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Abstract
We are interested in the following singular boundary value problem:

⎧⎨
⎩
u′′(t) +μw(t)f (u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) =
∫ 1

0
u(s)dA(s),

where μ > 0 is a parameter and
∫ 1
0 u(s)dA(s) is the Stieltjes integral. The function

w ∈ C((0, 1), (0, +∞)) and wmay be singular at t = 0 and/or t = 1,
f ∈ C([0, +∞), (0, +∞)) and f∞ = +∞. Some a priori estimates and the existence,
multiplicity and nonexistence of positive solutions are obtained. Our proofs are based
on the method of global continuous theorem, the lower-upper solutions methods
and fixed point index theory. Furthermore, we also discuss the interval of parameter
μ such that the problem has a positive solution.

Keywords: singularity; global continuous theorem; solution of boundedness; fixed
point index; positive solution

1 Introduction
We are concerned with the second order nonlocal boundary value problem:

⎧⎪⎨
⎪⎩
u′′(t) +μw(t)f

(
u(t)

)
= ,  < t < ,

u() = , u() =
∫ 


u(s)dA(s),

(.)

where μ >  is a parameter and
∫ 
 u(s)dA(s) is a Stieltjes integral. The function w ∈

C((, ), (, +∞)) and w may be singular at t =  and/or t = , f ∈ C([, +∞), (, +∞)) and
f∞ = limu→∞ f (u)

u = +∞.
Integral boundary conditions and multi-point boundary conditions for differential

equations come frommany areas of applied mathematics and physics [–]. Recently, sin-
gular boundary value problems have been extensively considered in a lot of literature [, ,
, ], since they model many physical phenomena including gas diffusion through porous
media, nonlinear diffusion generated by nonlinear sources, chemically reacting systems
as well as concentration in chemical or biological problems. In all these problems, positive
solutions are very meaningful.
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In [, ], Webb and Infante considered the existence of positive solutions of nonlinear
boundary value problem:

u′′(t) +μh(t)g
(
t,u(t)

)
= ,  < t < ,

where h, g are nonnegative functions, subjected to the nonlocal boundary conditions

u() = , u() = α[u].

Here α[u] is a linear functional on C[, ] given by

α[u] =
∫ 


u(s)dA(s)

involving a Stieltjes integral with a signed measure, that is, A has bounded variation. They
dealt with many boundary conditions given in the literature in a unified way by utilizing
the fixed point index theory in cones.
Recently, many researchers were interested in the global structure of positive solutions

for the nonlinear boundary value problem (see, e.g., [, , ]). In , Ma and An []
considered the problem (.). Assume that
(A) A : [, ] →R is nondecreasing and A(t) is not a constant on (, ),  ≤ κ <  with

κ :=
∫ 
 t dA(t), and

∫ 
 G(t, s)dA(t)≥  for s ∈ [, ] (for the definition of G(t, s), see

(.) below).
(A) w : (, )→ [, +∞) is continuous and w(t) �=  on any subinterval of [, ], and

w� ∈ L[, ]∩C(, ), where �(s) = s( – s), s ∈ [, ].
(A) f ∈ C([, +∞), [, +∞)) and f (s) >  for s > .
(A) f = f∞ = , where f = limu→+

f (u)
u and f∞ = limu→∞ f (u)

u .
They obtained the following main result:

Theorem . ([, Theorem .]) Assume that (A)-(A) hold. Then there exists a compo-
nent T in

∑
which joins (∞, θ ) to (∞,∞), and

Proj
R
T = [ρ*, +∞)

for some ρ* > . Moreover, there exists μ* ≥ ρ* >  such that (.) has at least two positive
solutions for μ ∈ (μ*,∞). Here T joins (∞, θ ) to (∞,∞) such that

lim
(μ,u)∈T,‖u‖≤

μ→∞
‖u‖ = , lim

(μ,u)∈T,‖u‖>
μ→∞

‖u‖ = ∞.

Here,
∑

is the closure of the set of positive solutions of (.) on [,∞) × X, X = {u ∈
C[, ] : u() = ,u() =

∫ 
 u(s)ds}, and the component of a setM is a maximal connected

subset ofM.
A natural problem arises: How can we consider the global structure of positive solutions

for the case f = f∞ = ∞?
In this paper, we first obtain the global structure of positive solutions by the use of global

continuous theorem, and some a priori estimates. Applying the analysis technique, we
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construct the lower and upper solutions. Those combined with the fixed point index the-
ory, the existence, multiplicity and nonexistence of positive solutions to (.) in the case
f = f∞ = ∞ are investigated. Finally, we discuss the interval of parameter μ such that the
problem (.) has positive solutions. The proof of the method which is based on the con-
struction of some bounds of the solution together with global continuous theorem and
fixed point index is of independent interest, and is different from the other papers.
This paper is arranged as follows. We will give some hypotheses and lemmas in Sec-

tion . In Section , new criteria of the existence, multiplicity and nonexistence of a posi-
tive solution are obtained. Moreover, an example is given to illustrate our result.

2 Preliminaries and lemmas
Let X denote the Banach space C[, ] with the maximum norm

‖u‖ = max
t∈[,]

∣∣u(t)∣∣.
Define K := {u ∈ C[, ] : u is concave in [, ] and u(t) ≥ }, then K is a cone. Let

G(t, s) =

⎧⎨
⎩( – t)s,  ≤ s ≤ t ≤ ,

( – s)t,  ≤ t ≤ s ≤ .
(.)

Denote

κ =
∫ 


t dA(t),

G(s) :=
∫ 


G(t, s)dA(t), for s ∈ [, ],

G(t, s) =G(t, s) +
t

 – κ
G(s), κ �= .

(.)

Throughout this paper, we suppose that the following conditions hold:
(H) A : [, ] →R is nondecreasing, dA(t) ≥  on (, ) and κ :=

∫ 
 t dA(t) with

 ≤ κ < .
(H) w ∈ C((, ), (, +∞)) and wmay be singular at t =  and/or , satisfying

 <
∫ 


G(t, s)w(s)ds < ∞, ∀t ∈ (, ). (.)

(H) f ∈ C([,∞), (,∞)) (f () >  obviously holds).
(H) f∞ = limu→∞ f (u)

u = +∞.

Remark . It is easy to see from (H) that G(s) ≤ [A() – A()]G(s, s). Therefore, if we
assume that  <

∫ 
 G(s, s)w(s)ds < ∞, then (.) obviously holds.

Define an operator T : K → X as follows:

Tu(t) = T(μ,u)(t) := μ

∫ 


G(t, s)w(s)f

(
u(s)

)
ds.

http://www.boundaryvalueproblems.com/content/2012/1/72
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Assume that the conditions (H)-(H) hold, then it is easy to verify that T : K → K is well
defined and completely continuous.

Lemma . ([] Global continuation theorem) Let X be a Banach space and let K be an
order cone in X. Consider the equation

u = T(μ,u), (.)

where μ ∈ R+ = [,∞) and u ∈ X. Suppose that T : R+ × K → K is completely continu-
ous and T(,u) = θ for all u ∈ K, then L+(K), the component of the solution set of (.)
containing (, ) is unbounded.

Remark .
() We note that u is a positive solution of the problem (.) if and only if u = T(μ,u) on

K .
() If T(μ, θ ) �= θ for μ �=  and T(,u) = θ for all u ∈ K , then we get from Lemma .

that there exists an unbounded continuum L emanating from (, θ ) in the closure of
the set of positive solutions (.) in R+ ×K .

Lemma . ([]) Let X be a Banach space, K an order cone in X and S an open bounded
set in X with θ ∈ S . Suppose that T : S ∩ K → K is a completely continuous operator. If
Ty �= λy, for all y ∈ ∂S ∩K and all λ ≥ , then i(T ,S ∩K ,K) = .

3 Main results
Lemma . Let (H)-(H) hold and let J = [μ,∞) with μ > . Then there exists a con-
stant QJ >  such that for all μ ∈ J and all possible positive solutions uμ of (.), the
inequality ‖uμ‖ <QJ holds.

Proof Suppose on the contrary that there exist a sequence {μn} ⊂ J and a sequence {uμn}
of the positive solutions of (.) corresponding to μn such that

‖uμn‖ → ∞, as n→ ∞.

Denote un := uμn . From the concavity of un, it follows that

un(t) ≥ ‖un‖


> , for t ∈
[


,



]
. (.)

Choose η := π

μw
, where w = mint∈[  ,  ]w(t). Then we find from (H) that there exists a

constant R >  such that

f (u) > ηu, for all u > R. (.)

Since limn→∞ ‖un‖ = ∞, we get

‖uN‖ > R, for enough large N .

http://www.boundaryvalueproblems.com/content/2012/1/72
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This, together with (.) and (.), implies

f
(
uN (t)

)
> ηuN (t), for t ∈

(


,



)
. (.)

Put ψ(t) := – cosπ t, for t ∈ [  ,

 ]. Hence, we know from (.) that

μN

∫ 





w(t)f
(
uN (t)

)
ψ(t)dt ≥ ημN

∫ 





w(t)uN (t)ψ(t)dt

≥ ηwμN

∫ 





uN (t)ψ(t)dt.

On the other hand, multiplying (.) by ψ and integrating by parts, we obtain that

μN

∫ 





w(t)f
(
uN (t)

)
ψ(t)dt = –

∫ 





u′′
N (t)ψ(t)dt

= –u′
N (t)ψ(t)

∣∣∣∣






+
∫ 






u′
N (t)ψ

′(t)dt

= –
∫ 






uN (t)ψ ′′(t)dt + uN (t)ψ ′(t)
∣∣∣∣






≤ π
∫ 






uN (t)ψ(t)dt

leads to

ηwμN

∫ 





uN (t)ψ(t)dt ≤ π
∫ 






uN (t)ψ(t)]dt,

i.e.,

π

μw
= η ≤ π

μNw
<
π

μw
.

This is a contradiction. �

Lemma . Assume that the hypotheses (H)-(H) hold. Then there exists ρ >  such that
if the problem (.) has a positive solution for parameter μ, then μ ≤ ρ .

Proof Let u be a positive solution of (.) corresponding to μ. From the hypotheses (H)
and (H), it follows that there exists � >  such that f (u) ≥ �u for all u > . Consequently,
we have

μ�w(t)u(t) ≤ μw(t)f
(
u(t)

)
= –u′′(t), t ∈ (, ). (.)

http://www.boundaryvalueproblems.com/content/2012/1/72
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Let λ be the first eigenvalue of

⎧⎨
⎩ϕ′′(t) + λw(t)ϕ(t) = , t ∈ (, ),

ϕ() = ϕ() = ,

and let ϕ be the positive eigenfunction corresponding to λ (see []). It is easy to see that
ϕ′
()≤ . Multiplying (.) by ϕ and integrating by parts, we get that

μ�

∫ 


w(t)u(t)ϕ(t)dt ≤ –

∫ 


u′′(t)ϕ(t)dt

= –ϕ(t)u′(t)| +
∫ 


u′(t)ϕ′

(t)dt

= u()ϕ′
() – u()ϕ′

() –
∫ 


u(t)ϕ′′

 (t)dt

≤ –
∫ 


u(t)ϕ′′

 (t)dt

= λ

∫ 


w(t)u(t)ϕ(t)dt

implies

μ ≤ λ�
– � ρ.

This completes the proof. �

Lemma . Assume that (H)-(H) hold. Then we have

lim
(μ,uμ)∈L

‖uμ‖≥,μ→

‖uμ‖ = ∞.

Proof Suppose this fails, that is, there exists {(μ,uμ)} ⊂ L such that

μ →  and  ≤ ‖uμ‖ ≤ M,

whereM is a positive constant. Since (μ,uμ) ∈ L, we get that for all t ∈ [, ]

uμ(t) = μ

∫ 


G(t, s)w(s)f

(
uμ(s)

)
ds

=
(

μ

∫ 


G(t, s)w(s)

f (uμ(s))
‖uμ‖ ds

)
‖uμ‖

≤ μ

(
M max

t∈[,]

∫ 


G(t, s)w(s)ds

)
‖uμ‖,

where

M =max

{
f (uμ(t))
‖uμ‖ : ≤ ‖uμ‖ ≤ M, t ∈ [, ]

}
∈ (,∞).
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Hence, we find that

μ ≥
{
M max

t∈[,]

∫ 


G(t, s)w(s)ds

}–

> .

Thus, it implies that μ� . This is contradiction. �

Theorem . Assume that the conditions (H)-(H) hold and
∫ 
 dA(t) < . Then there

exists a constant μ >  such that the problem (.) has at least two positive solutions for
 < μ < μ, and at least one positive solution for μ = μ, and no positive solution for μ > μ.

Proof Define

μ := sup
{
μ* >  : for all μ ∈ (

,μ*),
there exist at least two positive solutions of (.)

}
.

(.)

From Lemma . and Remark ., we can find that there exists an unbounded contin-
uum L emanating from (, θ ) in the closure of the set of positive solutions in R+ ×K and
T(,u) = θ for all u ∈ K . Meanwhile, Lemma . and Lemma . respectively imply that
uμ is bounded (μ > ,μ � ) and unbounded (μ > ,μ →  and ‖uμ‖ ≥ ). Therefore, we
conclude that the set of (.) is nonempty. Those combined with Lemma . follows that
μ >  is well defined and μ ∈ (,ρ]. From the definition of μ, it is easy to see that the
problem (.) has at least two positive solutions forμ ∈ (,μ). Again, since the continuum
is a compact connected set and T is a completely continuous operator, the problem (.)
has at least one positive solution at μ = μ.
Next, we only show that the problem (.) has no positive solution for any μ > μ. Sup-

pose on the contrary that there exists some μ (> μ) such that the problem (.) has a
positive solution u corresponding to μ. Then we will prove that the problem (.) has at
least two positive solutions for any μ ∈ [μ,μ) which contradicts the definition of (.).
For the sake of obtaining the contradiction, we divide the proof into four steps.
Step . Constructing a modified boundary value problem.
Choose arbitrarily a constant μ ∈ [μ,μ). Since f is uniformly continuous on [,‖u‖+

], there exists a constant σ >  such that

f (u + σ ) < f (u) + ε, for u ∈ [
,‖u‖ + 

]
, (.)

where

ε :=
(μ –μ)minu∈[,‖u‖+] f (u)

μ
> .

Denote ζ (t) := u(t) + σ , for t ∈ [, ]. Then we claim that

ζ ′′(t) +μw(t)f
(
ζ (t)

)
< , t ∈ (, ), (.)

and

ζ () = σ , ζ () =
∫ 


u(s)dA(s) + σ . (.)

http://www.boundaryvalueproblems.com/content/2012/1/72
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Indeed, using (.), we have

ζ ′′(t) +μw(t)f
(
ζ (t)

)
= u′′

(t) +μw(t)f
(
u(t) + σ

)
= –μw(t)f

(
u(t)

)
+μw(t)f

(
u(t) + σ

)
< w(t)

[
–μf

(
u(t)

)
+μf

(
u(t)

)
+με

]
≤ –

μ –μ


×w(t)f

(
u(t)

)
< .

Define a set S := {u ∈ C[, ]| < u(t) < ζ (t), t ∈ (, )}. Then the set S is bounded and open
in C[, ]. Now, we construct the modified second-order boundary value problem:

⎧⎪⎨
⎪⎩
u′′(t) +μw(t)f

(
ξ
(
u(t)

))
= , t ∈ (, ),

u() = , u() =
∫ 


u(s)dA(s),

(.)

where ξ :R →R+ is defined by

ξ
(
u(t)

)
=

⎧⎪⎪⎨
⎪⎪⎩

ζ (t), if u(t) > ζ (t),

u(t), if  ≤ u(t) ≤ ζ (t),

, if u(t) < .

Step . We will show that if u is a positive solution of (.), then u ∈ S ∩K .
Let u be a positive solution of (.), then we claim that

u ∈ S ∩K . (.)

Suppose this fails, that is, u /∈ S ∩ K . Clearly, we only show that u(t)≮ ζ (t), for t ∈ (, ].
Comparing the boundary conditions (.) and (.), the only following three cases need
to be considered. Case I. There exists t ∈ (, ) such that u(t) = ζ (t) and  < u(t) < ζ (t),
for t ∈ (t – σ, t) ∪ (t, t + σ) and some σ > ; Case II. There exists t ∈ (, ] such that
u(t) = ζ (t) and u(t) ≥ ζ (t) for t ∈ (t, ]. Case III. There exists [t, t] ⊂ (, ] such that
u(t) ≥ ζ (t), t ∈ [t, t], u(t) = ζ (t) and u(t) = ζ (t). See the three Figures ,  and .
Case I. From (.), it implies that there exists a constant ε >  such that

max
t∈[t–σ,t+σ]

{
ζ ′′(t) +μw(t)f

(
ζ (t)

)}
= –ε < . (.)

Figure 1 Case I.

http://www.boundaryvalueproblems.com/content/2012/1/72
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Figure 2 Case II.

Figure 3 Case III.

Since f is uniformly continuous on [,‖u‖ + ], there exists a σ ′
 >  such that if u, v ∈

[,‖ζ‖] and |u – v| < σ ′
 , then we get

∣∣f (u) – f (v)
∣∣ < εW–, (.)

whereW := μmaxt∈[t–σ,t+σ]w(t) > . From the assumption of Case I, it follows that there
exists a subinterval [r, s]⊂ (t – σ, t + σ) with t ∈ (r, s) such that

–σ ′
 < u(t) – ζ (t)≤ , for t ∈ [r, s]

and

(u – ζ )′(r) >  and (u – ζ )′(s) < .

This together with (.) and (.) leads to

 > (u – ζ )′(s) – (u – ζ )′(r) =
∫ s

r

[
u′′(t) – ζ ′′(t)

]
dt

= –
∫ s

r

[
μw(t)f

(
u(t)

)
+ ζ ′′(t)

]
dt

= –
∫ s

r

[
μw(t)

(
f
(
u(t)

)
– f

(
ζ (t)

))
+ ζ ′′(t) +μw(t)f

(
ζ (t)

)]
dt

≥ –
∫ s

r

[
μw(t)εW– – ε

]
dt

= ε

∫ s

r

[
 –

μw(t)
W

]
dt ≥ .

This is a contradiction.

http://www.boundaryvalueproblems.com/content/2012/1/72
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Case II. Let x(t) := u(t) – ζ (t), for t ∈ [, ]. Then we have that for t ∈ (t, ]

x(t) = , x(t) ≥ , (.)

x′′(t) =
(
u(t) – ζ (t)

)′′ = –μw(t)f
(
ζ (t)

)
– ζ ′′(t) > . (.)

Obviously, we have x′(t) ≥ . From (.), it implies that x′(t) > , for any t ∈ (t, ]. Hence,
the function x(t) is strictly increasing in [t, ]. From (.) and the boundary condition
(.), we find

x() = u() – ζ () =
∫ 


u(s)dA(s) –

∫ 


u(s)dA(s) – σ

=
∫ 



(
u(s) – ζ (s)

)
dA(s) + σ

(∫ 


dA(s) – 

)

=
∫ 


x(s)dA(s) – σ

(
 –

∫ 


dA(s)

)
< x().

We obtain a contradiction. In particular, if t = , then we obtain

x() = u() – ζ () =
∫ 


x(s)dA(s) + σ

(∫ 


dA(s) – 

)
< .

This contradicts (.).
Case III. Since ξ (u(t)) = ζ (t), for t ∈ (t, t), we have that (u(t) – ζ (t))′′ > , for t ∈ (t, t).

Again since (u – ζ )(t) = (u – ζ )(t) = , we know from the maximum principle that u(t) <
ζ (t), for t ∈ (t, t). This contradicts the assumption of Case III.
Therefore, we conclude that the claim (.) holds.
Step . i(T̃μ,S ∩K ,K) =  (the definition of T̃μ see below).
Using (.), we define an operator T̃μ : K → X by

T̃μ(u)(t) = μ

∫ 


G(t, s)w(s)f

(
ξ
(
u(s)

))
ds, t ∈ [, ].

Then T̃μ : K → K is completely continuous and u is a positive solution of (.) if and only
if u = T̃μ(u) on K . From the definition of ξ (u(t)), it implies that there exists R >  such
that ‖T̃μu‖ < R, for all u ∈ K . Consequently, we get from Lemma . that

i(T̃μ,BR ∩K ,K) = ,

whereBR = {u ∈ X : ‖u‖ < R}. Applying the conclusion of Step  and the excision property
of fixed point index, we find that

i(T̃μ,S ∩K ,K) = i(T̃μ,BR ∩K ,K) = . (.)

Step . We conclude that the problem (.) has at least two positive solutions corre-
sponding to μ.

http://www.boundaryvalueproblems.com/content/2012/1/72
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Since the problem (.) is equivalent to the problem (.) on S ∩ K , we get that the
problem (.) has a positive solution in S ∩K . Without loss of generality, we may suppose
thatT has no fixed point on ∂S∩K (otherwise the proof is completed). Then i(T ,S∩K ,K)
is well defined and (.) implies

i(T ,S ∩K ,K) = . (.)

On the other hand, from Lemma ., we choose μ* > ρ such that the problem (.) has
no positive solution in K . By a priori estimate inJ = [μ,μ*], there exists R (> R) >  such
that for all possible positive solutions uλ of (.) with λ ∈ [μ,μ*], we know that ‖uλ‖ < R.
Define G : [, ]× (BR ∩K) → K by

G(ν,u) = T
(
νμ + ( – ν)μ*,u

)
.

Then it is easy to verify that G is completely continuous on [, ]× K and G(ν,u) �= u for
all (ν,u) ∈ [, ]× (∂BR ∩K). From the property of homotopy invariance, it follows that

i(T ,BR ∩K ,K) = i
(
T(μ, ·),BR ∩K ,K

)
= i

(
T(μ*, ·),BR ∩K ,K

)
= .

Hence, by the additivity property and (.), we have

i
(
T , (BR\S)∩K ,K

)
= –.

Then we conclude that the problem (.) has at least two positive solutions corresponding
to μ. �

Remark .
(i) From the hypotheses (H) and (H), it implies that there exists L >  such that

D =
f (L)
L

=min
u>

f (u)
u

. (.)

Let f attain its maximum at the point L* of [,L]. If
∫ 
 G(t, s)w(s)ds < ∞, then

adopting the similar method as in [, Theorem ], we get that for
 < μ < ( f (L

*)
L

∫ 
 G(t, s)w(s)ds)–, the problem (.) has at least two positive solutions

u(t) and u(t) such that  < ‖u‖ < L < ‖u‖ by the use of compression of conical
shells in [, Corollary .]. Consequently, we know that
μ ≥ ( f (L

*)
L

∫ 
 G(t, s)w(s)ds)–.

(ii) If u is a positive solution of the equation (.) corresponding to μ, then we have

‖u‖ = max
t∈[,]

∣∣u(t)∣∣ = μ max
t∈[,]

∫ 


G(t, s)w(s)f

(
u(s)

)
ds

i.e., from (.),

 = μ max
t∈[,]

∫ 


G(t, s)w(s)

f (u(s))
‖u‖ ds≥ μD max

t∈[,]

∫ 


G(t, s)w(s)ds.

Therefore, we get that μ* ≤ (Dmaxt∈[,]
∫ 
 G(t, s)w(s)ds)–.
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Corollary . Assume that (H)-(H) hold. Consider the following m-point boundary
value problem

⎧⎪⎪⎨
⎪⎪⎩
u′′(t) +μw(t)f

(
u(t)

)
= ,  < t < ,

u() = , u() =
m–∑
i=

αiu(ηi),
(.)

where μ is a positive parameter, αi ∈ [,∞), i = , , . . . ,m – ,  < η < · · · < ηm– <  and
 ≤ ∑m–

i= αiηi < . Then there exists a constant μ >  such that the problem (.) has at
least two positive solutions for  < μ < μ, and at least one positive solution for μ = μ, and
no positive solution for μ > μ.

Proof In the boundary condition of (.), if we let

A(s) =
m–∑
i=

αiχ (s – ηi),

where χ (s) is the characteristic function on [,∞), i.e.,

χ (s) =

⎧⎨
⎩, if s≥ ,

, if s < .

Then the boundary condition of (.) reduces to them-point boundary condition of (.).
Applying the method of Theorem ., we get the conclusion. �

Example . We consider the following singular boundary value problem:

⎧⎪⎪⎨
⎪⎪⎩
u′′(t) +μ


√t

(
 + sinu(t) + eu(t)

)
= , t ∈ (, ),

u() = , u() =
∫ 


u(s)dA(s),

(.)

where A(s) = s( – s).

Computing yields

κ =
∫ 


t dA(t) =

∫ 


t d

(
t – t

)
=




,

G(s) =
∫ 


G(t, s)dA(t)

=
∫ s


( – s)t

(
t – t

)
dt +

∫ 

s
( – t)

(
t – t

)
s dt

=



s –


s +



s,

G(t, s) =G(t, s) +
t

(
s – s + s

)
.
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We find that for any t ∈ (, ],

 <
∫ 


G(t, s)w(s)ds

=
∫ 



G(t, s)
√s

ds +
t


∫ 


s


(
 – s + s

)
ds

= t
(
,
,

–



t
)
< ∞.

Thus, it implies that (.) holds. It is easy to verify that the conditions (H) and (H) hold.
Therefore, by Theorem ., we obtain that there exists a constant μ >  such that the
problem (.) has at least two positive solutions for  < μ < μ, and at least one positive
solution for μ = μ, and no positive solution for μ > μ.
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