–(s)) +Cvn–(s)]ds, t ∈ J ′m+.

(.)

Let n→ ∞, then by Lebesgue-dominated convergence theorem, we have that

u(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(t)[x – g(u)] +
∫ t
 (t – s)α–(t – s)[f (s,u(s)) +Cu(s)]ds, t ∈ J ′,

�(t)[u(t) + I(u(t))]

+
∫ t
t
(t – s)α–(t – s)[f (s,u(s)) +Cu(s)]ds, t ∈ J ′,

...

�(t)[u(tm) + Im(u(tm))]

+
∫ t
tm (t – s)α–(t – s)[f (s,u(s)) +Cu(s)]ds, t ∈ J ′m+.

(.)

Then u ∈ C(I,X) and u =Qu. Similarly, we can prove that there exists u ∈ C(I,X) such that
u =Qu. By (.), if u ∈D, and u is a fixed point of Q, then v =Qv ≤ Qu = u ≤ Qw = w.
By induction, vn ≤ u ≤ wn. By (.) and taking the limit as n → ∞, we conclude that
v ≤ u ≤ u≤ u≤ w. That means that u, u are the minimal and maximal fixed points of Q
on [v,w], respectively. By (.), they are the minimal and maximal mild solutions of the
Cauchy problem (.) on [v,w], respectively. �

Corollary . Let X be an ordered Banach space, whose positive cone P is regular. Assume
that T(t) (t ≥ ) is positive, the Cauchy problem (.) has a lower solution v ∈ C(I,X) and
an upper solution w ∈ C(I,X) with v ≤ w, (H), (H), and (H) hold. Then the Cauchy
problem (.) has the minimal and maximal mild solutions between v and w, which can
be obtained by a monotone iterative procedure starting from v and w, respectively.

Proof Since P is regular, any ordered-monotonic and ordered-bounded sequence in X is
convergent. For t ∈ I , let {xn} be an increasing or decreasing sequence in [v(t),w(t)]. By
(H), {f (t,xn) +Cxn} is an ordered-monotonic and ordered-bounded sequence in X. Then,
μ({f (t,xn) +Cxn}) = μ({xn}) = . By the properties of the measure of noncompactness, we
have

μ
({
f (t,xn)

}) ≤ μ
({
f (t,xn) +Cxn

})
+Cμ

({xn}) = . (.)

So, (H) holds. Let {un} be an increasing or decreasing sequence in [v,w]. By (H), {g(un)}
is an ordered-monotonic and ordered-bounded sequence in X. Then {g(un)} is precom-
pact in X. Thus, (H) holds. By Theorem ., the proof is then complete. �
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Corollary . Let X be an ordered and weakly sequentially complete Banach space, whose
positive cone P is normal with normal constant N. Assume that T(t) (t ≥ ) is positive, the
Cauchy problem (.) has a lower solution v ∈ C(I,X) and an upper solution w ∈ C(I,X)
with v ≤ w, (H), (H), and (H) hold. Then the Cauchy problem (.) has the minimal
and maximal mild solutions between v and w, which can be obtained by a monotone
iterative procedure starting from v and w, respectively.

Proof In an ordered and weakly sequentially complete Banach space, the normal cone P
is regular. Then the proof is complete. �

Corollary . Let X be an ordered and reflective Banach space, whose positive cone P is
normal with normal constant N. Assume that T(t) (t ≥ ) is positive, the Cauchy problem
(.) has a lower solution v ∈ C(I,X) and an upper solution w ∈ C(I,X) with v ≤ w,
(H), (H), and (H) hold. Then the Cauchy problem (.) has the minimal and maximal
mild solutions between v andw, which can be obtained by amonotone iterative procedure
starting from v and w, respectively.

Proof In an ordered and reflective Banach space, the normal cone P is regular. Then the
proof is complete. �

4 Examples
Example . In order to illustrate our results, we consider the following impulsive frac-
tional partial differential equation with nonlocal initial condition

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂

 u(t,x)

∂t



– ∂u(t,x)
∂x = f (t,u(t,x)), x ∈ [,π ], t ∈ [,T], t �= tk ,

u(t, ) = u(t,π ) = , t ∈ [,T],

�u(t,x)|t=tk = Ik(u(tk ,x)), k = , , . . . ,m,

u(,x) +
∑n

i= ciu(τi,x) = u(x), x ∈ [,π ],

(.)

where  = t < t < t < · · · < tm < tm+ = T ,  < τ < τ < · · · < τn < T , ci ≤  (i = , , . . . ,n), f :
[,T]×R →R is continuous, Ik :R→ R (k = , , . . . ,m) is continuous, u ∈ L([,π ],R).
Let X = L([,π ],R), P = {v|v ∈ X, v(y)≥  a.e. y ∈ [,π ]}. Then X is a Banach space, and

P is a regular cone in X. Define the operator A as follows:

D(A) =
{
v ∈ X|v, v′ are absolutely continuous, v′′ ∈ X, v() = v(π ) = 

}
, Av = –v′′,

then –A generate an analytic semigroup of uniformly bounded linear operators T(t) (t ≥
) in X (see []). By the maximum principle, we can easily find that T(t) (t ≥ ) is a posi-
tive semigroup. Denote u(t)(x) = u(t,x), f (t,u(t))(x) = f (t,u(t,x)), Ik(u(tk))(x) = Ik(u(tk ,x)),
g(u)(x) =

∑n
i= ciu(τi,x), x = u(x), then the system (.) can be reformulated as the prob-

lem (.) in X. It is easy to find that (H) holds. Moreover, we assume that the following
conditions hold:
(a) f (t, )≥  for t ∈ [,T], Ik()≥ , u(x) ≥  for x ∈ [,π ].

http://www.boundaryvalueproblems.com/content/2012/1/71
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(b) There exists w such that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂

 w(t,x)

∂t



– ∂w(t,x)
∂x ≥ f (t,w(t,x)), x ∈ [,π ], t ∈ [,T], t �= tk ,

w(t, ) = w(t,π ) = , t ∈ [,T],

�w(t,x)|t=tk ≥ Ik(w(tk ,x)), k = , , . . . ,m,

w(,x) +
∑n

i= ciw(τi,x)≥ w(x), x ∈ [,π ],

(.)

where w = w(x, t) (x ∈ [,π ], t ∈ [,T]), w is continuous at t �= tk , left continuous at

t = tk , and w(t+k ,x) exists, k = , , . . . ,m, ∂

 w(t,x)

∂t



and ∂w(t,x)
∂x are continuous at t �= tk .

(c) f ′
u(t,u) is continuous on any bounded and ordered interval.

(d) For any u, u on a bounded and ordered interval, and u ≤ u, we have

Ik
(
u(tk ,x)

) ≤ Ik
(
u(tk ,x)

)
, x ∈ [,π ],k = , , . . . ,m. (.)

Theorem . If (a)-(d) are satisfied, then the system (.) has the minimal and maximal
mild solutions between  and w.

Proof By (a) and (b), we know  and w are the lower and upper solutions of the problem
(.), respectively. (c) implies that (H) are satisfied. (d) implies that (H) are satisfied. Then
by Corollary ., the system (.) has the minimal and maximal mild solutions between 
and w. �
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