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Abstract
In this paper, Schauder fixed point theorem, Gelfand-Shilov principles combined with
semigroup theory are used to prove the existence of mild and strong solutions for
nonlinear fractional integrodifferential equations of Sobolev type with nonlocal
conditions in Banach spaces. To illustrate our abstract results, an example is given.
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1 Introduction
We are concerned with the nonlocal nonlinear fractional problem

dα(Bu(t))
dtα

+Au(t) = f
(
t,W (t)

)
+

∫ t


g
(
t, s,W (s)

)
ds, (.)

u() +
p∑

k=

cku(tk) = u, (.)

where dα

dtα ,  < α ≤  is the Riemann-Liouville fractional derivative,  ≤ t < · · · < tp ≤ a,
c, . . . , cp are real numbers, B andA are linear closed operators with domains contained in a
Banach spaceX and ranges contained in a Banach space Y ,W (t) = (B(t)u(t), . . . ,Br(t)u(t)),
{Bi(t) : i = , . . . , r, t ∈ I = [,a]} is a family of linear closed operators defined on dense sets
S, . . . ,Sr ⊃ D(A) ⊃ D(B) respectively in X into X, f : I × Xr → Y and g : � × Xr → Y are
given abstract functions. Here � = {(s, t) :  ≤ s ≤ t ≤ a}.
Fractional differential equations have attracted many authors [, –, , , , ].

This is mostly because it efficiently describes many phenomena arising in engineering,
physics, economics and science. In fact, we can find several applications in viscoelasticity,
electrochemistry, electromagnetic, etc. For example, Machado [] gave a novel method
for the design of fractional order digital controllers.
Following Gelfand and Shilov [], we define the fractional integral of order α >  as

Iαa f (t) =


�(α)

∫ t

a
(t – s)α–f (s)ds,
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also, the (Riemann-Liouville) fractional derivative of the function f of order  < α <  as

aDα
t f (t) =


�( – α)

d
dt

∫ t

a
(t – s)–αf (s)ds,

where f is an abstract continuous function on the interval [a,b] and �(α) is the Gamma
function, see also [, ].
The existence results to evolution equations with nonlocal conditions in a Banach space

was studied first by Byszewski [, ]; subsequently, many authors were pointed to the
same field, see for instance [–, –, , ].
Deng [] indicated that using the nonlocal condition u() + h(u) = u to describe, for

instance, the diffusion phenomenon of a small amount of gas in a transparent tube can
give a better result than using the usual local Cauchy problem u() = u. Let us observe
also that since Deng’s papers, the function h is considered

h(u) =
p∑

k=

cku(tk), (.)

where ck , k = , , . . . ,p are given constants and ≤ t < · · · < tp ≤ a.
However, among the previous research on nonlocal Cauchy problems, few authors have

been concerned with mild solutions of fractional semilinear differential equations [].
Recently, many authors have extended this work to various kinds of nonlinear evolu-

tion equations [, , , , , ]. Balachandran and Uchiyama [] proved the existence of
mild and strong solutions of a nonlinear integrodifferential equation of Sobolev type with
nonlocal condition.
In this paper, motivated by [, , , ], we use Schauder fixed point theorem and the

semigroup theory to investigate the existence and uniqueness of mild and strong solutions
for nonlinear fractional integrodifferential equations of Sobolev type with nonlocal con-
ditions in Banach spaces, the solutions were obtained by using Gelfand-Shilov approach
in fractional calculus and are given in terms of some probability density functions such
that their Laplace transforms are indicated [].
Our paper is organized as follows. Section  is devoted to the review of some essential

results. In Section , we state and prove our main results; the last section deals with giving
an example to illustrate the abstract results.

2 Preliminary results
In this section, we mention some results obtained by Balachandran [], El-Borai [] and
Pazy [], which will be used to get our new results. Let X and Y be Banach spaces with
norm | · | and ‖ · ‖ respectively. The operator B : D(B) ⊂ X → Y satisfies the following
hypotheses:

(H) B is bijective,
(H) B– : Y →D(B) is compact.

The above fact and the closed graph theorem imply the boundedness of the linear operator
AB– : Y → Y . Further E = –AB– generates a uniformly continuous semigroupQ(t), t ≥ 
such that maxt∈I ‖Q(t)‖ ≤ K , Q(t)h ∈ D(A), ‖EQ(t)h‖ ≤ K

t ‖h‖ for every h ∈ X and all t ∈
(,a], see [].
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Let λ = ‖B–‖, c = ∑p
k= |ck| and �τ = {(u, . . . ,ur) : ui ∈ X,

∑r
i= |ui| ≤ τ }.

It is supposed that

(H) f and g are continuous in t on I , � respectively, and there exist constantsM,M > 
such that ‖f (t,W )‖ ≤ M, ‖g(t, s,W )‖ ≤ M for all t ∈ I , (s, t) ∈ � andW ∈ �τ .

Definition . By a strong solution of the nonlocal Cauchy problem (.), (.), we mean
a function u with values in X such that

(i) u is a continuous function in t ∈ I and u(t) ∈D(A),
(ii) dαu

dtα exists and is continuous on (,a],  < α < , and u satisfies (.) on (,a]
and (.).

Remark . Let us take in the considered problem B is the identity, the inhomogeneous
part is equal to an abstract continuous function f (t), and the nonlocal condition is reduced
to the initial condition u() = u, i.e.,

Dα
t u(t) +Au(t) = f (t), (.)

u() = u. (.)

According to El-Borai [–], we first apply the fractional integral on both sides of (.)
and then using (.), we apply the Laplace transform on the new integral equations by con-
sidering a suitable one-sided stable probability density whose Laplace transform is given.
Hence we can conclude that a solution of the problem (.)-(.) can be formally repre-
sented by

u(t) =
∫ ∞


ζα(θ )Q

(
tαθ

)
u dθ + α

∫ t



∫ ∞


θ (t – s)α–ζα(θ )Q

(
(t – s)αθ

)
f (s)dθ ds, (.)

where ζα is a probability density function defined on (,∞) such that its Laplace transform
is given by

∫ ∞


e–θxζα(θ )dθ =

∞∑
j=

(–x)j

�( + αj)
,  < α ≤ ,x > .

For more details, we refer to Zhou et al. [, ], see also [, ].
Using Gelfand-Shilov principle [], it is suitable to rewrite (.), (.) in the form

Bu(t) = Bu() +


�(α)

∫ t


(t – η)α–

×
[
–Au(η) + f

(
η,W (η)

)
+

∫ η


g
(
η, s,W (s)

)
ds

]
dη, (.)

where �(α) is the Gamma function.
According to [–], the equation (.) is equivalent to the integral equation

Bu(t) = �(t)Bu() +
∫ t


�(t – η)

[
f
(
η,W (η)

)
+

∫ η


g
(
η, s,W (s)

)
ds

]
dη, t > , (.)
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where

�(t) =
∫ ∞


ζα(θ )Q

(
tαθ

)
dθ ,

�(t) = α

∫ ∞


θ tα–ζα(θ )Q

(
tαθ

)
dθ .

It is assumed that there exists an operator ψ on D(ψ) = X given by the formula

ψ =

[
I +

p∑
k=

ckB–�(tk)B

]–

,

satisfying ψu ∈D(B) and for k = , . . . ,p

ψ

∫ tk


B–�(tk – η)

[
f
(
η,W (η)

)
+

∫ η


g
(
η, s,W (s)

)
ds

]
dη ∈D(B),

also

(H) Kλ‖Bψu‖[λKcaα‖Bψ‖ + λKaα](M + aM)≤ τ .

Further we assume

(H) There is a number γ ∈ (, ) such that

∥∥Bi(t)Q(t)h
∥∥ ≤ K

tγ
‖h‖,

where t ∈ (,a], t ∈ I , h ∈ X and K is a positive constant, i = , . . . , r.
(H) The functions B(t)h, . . . ,Br(t)h are uniformly Hölder continuous in t ∈ I for every

element h in
⋂

i Si.

Suppose that {Q(t)} is a C-semigroup of operators on X such that ‖B–Q(tk)B‖ ≤ Ce–δtk ,
where δ is a positive constant and C ≥ . Noting that

∫ ∞
 ζα(θ )dθ =  (see [, p.]).

If
∑p

k= |ck|e–δtk < 
C , then ‖∑p

k= ckB–ψ(tk)B‖ < , which achieves that ψ exists on X.

3 Main results
The following is different from [, , ] and represents the new result.

Lemma . If u is a continuous solution of (.), then u satisfies the integral equation

u(t) = B–�(t)Bψu

–
p∑
k=

ckB–�(t)Bψ

×
∫ tk


B–�(tk – s)

[
f
(
s,W (s)

)
+

∫ s


g
(
s,η,W (η)

)
dη

]
ds

+
∫ t


B–�(t – s)

[
f
(
s,W (s)

)
+

∫ s


g
(
s,η,W (η)

)
dη

]
ds. (.)

http://www.boundaryvalueproblems.com/content/2012/1/78


Debbouche et al. Boundary Value Problems 2012, 2012:78 Page 5 of 10
http://www.boundaryvalueproblems.com/content/2012/1/78

Proof Using (.) and (.), we get

p∑
k=

ckBu(tk) =
p∑
k=

ck�(tk)Bu –
p∑
k=

ck�(tk)B
p∑
k=

cku(tk)

+
p∑
k=

ck
∫ tk


�(tk – s)

[
f
(
s,W (s)

)
+

∫ s


g
(
s,η,W (η)

)
dη

]
ds.

Then

p∑
k=

cku(tk)

[
I +

p∑
k=

ckB–�(tk)B

]
=

p∑
k=

ckB–�(tk)Bu +
p∑

k=

ck
∫ tk


B–�(tk – s)

×
[
f
(
s,W (s)

)
+

∫ s


g
(
s,η,W (η)

)
dη

]
ds.

Thus

�(t)Bu() = �(t)

[
Bu –

p∑
k=

ckBu(tk)

]

= �(t)Bu –�(t)Bψ

p∑
k=

ckB–�(tk)Bu

–�(t)Bψ

p∑
k=

ck
∫ tk


B–�(tk – s)

[
f
(
s,W (s)

)
+

∫ s


g
(
s,η,W (η)

)
dη

]
ds

= �(t)Bψu

[
ψ– –

p∑
k=

ckB–�(tk)B

]

–�(t)Bψ

p∑
k=

ck
∫ tk


B–�(tk – s)

[
f
(
s,W (s)

)
+

∫ s


g
(
s,η,W (η)

)
dη

]
ds.

Hence the required result. �

Definition . A continuous solution of the integral equation (.) is called a mild solu-
tion of the nonlocal problem (.), (.) on I .

Theorem . If the assumptions (H)∼(H) hold and W (t) = u(t), then the problem (.),
(.) has a mild solution on I.

Proof Let Z = C(I,X) and Z = {u ∈ Z : u(t) ∈ �τ , t ∈ I}. It is easy to see that Z is a
bounded closed convex subset of Z. We define a mapping ϕ : Z → Z by

(ϕu)(t) = B–�(t)Bψu

–
p∑

k=

ckB–�(t)Bψ

∫ tk


B–�(tk – s)

[
f
(
s,W (s)

)
+

∫ s


g
(
s,η,W (η)

)
dη

]
ds

+
∫ t


B–�(t – s)

[
f
(
s,W (s)

)
+

∫ s


g
(
s,η,W (η)

)
dη

]
ds, t ∈ I.
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Noting also that
∫ ∞
 θζα(θ )dθ =  (see [, p.]), we have

∥∥(ϕu)(t)∥∥ ≤ Kλ‖Bψu‖ + (M + aM)λKcaα‖Bψ‖
+ (M + aM)λKaα ≤ τ .

We deduce that ϕ is continuous and maps Z into itself. Moreover, ϕ maps Z into a pre-
compact subset of Z. Note that the set Z(t) = {(ϕu)(t) : u ∈ Z} is precompact in X, for
every fixed t ∈ I . We shall show that ϕ(Z) = S = {ϕu : u ∈ Z} is an equicontinuous family
of functions. For  < s < t, we have

∥∥(ϕu)(t) – (ϕu)(s)
∥∥

≤ [
λ‖Bψu‖ + cλKaα(M + aM)‖Bψ‖]∥∥�(t) –�(s)

∥∥
+ λ(M + aM)

∫ t

s

∥∥�(t – η)
∥∥dη

+ λ(M + aM)
∫ s



∥∥�(t – η) –�(s – η)
∥∥dη.

The right-hand side of the above inequality is independent of u ∈ Z and tends to zero
as s → t as a consequence of the continuity of �(t) and �(t) in the uniform operator
topology for t > . It is clear that S is bounded in Z. Thus by Arzela-Ascoli’s theorem,
S is precompact. Hence by the Schauder fixed point theorem, ϕ has a fixed point in Z

and any fixed point of ϕ is a mild solution of (.), (.) on I such that u(t) ∈ X for all
t ∈ I . �

Theorem . Assume that
(i) Conditions (H)∼(H) hold,
(ii) Y is a reflexive Banach space with norm ‖ · ‖,
(iii) there are numbers L,L >  and p,q ∈ (, ] such that

∥∥f (t,W ) – f
(
t,W *)∥∥ ≤ L

(
|t – t|p +

r∑
i=

∣∣wi –w*
i
∣∣),

∥∥g(s,η,W ) – g(s,η,W )
∥∥ ≤ L|s – s|q

for all t, t ∈ I , (s,η), (s,η) ∈ � and allW ,W * ∈ �τ , where wi = Biu and w*
i = Biu*.

Then the problem (.), (.) has a unique strong solution on I.

Proof Applying Theorem ., the problem (.), (.) has a mild solution u ∈ C(I,�τ ).
Now, we shall show that u is a unique strong solution of the considered problem on I .
According to (H),

∑r
i= |wi – w*

i | is uniformly Hölder continuous in t ∈ I for ev-
ery element u in

⋂
i Si combined with (iii), which implies that t → f (t,W (t)) and t →∫ t

 g(t, s,W (s))ds are uniformly Hölder continuous on I .
Set

V (t) = f
(
t,W (t)

)
+

∫ t


g
(
t, s,W (s)

)
ds.

http://www.boundaryvalueproblems.com/content/2012/1/78
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From (.), the solution u of the considered problem can be written in the form

u(t) = B–�(t)Bψu – B–�(t)Bψ

p∑
k=

ck
∫ tk


B–�(tk – s)V (s)ds

+
∫ t


B–�(t – s)V (s)ds.

Noting that � and ψ are bounded, using our assumptions, we observe that there exists a
unique function V ∈ C(I,X) which satisfies the equation

dα(Bu(t))
dtα

+Au(t) = V (t).

Also as in [, p.], we deduce that

∫ t


B–�(t – s)V (s)ds ∈D(E)

for all t ∈ I and ψu ∈D(E). It follows that u(t) ∈ D(E) for all t ∈ I . �

4 Example
Consider the nonlinear integro-partial differential equation of fractional order

∂α[
∑

|q|≤m bq(x)D
q
xu(x, t)]

∂tα
+

∑
|q|≤m

aq(x)Dq
xu(x, t)

= F(x, t,W ) +
∫ t


G

(
x, t, s,W (s)

)
ds, (.)

with nonlocal condition

u(x, ) +
p∑

k=

cku(x, tk) = g(x), (.)

where  < α ≤ ,  ≤ t < · · · < tp ≤ a, x ∈ Rn, Dq
x = Dq

x · · ·Dqn
xn , Dxi =

∂
∂xi

, q = (q, . . . ,qn) is
an n-dimensional multi-index, |q| = q + · · · + qn,W = (w, . . . ,wr),

wi(x, t) =
∑

|q|≤m–

bqi (x, t)D
q
xu(x, t) +

∫
�

∑
|q|≤m–

cqi (x, t)D
q
yu(y, t)dy,

and� is an open subset of Rn. Let L(Rn) be the set of all square integrable functions on Rn.
We denote by Cm(Rn) the set of all continuous real-valued functions defined on Rn which
have continuous partial derivatives of order less than or equal tom. By Cm

 (Rn) we denote
the set of all functions f ∈ Cm(Rn) with compact supports. Let Hm(Rn) be the completion
of Cm

 (Rn) with respect to the norm

‖f ‖m =
∑
|q|≤m

∫
Rn

∣∣Dq
xf (x)

∣∣ dx.
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It is supposed that
(i) The operator E = –

∑
|q|=m eq(x)D

q
x is uniformly elliptic on Rn. In other words, all the

coefficients eq, |q| = m are continuous and bounded on Rn, and there is a positive number
c such that

(–)m+
∑

|q|=m
eq(x)ξ q ≥ c|ξ |m,

for all x ∈ Rn and all ξ �= , ξ ∈ Rn, where eq = aqb–q , ξ q = ξ
q
 · · · ξ qn

n and |ξ | = ξ 
 + · · ·+ ξ 

n .
(ii) All the coefficients eq, |q| = m, satisfy a uniform Hölder condition on Rn. Under

these conditions, the operator E with the domain of definition D(E) =Hm(Rn) generates
an analytic semigroup Q(t) defined on L(Rn), and it is well known that Hm(Rn) is dense
in Y = L(Rn), see [, p.].

Lemma . The solution representation of (.), (.) can be written explicitly.

Proof Let {Eq(x) : |q| ≤ m} be a family of deterministic square matrices of order k and let
L(x,D) = {Eq(x) : |q| = m}. We assume that

det
{
(–)mL(x,σ ) – λI

}
= 

has roots which satisfy the inequality Reλ < –δ, δ >  for all x ∈ Rn and for any real vector
σ , σ 

 + · · · + σ 
n = . If � is a matrix of orderm× n, then we introduce |�| = ∑

i,j |bij|.
It is well known that there exists a fundamental matrix solution Z(x, y, t) which satisfies

the system

∂u(x, t)
∂t

= L(x,D)u(x, t), t > ,x ∈ Rn,

u(x, t) +
N∑
i=

ciu(x, ti) = g(x).

This fundamental matrix also satisfies the inequality

∣∣Dq
xZ(x, y, t)

∣∣ ≤ Kt–ρ exp(–Kρ),

where |q| ≤ m, ρ = – n+|q|
m , ρ =

∑n
i= |xi – yi|λt– 

m– , λ = m
m– and K, K are positive

constants. From [, p.], if the nonlocal function g(x) is an element in Hilbert space
Hm(Rn), then we can write

Q(t)g(x) =
∫
Rn
Z(x – y, t)g(y)dy.

It can be proved that

∥∥Dq
xQ(t)g

∥∥ ≤ M
tβ

‖g‖,

where  < β < ,M is a positive constant, |q| ≤ m – , t >  and ‖g‖ = ∫
Rn g

(x)dx.

http://www.boundaryvalueproblems.com/content/2012/1/78
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([]) The nonlocal Cauchy problems (.), (.) are equivalent to the integral equation

u(x, t) =
∫ ∞



∫
Rn

ζα(θ )Q
(
x – ξ , tαθ

)
u(ξ , )dξ dθ

+ α

∫ t



∫ ∞



∫
Rn

θ (t – η)α–ζα(θ )Q
(
x – ξ , (t – η)αθ

)

×
[
F(ξ ,η,W ) +

∫ η


G

(
ξ ,η, s,W (s)

)
ds

]
dξ dθ dη,

where the explicit form of Q is given by

Q(x, t) =
e–|x|/t

(
√
π t)n

,

|x| = x + x + · · · + xn. Applying Theorem ., we achieve the proof of the existence of
mild solutions of the problems (.), (.). In addition, if the operators F and G satisfy the
following:
(iii) There are numbers L,L ≥  and  < p,q ≤  such that

∑
|q|≤m–

∫
Rn

∣∣F(
x, t,Dq

xW
)
– F

(
x, s,Dq

xW
*)∣∣ dx≤ L

(
|t – s|p +

r∑
i=

∣∣wi –w*
i
∣∣ dx

)

and

∑
|q|≤m–

∫
Rn

∣∣G(
x, t,η,Dq

xW
)
–G

(
x, s,η,Dq

xW
)∣∣ dx≤ L|t – s|q

for all t, s ∈ I , (t,η), (s,η) ∈ �,W ,W * ∈ �τ and all x ∈ Rn. Then applying Theorem ., we
deduce that (.), (.) has a unique strong solution. �

5 Conclusion
In this article, a new solution representation for Sobolev type fractional evolution equa-
tion has been proved using Deng’s nonlocal condition, a suitable explicit form of the semi-
group has been discussed. Moreover, the existence result of mild solutions for nonlinear
fractional integrodifferential equations of Sobolev type with nonlocal conditions in Ba-
nach spaces has been established by using Arzela-Ascoli’s theorem and Schauder fixed
point theorem. Further, the uniformly Hölder continuous condition has been applied for
the existence of strong solution.
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