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Abstract

In the article, spectrum of operator generated by differential operator expression
given on semi axis is investigated and proved formula for regularized trace of this
operator.

Introduction
Let H be a separable Hilbert space with a scalar product (.,.) and norm ∥.∥. Consider in
L2((0, ∞), H) the problem

l[y] ≡ −y′′(x) + xy(x) + Ay(x) + q(x)y(x) = λy(x) (1)

y′(0) = 0, (2)

where A is a self-adjoint positive-definite operator in H which has a compact inverse

operator and A >E (E is an identity operator in H). Denote the eigenvalues and eigen-

vectors of the operator A by g1 ≤ g2 ≤ ..., and �1, �2, ..., respectively.

Suppose that operator-valued function q(x) is weakly measurable, ∥q(x)∥ is bounded

on [0, ∞), q*(x) = q(x)∀x Î [o, ∞). The following properties hold:

(1)
∑∞

k=1

∫∞
0

∣∣(q(x)ϕk,ϕk)
∣∣ dx < const , ∀x Î [0, ∞).

(2)
qk(x)
x

((q(x)ϕk,ϕk) = qk(x)) is summable on (0, ∞),
∫∞
0

qk(x)
x

dx = 0 for ∀k = 1,∞

(3)
∫ δ

0

qk(x)
x5

dx < ∞, δ > 0, ∀k = 1,∞ .

In the case q(x) ≡ 0 in L2(H, (0, ∞)) associate with problems (1), (2) a self-adjoint

operator L0 whose domain is

D(L0) = {y(x) ∈ L2(H, (0,∞)/l[y] ∈ L2(H, (0,∞), y′(0) = 0}.

In the case q(x) ≠ 0 denote the corresponding operator by L, so L = L0 + q.

In this article the asymptotics of eigenvalues and the trace formula of operator L will

be studied.
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In [1] the regularized traces of all orders of the operator generated by the expression

l(y) ≡ (−1)n
d2ny
dx2n

+ xy

and the boundary conditions

km∑
j=0

amjy
(km−j)(0) = 0, m = 1,n,

am0 = 1, kn < kn−1 < · · · < k1 < 2n

are obtained.

In [2] the sum of eigenvalue differences of two singular Sturm-Liouville operators is

studied.

The asymptotics of eigenvalues and trace formulas for operators generated by differ-

ential expressions with operator coefficients are studied, for example, in [3-7]. We

could also refer to papers [8-10] where trace formulas for abstract operators are

obtained. Trace formulas are used for evaluation of first eigenvalues, they have applica-

tion to inverse problems, index theory of operators and so forth. For further detailed

discussions of the subject refer to [11].

1 The asymptotic formula for eigenvalues of L0 and L
One could easily show that under conditions A >E, A-1 Î s∞, the spectrum of L0 is

discrete.

Suppose that gk ~ aka (k ® ∞, a > 0, a > 0). Denote yk(x) = (y(x), �k). Then by vir-

tue of the spectral expansion of the self-adjoint operator A we get the following

boundary-value problem for the coefficients yk(x):

−y′′k(x) + xyk(x) + γkyk(x) = λyk(x), (1:1)

y′k(0) = 0. (1:2)

In the case x + gk >l solution of problem (1.1) from L2(0, ∞) is

ψ(x,λ) =
√
x + γk − λK 1

3

{
2
3
(x + yk − λ)

3
2

}
(1:3)

and in the case x + gk<l we can write it as a function of real argument as

ψ(x, y) =

=
√

λ − γk − x
{
J1
3

(
2
3
(λ − γk − x)

3
2

)
+ J− 1

3

(
2
3
(λ − γk − x)

3
2

)}
.

(1:4)

For this solution to satisfy (1.2) it is necessary and sufficient to hold

π√
3
(λ − γk)

{
J1
3

(
2
3
(λ − γk − x)

3
2

)
+ J− 1

3

(
2
3
(λ − γk − x)

3
2

)}
= 0 (1:5)

at least for one gk(l ≠ gk). Therefore, the spectrum of the operator L0 consists of

those real values of l ≠ gk such that at least for one k
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z2
[
J2
3

(
2
3
z3
)

− J− 2
3

(
2
3
z3
)]

= 0, (1:6)

where z =
√

λ − γk .

Prove the following two lemmas which we will need further.

Lemma 1.1. Equation (1.6) has only real roots.

Proof. Suppose that z = ia, a Î R, a ≠ 0. Then the operator associated with problem

−y′′k (x) + xyk(x) = z2yk(x) (1:7)

y′k(0) = 0 (1:8)

is positive and its eigenvalues are squares of the roots of Equation (1.6). So,(−y′′k(k), yk(k)
)
+ (xyk(x), yk(x)) ≥ 0.

But

(z2yk(x), yk(x)) = −α2(yk(x), yk(x)) < 0

which is contradiction. Then z can be only real, otherwise, the selfadjoint operator

corresponding to (1.7), (1.8) will have nonreal eigenvalues, which is impossible. The

lemma is proved.

Now, find the asymptotics of the solutions of Equation (1.6). By virtue of the asymp-

totics for large |z| [[12], p. 975]

Jv(z) =

√
2
πz

cos
(
z − vπ

2
− π

4

)(
1 +O

(
1
2

))

we get

sin
(
2
3
z3 − π

4

)(
1 +O

(
1
2

))
= 0. (1:9)

Hence

z =

√
3πm

2
+
3π

8
+O

(
1
m

)
=
(
3πm

2

) 1
3
+O

(
1

m
2
3

)
, (1:10)

where m is a large integer. Therefore, the statement of the following lemma is true.

Lemma 1.2. For the eigenvalues of L0 the following asymptotic is true

λm,k = γk + α2
m, αm = cm

1
3 +O

(
1

m
2
3

)
. (1:11)

For large |z| consider the rectangular contour l with vertices at the points

±iB,AN ± iB, AN = 3

√
3πN
2

+
9π

8

which bypasses the origin along the small semicircle on the right side of the imagin-

ary axis.
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The following lemma is true.

Lemma 1.3. For a sufficiently large integer N the number of the roots of the equation

inside l is N + O(1).

Proof. For large |z| we have

z2
[
J2
3

(
2
3
z3
)

− J− 2
3

(
2
3
z3
)]

= z2
√

2
πz3

(
cos

(
2
3
z3 − 7π

12

)
−

− cos
(
2
3
z3 +

π

12

))(
1 +O

(
1
z

))
=

= z

√
2
πz

(
sin
(
2
3
z3 − π

4

)
+O

(
1
z

))
.

(1:12)

Denote the function in braces on the right hand side of (1.12) by F(z). Then for large

|z| by Rouches’ theorem the number of the zeros of F(z) inside the contour equals the

number of the zeros
(
2
3
z3 − π

4

)
. Therefore, the number of the zeros of function

z2
[
J2
3

(
2
3
z3
)

− J− 2
3

(
2
3
z3
)]

inside l is N + O(1).

Now, by using the above results, derive the asymptotic formula for the eigenvalue

distribution of L0.

Denote the distribution function of L0 by N(l). Then

N(λ) =
∑

λm,k<λ

1.

So, N(l) is a number of positive integer pairs (m,k) for which

γk + α2
m < λ.

By Lemma 1.2 for the great values of m

(c − ε)m
2
3 < α2

m < (c + ε)m
2
3 .

From the asymptotics of gk we have

(a − ε)kα < γk < (a + ε)kα .

Hence, by virtue of Lemmas 1.1 and 1.3

N′′(λ) +O(1) < N(λ) < N′(λ) +O(1), (1:13)

where N”(l) is the number of the positive integer pairs for which

(a + ε)kα + (c + ε)m
2
3 < λ, (1:14)

N’(l) is the number of the positive integer pairs (m, k) satisfying the inequality

(c − ε)m
2
3 + (a − ε)kα < λ. (1:15)

Thus by using (1.14), (1.15) in (1.13) as in [[13], Lemma 2] we come to the following

statement.
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Lemma 1.4. If gk ~ aka, (0 <a, a > 0) then

λn ∼ μn ∼ dnδ

where

δ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2α

2 + 3α
, α ∈

(
0,

2
3

)
α

2
, α >

2
3

1
3
, α =

2
3

(1:16)

2 Trace formula
The following lemma is true.

Lemma 2.1. Let the conditions of Lemma 1.4 hold. Then for α >
2
3
there exists such a

subsequence {nm} of natural numbers that the relation

μk − μnm ≥ d
2

(
k

α
2 − n

α
2
m

)
, k = nm,nm + 1, . . .

holds.

Proof. In virtue of Lemma 1.4 for α >
2
3
, limn→∞

μn

n
α
2
= d , from which it follows

that

lim
n→∞

(
μn − d

2
n

α
2

)
= ∞.

That is why one could choose a subsequence n1 <n2 < ....nm < ..., that for each k ≥

nm holds μk − d

2
k

α
2 ≥ μnm − d

2
n

α
2
m , or μk − μnm ≥ d

2

(
k

α
2 − n

α
2
m

)
. The lemma is

proved.

We will call limm→∞
∑nm

n=1 (λn − μn) a regularized trace of the operator L. It will be

shown later it is independent of the choice of {nm} satisfying the hypothesis of Lemma 2.1.

From (1.16) it is obvious that for a > 2 resolvents R(L0) and R(L) are trace class

operators. By using Lemma 2.1 for a > 2 one can prove the following lemma.

Lemma 2.2. Let ∥q(x)∥ <const on the interval [0, ∞) and also the conditions of

Lemma 1.6 hold. Then for a > 2

lim
m→∞

nm∑
n=1

(λn − μn − (qψn,ψn)) = 0, (2:1)

where {ψn} are orthonormal eigenvectors of the operator L0.

The proof of this lemma is analogous to the proof of Lemma 2 and Theorem 2 from

[8]. For this reason we will not derive it here.

The orthogonal eigen-vectors of the operator L0 in L2((0, ∞), H) are

ψm,k = cm,kψ(x,α2
m)ϕk. (2:2)
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Calculate their norm. We have

∥∥ψm,k
∥∥2 = c2m,k

∞∫
0

ψ(x,α2
m)

2
dx. (2:3)

Take in Equation (1.7) z2 = a2 and z2 = b2. The solutions corresponding to these

values denote by ψ(x, a2) and ψ(x, b2). Multiplying the first of the obtained equations

by ψ (x, b2), the second by ψ (x, a2), subtracting the second one from the first one and

integrating from zero to infinity we get

∞∫
0

ψ(x,α2)ψ(x,β2)dx =
ψ(0,α2)′ψ(0,β2) − ψ(0,α2)ψ(0,β2)′

α2 − β2
=

π2

3
αβ

⎡
⎢⎢⎣

α

{
J2
3
( 23α3) − J−2

3
( 23α3)

}{
J1
3
( 23β3) + J− 1

3
( 23β3)

}
α2 − β2

β

{
J1
3
( 23α3) + J−1

3
( 23α3)

}{
J2
3
( 23β3) − J− 2

3
( 23β3)

}
α2 − β2

⎤
⎥⎥⎦ .

Going to limit as a ® b, we get

∞∫
0

ψ(x,α2)
2
dx =

=
π2

6

[
β

(
J2
3

(
2
3

β3
)

− J−2
3

(
2
3

β3
))(

J1
3

(
2
3

β3
)
+ J−1

3

(
2
3

β3
))

+

+β2

{
J1
3

(
2
3

β3
)
+ J− 1

3

(
2
3

β3
))(

J2
3

(
2
3

α3
)

− J− 2
3

(
2
3

α3
))′

α=β

−

−
(
J1
3

(
2
3

α3
)
+ J− 1

3

(
2
3

α3
))′

α=β

(
J2
3

(
2
3

β3
)

− J−2
3

(
2
3

β3
))

.

By making use of identities (12, p.981)

zJ′v(z) + vJv(z) = zJv−1(z) (2:4)

zJ′v(z) − vJv(z) = −zJv+1(z), (2:5)

we have

∞∫
0

ψ(x,α2)
2
dx =

π2

3
α4×

×
[(

J1
3

(
2
3

α3
)
+ J− 1

3

(
2
3

α3
))2

+
(
J1
3

(
2
3

α3
)
+ J− 1

3

(
2
3

α3
))2

]
.

(2:6)
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Finally by equation

β2
{
J2
3

(
2
3

β3
)

− J− 2
3

(
2
3

β3
)}

= 0

we get

∥∥ψm,k
∥∥2 = c2m,k

π2

3
α4
m

(
J1
3

(
2
3

α3
)
+ J− 1

3

(
2
3

α3
))2

. (2:7)

So, the orthonormal eigenvectors of L0 are

ψm,k =

√
3ψ(x,α2

m)

πα2
m

(
J1
3
( 23α3

m) + J− 1
3
( 23α3

m)
)ϕk. (2:8)

Lemma 2.3. If the operator-valued function q(x) has property 1 and α >
2
3
, then

3
π2

∞∑
k=1

∞∑
m=1

∣∣∣∣∣∣∣∣∣
∞∫
0

(q(x)ϕk,ϕk)ψ(x,α2
m)

2dx

α4
m

(
J1
3
( 23α3

m) + J− 1
3
( 23α3

m)
)2

∣∣∣∣∣∣∣∣∣
< ∞. (2:9)

Proof. Take (q(x)�k, �k) = qk(x). Let ε > 0 be sufficiently small number. If

x ∈ (0,α2
m − αε

m) then z = α2
m − x ∈ (α2

m,α
ε
m) . For x ∈ (α2

m − αε
m,α

2
m + αε

m) we have

z ∈ (−αε
m, 0] ∪ (0,αε

m) and, finally, for x ∈ (α2
m + αε

m, +∞) it will be z ∈ (−∞,−αε
m) .

Consequently for z ∈ (α2
m,α

ε
m) we have

ψ(x,α2
m) =

√
α2
m − x

⎛
⎝J1

3

(
2
3

α2
m − x

) 3
2
+ J− 1

3

(
2
3

α2
m − x

)3
2

⎞
⎠ ∼ e−i

√
z3

z
,

and for z ∈ (−∞,−α3
m)

ψ(x,α2
m) =

√
x − α2

mK 1
3

(
2
3
(x − α2

m)
3
2

)
∼ e−

√−z3

−z
,

then

∣∣∣∣∣∣
∞∫
0

qk(x)ψ(x,α2
m)dx

∣∣∣∣∣∣ ∼

∣∣∣∣∣∣∣
αε
m∫

α2
m

e−2i
√−z

z2
qk(α2

m − z)dz+

+

αε
m∫

α2
m

qk(α2
m − z)ψ2(z)dz+

−αε
m∫

−∞

e−2
√−z3

z2
qk(α2

m − z)dz

∣∣∣∣∣∣∣ <

<

∞∫
0

∣∣qk(z)∣∣ dz+
−αε

m∫
αε
m

∣∣qk(α2
m − z)ψ2(z)

∣∣ dz+
∞∫
0

∣∣qk(z)dz∣∣.

(2:10)
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For ε ® 0 we have

lim
ε→0

−αε
m∫

αε
m

∣∣qk(α2
m − z)ψ2(z)

∣∣ dz =

=

1∫
−1

∣∣qk(a2m − z)ψ2(z)
∣∣ dz < c

1∫
−1

∣∣qk(z)∣∣ dz < ∞.

(2:11)

From asymptotic αm ∼ cm
1
3 by using (2.10), (2.11) and property 1 we get

∞∑
k=1

∞∑
m=1

3
π2

∞∫
0

∣∣∣∣∣∣∣∣∣
qk(x)ψ(x,α2

m)
2dx

α4
m

(
J1
3
( 23α3

m) + J− 1
3
( 23α3

m)
)2

∣∣∣∣∣∣∣∣∣
<

<

∞∑
k=1

∞∫
0

∣∣qk(x)∣∣ dx ∞∑
m=1

1

m
4
3

< ∞.

The lemma is proved.

By using Lemma 2.3 prove the following theorem.

Theorem 2.1. Let the conditions of Lemma 1.6 hold. If the operator-valued function q

(x) has properties 1-3, then it holds the formula

lim
m→∞

nm∑
n=1

(λn − μn) = 0.

Proof. In virtue of Lemma 2.1

lim
m→∞

nm∑
n=1

(λn − μn) =
∞∑
k=1

∞∑
m=1

∞∫
0

3
π

qk(x)ψ(x,α2
m)

2dx

α4
m

(
J1
3
( 23α3

m) + J− 1
3
( 23α3

m)
)2 . (2:12)

Denote

TN(x) =
N∑

m=1

3
π2

ψ(x,α2
m)

2

α4
m

(
J1
3
( 23α3

m) + J− 1
3
( 23α3

m)
) .

Show that for each fixed value of k the m-th term of the sum TN (x) is a residue at

the point am of some function of complex variable which has poles at points

αm
(
m = 1,N

)
.

For this purpose consider the following function

g(z) =
π2

3
(z2 − x)2

(
J1
3

(
2
3(z

2 − x)
3
2

)
+ J−1

3

(
2
3(z

2 − x)
2
3

))2

2z
(
J2
3
( 23z

3) − J−2
3
( 23z

3)
)2 +

+
J2
3

((
2
3(z

2 − x)
3
2

)
− J− 2

3

(
2
3 (z

2 − x)
3
2

))2

2z
(
J2
3
( 23z

3) − J− 2
3
( 23z

3)
)2 .

(2:13)
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By taking in place of zero x in (2.6) one can show that

∞∫
x

ψ(t, z2)
2
dt =

π2

3
(z2 − x)

2

[(
J1
3

(
2
3
(z2 − x)

3
2

)
+ J− 1

3

(
2
3
(z2 − x)

3
2

))2

+

+
(
J2
3

(
2
3
(z2 − x)

3
2

)
− J−2

3

(
2
3
(z2 − x)

3
2

))2
]
.

(2:14)

Note that all zeros of the function J2
3

(
2
3
z3
)

− J− 2
3

(
2
3
z3
)

are simple, otherwise

(
J2
3

(
2
3
z3
)

− J− 2
3

(
2
3
z3
))′

z=αm
=

= 2α2
m

(
J− 1

3

(
2
3

α3
m

)
+ J1

3

(
2
3

α3
m

)
− 1

α3
m

(
J2
3

(
2
3

α3
m

)
− J− 2

3

(
2
3

α3
m

)))
=

= 2α2
m

(
J− 1

3

(
2
3

α3
m

)
+ J1

3

(
2
3

α3
m

))
= 0

and by virtue of (2.7) the norm of the eigenvectors equals zero, which is

contradiction.

Denote z2 - x = f (x, z) and the right hand side of (2.14) by G(f(x, z). Then

G′
x = −G′

f ,G
′
z = 2zG′

f = −2zG′
x. (2:15)

Then from (2.14), (2.15)

G′
x = ψ(x, z2)2, G′

z = 2zψ(x, z2)2. (2:16)

The function g(z) has poles of second order at the points am. By using identities

(2.15), (2.16) show that residues at this points equal the terms of sum TN(x). Denoting

J2
3

(
2
3
z3
)

− J− 2
3

(
2
3
z3
)
= u(z) , write Taylor expansion of this function in the vicinity

am:

u(z) = (z − αm)u′(αm) +
(z − αm)

2

2!
u′′(αm) + · · · ,

u2(z) = (z − αm)2u′(αm)2 + (z − αm)3u′(αm)u′′(αm) + · · ·

Show that the coefficient of the expansion of function zu2 (z) at (z - am)
3 equals

zero. So,

zu2(z) = ((z − αm) + αm)u2(z) = αmu′(αm)2(z − αm)2+

+u′(αm)(αmu′′(αm) + u′(αm))(z − αm)3 + · · ·
(2:17)

By denoting
2
3
z3 = w(z) we have

u′(αm) = 2α2
m

(
J2
3
(w(z)) − J− 2

3
(w(z))

)′

w= 23α3
m

(2:18)
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u′′(αm) = 4α4
m

(
J2
3
(w(z)) − J− 2

3
(w(z))

)′′

w= 23 α3
m

+

+4αm

(
J2
3
(w(z)) − J− 2

3
(w(z))

)
w= 23α3

m

.

(2:19)

Therefore,

αmu
′′(αm) + u′(αm) = 2α2

m(2α3
mu

′′
w + 3u′

w)w= 23α3
m
. (2:20)

On the other hand, J2
3
(z) and J− 2

3
(z) satisfy the Bessel equation

z2
d2y
dz2

+ z
dy
dz

+ (z2 − v2)y = 0 for v2 =
4
9
. So their difference also satisfies this equation

u′′
ww

2 + wu′
w = (v2 − w2)u. (2:21)

If w =
2
3

α3
m , then the right hand side (2.21) vanishes. Hence,

u′′
ww

2 + wu′
w =

2
9

α3
m

[
2α3

mu
′′
w= 23α3

m
+ 3u′

w= 23α3
m

]
= 0 (2:22)

which shows that the coefficient at (z - am)
3 in (2.17) vanishes.

Consequently, by (2.16), (2.17), (2.22) and the relation(
J2
3

(
2
3
z3
)

− J− 2
3

(
2
3
z3
))′

z=αm

=

= 2α2
m

[
− 1

α3
m
J2
3

(
2
3

α3
m

)
+ J− 1

3

(
2
3

α3
m

)
+

1
α2
m
J− 2

3

(
2
3

α3
m

)
+ J− 1

3

(
2
3

α3
m

)]
=

= 2α2
m

(
J1
3

(
2
3

α3
m

)
+ J− 1

3

(
2
3

α3
m

))

we have

res
z=αm

g(z) = lim
z→αm

[
(z − αm)

2 G(f (z, x))

αmu′(αm)
2(z − αm)

2 + cm(z − αm)
4 + · · ·

]′
=

= lim
z→αm

G′
z(f (z, x))

αmu′(αm)
2 =

2αmψ(α2
m, x)

2

4α5
m

(
J1
3
( 23α3

m) + J− 1
3
( 23α3

m)
) .

Take as a contour of integration a rectangular contour C with vertices at the points

±AN, ±AN + +iB, which bypasses points am above real axis, -am below it.

Consider the right hand side of the contour with vertices at AN and AN + iB. By

using the asymptotics

J1
3
(z) + J−1

3
(z) ∼ e−iz,

J2
3
(z) − J−2

3
(z) =

(
J1
3
(z) + J− 1

3
(z)
)′

−2z2
+ J1

3
(z) + J− 1

3
(z) ∼ −ie−iz

2z2
+ e−iz,

√
z2 − x

3 ∼ z3 − 3
2
xz.
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For x > 0, N ® ∞ taking B = AN, z = u + iv we have

∞∫
0

qk(x)

AN∫
0

A3
N
e3A

2
Nv−v3− 3

2 xv

e3A
2
Nv−v3

dvdx =

=

∞∫
0

qk(x)

⎡
⎣A3

N
e−

3
2 xAN

− 3
2x

+
2A3

N

3x

⎤
⎦ dx.

(2:23)

From condition 2

∞∫
0

qk(x)
x

A3
Ndx = 0. (2:24)

By conditions 2-3 as N ® ∞

∞∫
0

∣∣∣∣qk(x)x

∣∣∣∣A3
Ne

−3
2 xANdx =

=

∞∫
0

∣∣∣∣qk(x)x

∣∣∣∣ A3
N

1 + 3
2xAN +

(32xAN)
2

2!
+
(32xAN)

3

3!
+
(32xAN)

4

4!
+ · · ·

dx <

<

∞∫
0

∣∣∣∣qk(x)x

∣∣∣∣ 1

(32xAN)
4

4!

dx =
const
AN

∞∫
0

∣∣∣∣qk(x)x5

∣∣∣∣ dx → 0.

(2:25)

On the side of the contour with the vertices at ±AN + iB

∞∫
0

qk(x)

AN+iB∫
−AN+iB

g(z)dzdx. ∼
∞∫
0

qk(x)

AN∫
−AN

e−
3
2 xANA3

Ndudx =

=

∞∫
0

2qk(x)A4
Ne

−3
2 xANdx <

const
AN

∞∫
0

qk(x)
x5

dx → ∞.

(2:26)

In the same way as it is done in (2.25), (2.26) we get that

lim
N→∞

∞∫
0

qk(x)

AN+iB∫
−AN+iB

g(z)dzdx = 0.

Similarly, one may show that the integral along the left hand side of the contour

converges to zero:

lim
N→∞

∞∫
0

qk(x)
∫
C

g(z)dzdx = 0.

So, by the Cauchy theorem we finally get

∞∑
m=1

∞∫
0

ψ(α2
m, x)

2qk(x)dx

α4
m

(
J1
3
( 23α3

m) + J1
3
( 23α3

m)
)2 = lim

N→∞

∞∫
0

qk(x)
∫
C

g(z)dzdx = 0,
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which completes the proof of the theorem.
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