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Abstract
In this paper, we study the nonlocal p(x)-Laplacian problem of the following form{

M(
∫
RN

1
p(x) (|∇u|p(x) + |u|p(x))dx)(– div(|∇u|p(x)–2∇u) + |u|p(x)–2u)

= f (x,u) in R
N , u ∈ W1,p(·)(RN).

By using the method of weight function and the theory of the variable exponent
Sobolev space, under appropriate assumptions on f andM, we obtain some results
on the existence and multiplicity of solutions of this problem. Moreover, we get much
better results with f in a special form.
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1 Introduction
In this paper, we consider the following problem:

(P)

⎧⎨⎩M(
∫
RN


p(x) (|∇u|p(x) + |u|p(x))dx)(–div(|∇u|p(x)–∇u) + |u|p(x)–u)

= f (x,u) in R
N , u ∈W ,p(·)(RN ),

where p(x) is a function defined on R
N , M(t) is a continuous function, f : � × R → R

satisfies the Caratheodory condition.
The operator �p(x)u = div(|∇u|p(x)–∇u) is called p(x)-Laplacian, which becomes p-

Laplacian when p(x) ≡ p (a constant). The p(x)-Laplacian possesses more complicated
nonlinearities than p-Laplacian; for example, p-Laplacian is (p– )-homogeneous, that is,
�p(λu) = λp–�p(u) for every λ > ; but the p(x)-Laplacian operator, when p(x) is not a
constant, is not homogeneous. These problems with variable exponent are interesting in
applications and raise many difficult mathematical problems. Some of the models leading
to these problems of this type are the models of motion of electrorheological fluids, the
mathematical models of stationary thermo-rheological viscous flows of non-Newtonian
fluids and in themathematical description of the processes filtration of an ideal barotropic
gas through a porousmedium.We refer the reader to [–] for the study of p(x)-Laplacian
equations and the corresponding variational problems.
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Kirchhoff has investigated the equation

ρ
∂u
∂t

–
(
P

h
+

E
L

∫ L



∣∣∣∣∂u∂x
∣∣∣∣ dx)∂u

∂x
= ,

which is called the Kirchhoff equation. This equation is an extension of the classical
d’Alembert’s wave equation by considering the effect of the changes in the length of the
string during vibrations. A distinguishing feature of the Kirchhoff equation is that the
equation contains a nonlocal coefficient ( Ph + E

L
∫ L
 | ∂u

∂x | dx) which depends on the av-
erage 

L
∫ L
 | ∂u

∂x | dx of the kinetic energy 
 | ∂u

∂x | on [,L]. Various equations of Kirchhoff
type have been studied by many authors, especially after the work of Lions [], where a
functional analysis framework for the problem was proposed; see, e.g., [–] for some
interesting results and further references. And now the study of a nonlocal elliptic prob-
lem has already been extended to the case involving the p-Laplacian; see, e.g., [, ].
Corrêa and Figueiredo in [] present several sufficient conditions for the existence of
positive solutions to a class of nonlocal boundary value problems of the p-Kirchhoff
type equation. Recently, the Kirchhoff type equation involving the p(x)-Laplacian of the
form

utt –M
(∫

�


p(x)

|∇u|p(x) dx
)

�p(x)u +Q(t,x,u,ut) + f (x,u) = 

has been investigated by Autuori, Pucci and Salvatori []. In [] Fan studied p(x)-
Kirchhoff type equations with Dirichlet boundary value problems. Many papers are
about these problems in bounded domains. According to the information I have, for
Kirchhoff-type problems in R

N , the results are seldom, in [] Jin and Wu obtained
three existence results of infinitely many radial solutions for Kirchhoff-type problems
in R

N , and in [] Ji established the existence of infinitely many radially symmetric so-
lutions of Kirchhoff-type p(x)-Laplacian equations in R

n. The main difficulty here arises
from the lack of compactness. Jin [] and Ji [] investigated these problems in ra-
dial symmetric spaces. In this paper, to deal with problem (P), we overcome the dif-
ficulty caused by the absence of compactness through the method of weight function.
We establish conditions ensuring the existence and multiplicity of solutions for the prob-
lem.
This paper is organized as follows. In Section , we present some necessary preliminary

knowledge on variable exponent Sobolev spaces. In Section , we obtain the solutions with
negative energy by the coercivity of functionals, and in Section , we obtain the solutions
with positive energy by the Mountain Pass Theorem. Finally in Section , we obtain the
infinity of solutions by the Fountain Theorem and the Dual Fountain Theorem when f
satisfies a special form.

2 Preliminaries
In order to discuss problem (P), we need some theories on spaceW ,p(·)(�) which we call
variable exponent Sobolev space. Firstly, we state some basic properties of spaceW ,p(·)(�)
which will be used later (for details, see [, , ]).
Let � be an open domain of RN , denote by S(�) the set of all measurable real functions

defined on �, elements in S(�) which are equal to each other and almost everywhere are
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considered as one element, and denote

C+(�) =
{
p|p ∈ C(�),p(x) > ,∀x ∈ �

}
,

p+ = sup
x∈�

p(x), p– = inf
x∈�

p(x), ∀p ∈ C(�),

Lp(·)(�) =
{
u|u is a measurable real-valued function on �,

∫
�

|u|p(x) dx < ∞
}
,

we can introduce the norm on Lp(·)(�) by

|u|p(x) = inf

{
λ >  :

∫
�

∣∣∣∣u(x)λ

∣∣∣∣p(x) dx ≤ 
}

and (Lp(·)(�), | · |p(·)) becomes a Banach space. We call it a variable exponent Lebesgue
space.
The spaceW ,p(·)(�) is defined by

W ,p(·)(�) =
{
u ∈ Lp(·)(�)||∇u| ∈ Lp(·)(�)

}
,

and it can be equipped with the norm

‖u‖ = |u|p(x) + |∇u|p(x), ∀u ∈W ,p(·)(�),

where |∇u|p(x) = ‖∇u‖p(x); and we denote byW ,p(·)
 (�) the closure of C∞

 (�) inW ,p(·)(�),
p* = Np(x)

N–p(x) , p* =
(N–)p(x)
N–p(x) , when p(x) <N , and p* = p* = ∞, when p(x) >N .

Proposition . (see [] and [])
() If p ∈ C+(�), the space (Lp(·)(�), | · |p(·)) is a separable, uniform convex Banach space,

and its dual space is Lq(·)(�), where /q(x) + /p(x) = . For anyu ∈ Lp(·)(�) and
v ∈ Lq(·)(�), we have

∫
�

|uv|dx ≤
(


p–

+

q–

)
|u|p(x)|v|q(x) ≤ |u|p(x)|v|q(x);

() If 
p(x) +


q(x) +


r(x) = , then for any u ∈ Lp(·)(�), v ∈ Lq(·)(�), and w ∈ Lr(·)(�),

∫
�

|uvw|dx ≤
(


p–

+

q–

+

r–

)
|u|p(x)|v|q(x)|w|r(x) ≤ |u|p(x)|v|q(x)|w|r(x).

Proposition . (see []) If f :� ×R→R is a Caratheodory function and satisfies

∣∣f (x, s)∣∣ ≤ a(x) + b|s|
p(x)
p(x) , for any x ∈ �, s ∈R,

where p,p ∈ C+(�), a ∈ Lp(·)(�), a(x)≥  and b ≥  is a constant, then the superposition
operator from Lp(·)(�) to Lp(·)(�) defined by (Nf (u))(x) = f (x,u(x)) is a continuous and
bounded operator.
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Proposition . (see []) If we denote

ρ(u) =
∫

�

|u|p(x) dx, ∀u ∈ Lp(·)(�),

then for u,un ∈ Lp(·)(�)
() |u(x)|p(x) <  (= ; > ) ⇔ ρ(u) <  (= ; > );
() |u(x)|p(x) >  ⇒ |u|p–p(x) ≤ ρ(u)≤ |u|p+p(x);

|u(x)|p(x) <  ⇒ |u|p–p(x) ≥ ρ(u)≥ |u|p+p(x);
() |un(x)|p(x) →  ⇔ ρ(un)→  as n→ ∞;

|un(x)|p(x) → ∞ ⇔ ρ(un) → ∞ as n→ ∞.

Proposition . (see []) If u,un ∈ Lp(·)(�), n = , , . . . , then the following statements are
equivalent to each other
() limk→∞ |uk – u|p(x) = ;
() limk→∞ ρ(uk – u) = ;
() uk → u in measure in � and limk→∞ ρ(uk) = ρ(u).

Proposition . (see []) () If p ∈ C+(�), then W ,p(·)
 (�) and W ,p(·)(�) are separable

reflexive Banach spaces.

Proposition . If p :� →R is Lipschitz continuous and p+ <N, then for q ∈ C+(�) with
p(x) ≤ q(x)≤ p*(x), there is a continuous embedding W ,p(·)(�) → Lq(·)(�).

For any measurable functions α, β , use the symbol α � β to denote

ess inf
x∈�

(
β(x) – α(x)

)
> .

Proposition . Let � be a bounded domain in R
N , p ∈ C+(�), p+ < N. Then for any

q ∈ L∞
+ (�) with q � p*, there is a compact embedding W ,p(·)(�)→ Lq(·)(�).

Proposition . (Poincare inequality) There is a constant C > , such that

|u|p(x) ≤ C|∇u|p(x) ∀u ∈W ,p(·)
 (�).

So, |∇u|p(x) is a norm equivalent to the norm ‖u‖ in the space W ,p(·)
 (�).

3 Solutions with negative energy
In the following sections, we consider problem (P), the nonlocal p(x)-Laplacian problem
with variational form, whereM is a real function satisfying the following condition:

(M) M : (, +∞)→ (, +∞) is continuous and bounded.

And we assume that N ≥ , p :Rn → R is Lipschitz continuous,  < p– ≤ p+ <N , f :Rn ×
R →R satisfies Caratheodory conditions.
For simplicity, we write X = W ,p(·)(RN ). Denote by C a general positive constant (the

exact value may change from line to line).
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Let t ≥ , u ∈ X, define

M̂(t) =
∫ t


M(s)ds,

I(u) =
∫
RN


p(x)

(|∇u|p(x) + |u|p(x))dx,
J(u) = M̂

(
I(u)

)
= M̂

(∫
RN


p(x)

(|∇u|p(x) + |u|p(x))dx),
�(u) =

∫
RN

F(x,u)dx,

E(u) = J(u) –�(u),

where F(x,u) =
∫ u
 f (x, t)dt.

Before giving our main results, we first give several lemmas that will be used later.

Lemma . (see [] and []) Let (M) hold. Then the following statements hold:
() M̂ ∈ C([,∞))∩C((,∞)), M̂() = , M̂′(t) =M(t) >  for t > .
() J ∈ C(X), J() = , J ∈ C(X\{}), and

J ′(u)v =M
(∫

RN


p(x)

(|∇u|p(x) + |u|p(x))dx)∫
RN

(|∇u|p(x)–∇u∇v+ |u|p(x)–uv)dx,
for u, v ∈ X .

Lemma . (see []) Suppose

∣∣f (x, t)∣∣ ≤
m∑
i=

bi(x)|t|qi(x)–, ∀(x, t) ∈R
N ×R,

where bi(x) ≥ , bi(x) �≡ , bi ∈ Lri (RN ) ∩ L∞(RN ), ri,qi ∈ L∞
+ (RN ), qi � p*, and there are

si ∈ L∞
+ (RN ) such that

p(x) ≤ si(x)≤ p*(x),


ri(x)
+
qi(x)
si(x)

= .

Then� ∈ C(X,R) and�,�′ are weakly-strongly continuous, i.e., un ⇀ u implies�(un) →
�(u) and �′(un)→ �′(u).

Lemma .
() The functional J : X →R is sequentially weakly lower semi-continuous, � : X →R is

sequentially weakly continuous, and thus E is sequentially weakly lower
semi-continuous.

() For any open set D ⊂ X\{} with D ⊂ X\{}, the mappings J ′ and E′ :D → X* are
bounded, and are of type (S+), namely,

un ⇀ u and lim
n→∞J ′(un)(un – u) ≤ , implies un → u.

http://www.boundaryvalueproblems.com/content/2012/1/79
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Proof Since the function M̂(t) is increasing and the functional I is sequentially weakly
lower semi-continuous, we conclude that the functional J : X → R is sequentially weakly
lower semi-continuous. From Lemma ., we know that �(u)and �′(u) are sequen-
tially weakly-strongly continuous. Now let D ⊂ X\{}. It is clear that the mapping J ′

and E′ : D → X* are bounded. To prove that J ′ : D → X* is of type (S+), assuming that
{un} ⊂ D, un ⇀ u in X and lim supn→∞ J ′(un)(un – u) ≤ , then there exist positive con-
stants c and c such that c ≤ M(

∫
RN


p(x) (|∇u|p(x) + |u|p(x))dx) ≤ c. Noting that J ′(un) =

M(
∫
RN


p(x) (|∇u|p(x) + |u|p(x))dx)Lp(·)(un). It follows from lim supn→∞ J ′(un)(un –u) ≤  that

lim supn→∞ Lp(·)(un)(un – u) ≤ , where Lp(·)(u)v =
∫
RN (|∇u|p(x)–∇u∇v + |u|p(x)–uv)dx.

Since Lp(·) is of type (S+). Moreover, since �′(u) is sequentially weakly-strongly contin-
uous, the mapping E′ :D → X* is of type (S+). �

Definition . Let c ∈ R. A C-functional E : X →R satisfies (P.S)c condition if and only
if every sequence {uj} inX such that limj E(uj) = c, and limj E′(uj) =  inX* has a convergent
subsequence.

Lemma . (see []) Suppose f satisfies the hypotheses in Lemma ., and let (M) hold.
Then, for any c �= , every bounded (P.S)c sequence for E, i.e., a bounded sequence {un} ⊂
X\{} such that E(un) → c and E′(un) → , has a strongly convergent subsequence.

As X is a separable and reflexive Banach space, there exist {en}∞n= ⊂ X and {fn}∞n= ⊂ X*

such that

fn(em) = δn,m =

⎧⎨⎩ if n =m,

 if n �=m,

X = span{en : n = , , . . .}, X* = spanW
*{fn : n = , , . . .}.

For k = , , . . . , denote

Xk = span{ek}, Yk =
k⊕
j=

Xj, Zk =
∞⊕
j=k

Xj.

Lemma . (see []) Assume that � : X → R is weakly-strongly continuous and �() = ,
γ >  is a given positive number. Set

βk = sup
uk∈Zk ,‖u‖≤γ

∣∣�(u)
∣∣,

then βk →  as k → ∞.

Theorem . Suppose f satisfies the hypotheses in Lemma ., let (M) hold and the fol-
lowing conditions hold:

(M) There are positive constants α,M and C such that M̂(t) ≥ Ctα for t ≥ M.
(H) q+ < αp–.

Then the functional E is coercive and attains its infimum in X at some u ∈ X. Therefore,
u is a solution of (P) if E is differentiable at u, and in particular, if u �= .

http://www.boundaryvalueproblems.com/content/2012/1/79
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Proof We have concluded that E is weakly lower semi-continuous. Let us prove that E is
coercive on X, i.e., E(u) → +∞ as ‖u‖ → +∞. For simplicity, we assume that m =  and
denote b = b, q = q, s = s, r = r. We have that

J(u) = M̂
(
I(u)

)
= M̂

(∫
RN


p(x)

(|∇u|p(x) + |u|p(x))dx)
≥ M̂

(
C‖u‖p–) ≥ C‖u‖αp– ,∣∣∣∣∫

RN
F(x,u)dx

∣∣∣∣ ≤
∫
RN

∣∣F(x,u)∣∣dx≤
∫
RN

b(x)
q(x)

|u|q(x) dx

≤ 
q–

|b|r(x)
∣∣|u|q(x)∣∣s(x)/q(x) ≤ 

q–
|b|r(x)

(|u|s(x)
)q+

≤ C‖u‖q+ .

When ‖u‖ is large enough, we have

E(u) = J(u) –�(u) ≥ C‖u‖αp– –C‖u‖q+ ,

and hence E is coercive. Since E is sequentially weakly lower semi-continuous and X is
reflexive, E attains its infimum in X at some u ∈ X. In the case where E is differentiable
at u, u is a solution of (P). �

Theorem . Suppose f satisfies the hypotheses in Lemma .. Let (M), (M), (H) and
the following conditions hold:

(M) There is a positive constant α such that lim supt→+
M̂(t)
tα < +∞.

(f) There exists a positive constant δ > ,

f (x, t)≥ b(x)tq(x)– for x ∈ R
N and  < t ≤ δ,

where b ≥ , b(x) ∈ C(RN ,R), b �= , q(x) ∈ L∞
+ (RN ), q+ < p–.

(H) q+ < αp–.

Then (P) has at least one nontrivial solution which is a global minimizer of the energy
functional E.

Proof From Theorem . we know that E has a global minimizer u. It is clear that
F(x, ) =  and consequently E() = . As b ≥  and b �= , we can find a bounded open
set � ⊂ R

N such that b(x) >  for x ∈ �. The space Wk,p(·)
 (�) is a subspace of X. Take

w ∈ C∞
 (�)\{}. Then, by (f), (M) and (H), for sufficiently small λ > , we have that

E(λw) = M̂
(∫

RN

λp(x)

p(x)
(|∇w|p(x) + |w|p(x))dx) –

∫
RN

F(x,λw)dx

≤ C

(∫
RN

λp(x)

p(x)
(|∇w|p(x) + |w|p(x))dx)α

–
∫

�

F(x,λw)dx

≤ Cλ
αp– –Cλ

q+ < .

Hence E(u) <  which shows u �= . �

http://www.boundaryvalueproblems.com/content/2012/1/79
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Theorem . Let the hypotheses of Theorem . hold, and f satisfy the following condi-
tion:

(f) f (x, –t) = –f (x, t) for x ∈R
N and t ∈R.

Then (P) has a sequence of solutions {±uk} such that E(±uk) < , and E(±uk) →  as
k → ∞.

Proof Denote by γ (A) the genus of A. Denote

� =
{
A⊂ X\{} : A is compact and A = –A

}
,

�k =
{
A ∈ � : γ (A) ≥ k

}
,

ck = inf
A∈�k

sup
u∈A

E(u), k = , , . . . ,

we have –∞ < c ≤ c ≤ · · · ≤ ck ≤ ck+ · · · .
From the condition on b(x), there exists a bounded open set� ⊂R

N such that b(x) > 
for x ∈ �. The spaceWk,p(·)

 (�) is a subspace ofX. For any k, we can choose a k-dimensional
linear subspace Ek ofW

k,p(·)
 (�) such that Ek ⊂ C∞

 (�). As the norms on Ek are equivalent
to each other, there exists ρk ∈ (, ) such that u ∈ Ek with ‖u‖ ≤ ρk implies |u|L∞ ≤ δ.
S(k)ρk

= {u ∈ Ek : ‖u‖ = ρk} is compact, and then there exists a constant dk such that

∫
�

b(x)
q(x)

|u|q(x) dx ≥ dk , ∀u ∈ S(k)ρk
.

For u ∈ S(k)ρk
and t ∈ (, ), we have

E(tu) ≤ tαp–

p–
ρ
p–
k –

∫
�

b(x)
q(x)

tq(x)|u|q(x) dx

≤ tαp–

p–
ρ
p–
k – tq

+
dk .

As q+ < αp–, we can find tk ∈ (, ) and εk >  such that E(tku) ≤ –εk < , ∀u ∈ S(k)ρk
, which

implies E(u) ≤ –εk < , ∀u ∈ S(k)tkρk . Since γ (S(k)tkρk ) = k, we get the conclusion ck ≤ –εk < .
By the genus theory, each ck is a critical value of E, hence there is a sequence of solutions

{±uk : k = , , . . . , } of problem (P) such that E(±uk) = ck < .
At last, we will prove ck →  as k → ∞. By the coercive of E, there exists a constant

γ >  such that E(u) >  when ‖u‖ ≥ γ . For any A ∈ �k , let Yk and Zk be the subspace of X
as mentioned above. According to the properties of genus, we know that A∩ Zk �= ∅. Set

βk = sup
u∈Zk ,‖u‖≤γ

∣∣�(u)
∣∣,

we know βk →  as k → ∞. When u ∈ Zk and ‖u‖ ≤ γ , we have E(u) ≥ –βk , and then
ck ≥ –βk , which concludes ck →  as k → ∞. �

Theorem . Let the hypotheses of Lemma ., (f), (M), (M), (M), (H), (H) and the
following condition hold,

http://www.boundaryvalueproblems.com/content/2012/1/79
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(f+) f (x, t)≥  for x ∈R
N and t ≥ .

Then (P) has at least one nontrivial nonnegative solution with negative energy.

Proof Define

f̃ (x, t) =

⎧⎨⎩f (x, t) if t ≥ ,

f (x, ) if t < ,

F̃(x, t) =
∫ t


f̃ (x, s)ds, x ∈R

N , t ∈R,

Ẽ(u) = M̂
(∫

RN


p(x)

(|∇u|p(x) + |u|p(x))dx) –
∫
RN

F̃(x,u)dx, u ∈ X.

Then, like in the proof of Theorem ., using truncation functions above, similarly to the
proof of Theorem . in [], we can prove that Ẽ has a nontrivial global minimizer u
and u is a nontrivial nonnegative solution of (P). �

4 Solution with positive energy
In this section we will find the Mountain Pass type critical points of the energy functional
E associated with problem (P).

Lemma . Let (f), (M) and the following conditions hold:

(M)′ ∃α > ,M > , and C >  such that

M̂(t) ≥ Ctα for t ≥ M

with αp– >  hold.
(M) ∃λ > ,M >  such that

λM̂(t)≥ M(t)t for t ≥ M.

(f) ∃μ > ,M >  such that

≤ μF(x, t)≤ f (x, t)t, for |t| ≥ M and x ∈R
N .

(H) λp+ < μ.

Then E satisfies condition (P.S)c for any c �= .

Proof By (M), for ‖u‖ large enough, we have

λp+J(u) ≥ p+M
(∫

RN


p(x)

(|∇u|p(x) + |u|p(x))dx)∫
RN


p(x)

(|∇u|p(x) + |u|p(x))dx
≥ M

(∫
RN


p(x)

(|∇u|p(x) + |u|p(x))dx)∫
RN

(|∇u|p(x) + |u|p(x))dx
= J ′(u)u.
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By (f) we conclude that there exists C >  such that

–C ≤ μ

∫
RN

F(x,u)dx≤
∫
RN

f (x,u)udx +C, ∀u ∈ X,

and thus, given any ε ∈ (,μ), there existsMε ≥ M >  such that

(μ – ε)
∫
RN

F(x,u)dx≤
∫
RN

f (x,u)udx, if
∫
RN

F(x,u)dx ≥ Mε ,

we claim that there exists Cε >  such that

�′(u)u – (μ – ε)�(u) ≥ –Cε for u ∈ X,

the notation of this conclusion can be seen in [].
Now let {un} ⊂ X\{}, E(un) → c �=  and E′(un) → . By (H), there exists ε >  small

enough such that λp+ < (μ–ε). Then, since {un} is a (P.S)c sequence, for sufficiently large n,
we have

(μ – ε)c +  + ‖u‖
≥ (μ – ε)E(un) – E′(un)un

≥ (
(μ – ε) – λp+

)
J(un) +

(
λp+J(un) – J ′(un)un

)
+

(
�′(un)un – (μ – ε)�(un)

)
≥ C‖un‖αp– –C –Cε ,

we conclude that {‖un‖} is bounded, since αp– > . By Lemma ., E satisfies condition
(P.S)c for c �= . �

Lemma . Under the hypotheses of Lemma ., for any w ∈ X\{}, E(sw) → –∞ as
s→ +∞.

Proof Let w ∈ X\{} be given. From (M) for sufficiently large t >  we have

M̂(t)≤ Ctλ,

and then it follows that

J(sw) ≤ dsλp+ for s large enough,

where d is a positive constant depending on w. From (f) for |t| large enough we have

F(x, t)≥ C|t|μ,

which implies that

�(sw) =
∫
RN

F(x, sw)dx≥ dsμ for s large enough,

http://www.boundaryvalueproblems.com/content/2012/1/79
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where d is a positive constant depending on w. Hence for s large enough, we have

E(sw)≤ dsλp+ – dsμ,

and then E(sw)→ –∞ as s→ +∞. �

Lemma . Under the hypotheses of Lemma ., (M) holds and the following conditions
hold:

(M) There is a positive constant α such that lim supt→+
M̂(t)
tα > .

(f) There exists r(x) ∈ C(RN ) such that  < r(x) < p*(x) for x ∈R
N and

lim inf
t→

|F(x, t)|
|t|r(x) < +∞

uniformly in x ∈R
N .

(H) αp+ < r– .

Then there exist positive constants ρ and δ such that E(u)≥ δ for ‖u‖ = ρ .

Proof It follows from (M) that

J(u) ≥ C‖u‖αp+ for ‖u‖ small enough.

It follows from the hypotheses of Lemma . and (f) that∣∣�(u)
∣∣ ≤ C‖u‖r– for ‖u‖ small enough.

Thus by (H), we obtain the assertion of Lemma .. �

By the famous Mountain Pass lemma, from Lemmas .-., we have the following:

Theorem. Let all hypotheses of Lemmas .-. hold. Then (P) has a nontrivial solution
with positive energy.

5 The case of concave-convex nonlinearity
In this section, we will obtain much better results with f in a special form. We have the
following theorem:

Theorem . Let f (x,u) = a(x)|u|α(x)–u + b(x)|u|q(x)–u, where

α,q ∈ L∞
+

(
R

N)
,  < α– ≤ α+ < p– ≤ p+ < q–, q � p*,

a(x) > , a ∈ L∞(
R

N) ∩ Lr(·)
(
R

N)
,


r(x)

+
α(x)
s(x)

= ,

b(x) > , b ∈ L∞(
R

N) ∩ Lr(·)
(
R

N)
,


r(x)

+
α(x)
s(x)

= ,

p(x) ≤ s(x)≤ p*(x), p(x) ≤ s(x)≤ p*(x).

Then we have

http://www.boundaryvalueproblems.com/content/2012/1/79
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() If (M), (M)′, (M), (H) hold and we also assume that α+ < αp– and λp+ < q–, then
problem (P) has solutions {±uk}∞k= such that E(±uk)→ +∞ as k → ∞.

() If (M), (M), (M), (H) hold and we also assume that α– < αp+ and α+ < λp–, then
problem (P) has solutions {±vk}∞k= such that E(±vk) < , E(±vk) →  as k → ∞.

Wewill use the following ‘Fountain Theorem’ and the ‘Dual Fountain Theorem’ to prove
Theorem ..

Proposition . (Fountain Theorem, see []) Assume

(A) X is a Banach space, E ∈ C(X,R) is an even functional, the subspaces Xk , Yk and Zk

are defined by (.).

If for each k = , , . . . , there exists ρk > rk >  such that

(A) infu∈Zk ,‖u‖=rk E(u)→ +∞ as k → ∞.
(A) maxu∈Yk ,‖u‖=ρk E(u)≤ .
(A) E satisfies the (PS)c condition for every c > . Then E has a sequence of critical values

tending to +∞.

Proposition . (Dual Fountain Theorem, see []) Assume (A) is satisfied and there is
a k >  so as to for each k ≥ k, there exists ρk > rk >  such that

(B) infu∈Zk ,‖u‖=ρk E(u)≥ .
(B) bk :=maxu∈Yk ,‖u‖=rk E(u) < .
(B) dk := infu∈Zk ,‖u‖≤ρk E(u)→  as k → ∞.
(B) E satisfies (PS)*c condition for every c ∈ [dk , ). Then E has a sequence of negative crit-

ical values converging to .

Definition . We say that E satisfies the (PS)*c condition (with respect to (Yk)), if any
sequence {unj} ⊂ X such that nj → ∞, unj ∈ Ynj , E(unj )→ c and (E |Ynj )′(unj ) → , contains
a subsequence converging to a critical point of E.

Proof of Theorem . Firstly, we verify the (PS)*c condition for every c ∈ R. Suppose
{unj} ⊂ X, nj → ∞, E(unj ) → c and (E |Ynj )′(unj ) → . It is easy to obtain that f (x) satis-
fies condition (f), when it has this special form. So similar to the method in Lemma .,
we have that

(μ – ε)c +  + ‖unj‖
≥ (μ – ε)E(un) – E′(unj )unj

≥ (
(μ – ε) – λp+

)
J(unj ) +

(
λp+J(unj ) – J ′(unj )unj

)
+

(
�′(unj )unj – (μ – ε)�(unj )

)
≥ C‖unj‖αp– –C –Cε ,

hence, we can get that {‖unj‖} is bounded. Going if necessary to a subspace, we can assume
that unj ⇀ u in X. As X =

⋃
nj Ynj , we can choose vnj ∈ Ynj such that vnj → u. Hence

lim
nj→∞E′(unj )(unj – u) = lim

nj→∞E′(unj )(unj – vnj )

http://www.boundaryvalueproblems.com/content/2012/1/79
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+ lim
nj→∞E′(unj )(vnj – u)

= lim
nj→∞(E |Ynj )′(unj )(unj – vnj ) = .

As E′ is of (S+) type, we can conclude unj → u; furthermore, we have E′(unj ) → E′(u).
It only remains to prove E′(u) = . For any wk ∈ Yk and nj ≥ k we have

E′(u)wk =
(
E′(u) – E′(unj )

)
wk + E′(unj )wk

=
(
E′(u) – E′(unj )

)
wk + (E |Ynj )′(unj )wk .

Going to the limit on the right side of the above equation reaches

E′(u)wk = , ∀wk ∈ Yk ,

so E′(u) = , this shows that E satisfies the (PS)*c condition for every c ∈ R. Obviously, E
also satisfies the (PS)c condition for every c ∈R.
() We will prove that if k is large enough, then there exist ρk > rk >  such that (A) and

(A) are satisfied. (A) For k = , , . . . , denote

θk = sup
v∈Zk ,‖v‖≤

∫
RN

a(x)
α(x)

|v|α(x) dx, βk = sup
v∈Zk ,‖v‖≤

∫
RN

b(x)
q(x)

|v|q(x) dx,

then θk > , βk > , and θk → , βk → , as k → ∞. When u ∈ Zk , ‖u‖ ≥ M,

E(u)≥ 
p+

‖u‖αp– – ‖u‖α+θk – ‖u‖q+βk .

For sufficiently large k, we have θk < 
p+ . As α+ < αp–, we get

E(u)≥ 
p+

‖u‖αp– – ‖u‖q+βk .

Choose rk = ( p–
p+q+βk

)


q+–αp– , we have

E(u)≥
(

p–

p+q+

) q+
q+–αp– q+ – p–

p–

(

βk

) p–
q––αp–

.

Since βk → , we have infu∈Zk ,‖u‖=rk E(u)→ +∞ as k → ∞. (A) is satisfied.
(A) For k = , , . . . , denote

ek = inf
v∈Yk ,‖v‖=

∫
RN

b(x)
q(x)

|v|q(x) dx.

Then ek > . For any v ∈ Yk , with ‖v‖ =  and t large enough, since dimYk < ∞, all norms
are equivalent in Yk , we have

E(tv)≤ 
p–

tλp
+
– ektq

–
.
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As q– > λp+, there exists ρk > rk such that t = ρk concludes E(tv)≤  and then

max
u∈Yk ,‖u‖=ρk

E(u)≤ ,

so (A) is satisfied.
Conclusion () is reached by the Fountain Theorem.
() We use the Dual Fountain Theorem to prove conclusion (), and now it remains for

us to prove that there exist ρk > rk >  such that if k is large enough (B), (B) and (B) are
satisfied.
(B) Let θk and βk be defined as above, when v ∈ Zk , ‖v‖ =  and t small enough we have

E(tv)≥ 
p+

tαp
+
– tα

–
θk – tq

–
βk ≥ 

p+
tαp

+
– tα

–
θk – tp

+
βk .

For sufficiently large k we have βk < 
p+ , thus

E(tv)≥ 
p+

tαp
+ – tα

–
θk .

Choose ρk = (p+βk)


αp+–α– , then for sufficiently large k, ρk < . When t = ρk , v ∈ Zk with
‖v‖ = , we have E(tv)≥ , which implies

inf
u∈Zk ,‖u‖=ρk

E(u)≥ .

Hence (B) is satisfied.
(B) For k = , , . . . , denote

δk = inf
v∈Yk ,‖v‖=

∫
RN

a(x)
α(x)

|v|α(x) dx,

then δk > . For v ∈ Yk , ‖v‖ =  and t small enough, we have

E(tv)≤ 
p–

tλp
– – δktα

+ ,

since dimYk < ∞ and α+ < λp–, we get

bk := max
u∈Yk ,‖u‖=rk

E(u) < ,

with rk ∈ (,ρk) small enough. Hence (B) is satisfied.
(B) From the proof above and Yk ∩ Zk �= ∅, we have

dk := inf
u∈Zk ,‖u‖≤ρk

E(u)≤ bk := max
u∈Yk ,‖u‖=rk

E(u).

For v ∈ Zk , ‖v‖ =  and u = tv small enough, we have

E(u) = E(tv)≥ 
p+

tαp
+
– tα

–
θk ≥ –tα

–
θk ≥ –ρα–

k θk ≥ –θk ,

hence dk → . Hence (B) is satisfied.
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Conclusion () is reached by the Dual Fountain Theorem. �
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