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Abstract
In this paper, we discuss the existence and uniqueness of a positive solution to the
following singular fractional differential equation with nonlocal boundary value
conditions:

{
Dα
0+u(t) + f (t,u(t)) = 0, 0 < t < 1,

u(0) = 0, Dβ
0+u(1) =

∑m–2
i=1 ηiD

β
0+u(ξi),

where 1 < α ≤ 2, 0 < β < α – 1, 0 < ξ1 < · · · < ξm–2 < 1 with
∑m–2

i=1 ηiξ
α–β–1
i < 1, Dα

0+ is
the standard Riemann-Liouville derivative, f may be singular at t = 0, t = 1, and u = 0.
MSC: 34B10; 34B15

Keywords: fractional differential equation; positive solution; iterative scheme;
singular boundary value problem

1 Introduction
In this paper, we consider the following fractional differential equation:

⎧⎨
⎩Dα

+u(t) + f (t,u(t)) = ,  < t < ,

u() = , Dβ
+u() =

∑m–
i= ηiDβ

+u(ξi),
(.)

where  < α ≤ ,  < β < α – ,  < ξ < · · · < ξm– <  with
∑m–

i= ηiξ
α–β–
i < , Dα

+ is the
standard Riemann-Liouville derivative, f ∈ C((, )× (, +∞)→ [, +∞)) may be singular
at t = , t = , and u = . In this paper, by a positive solution to (.), we mean a function
u ∈ C[, ] which satisfies Dα

+u ∈ L(, ), positive on (, ] and satisfies (.).
Recently, many results were obtained dealing with the existence of solutions for non-

linear fractional differential equations by using the techniques of nonlinear analysis; see
[–] and references therein. The multi-point boundary value problems (BVP for short)
have provoked a great deal of attention, for example [–]. In [], the authors discussed
some positive properties of the Green function for Direchlet-type BVP of nonlinear frac-
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tional differential equation

⎧⎨
⎩Dα

+u(t) + f (t,u(t)) = ,  < t < ,

u() = , u() = ,
(.)

where  < α < ,Dα
+ is the standardRiemann-Liouville derivative, f ∈ C([, ]×[, +∞)→

[, +∞)). By using the Krasnosel’skii fixed point theorem, the existence of positive solu-
tions were obtained under suitable conditions on f .
In [], the authors investigated the existence and multiplicity of positive solutions by

using some fixed point theorems for the fractional differential equation

⎧⎨
⎩Dα

+u(t) + f (t,u(t)) = ,  < t < ,

u() = , Dβ
+u() = aDβ

+u(ξ ),
(.)

where  < α ≤ ,  ≤ β ≤ ,  < ξ < ,  ≤ a ≤  with aξα–β– <  – β ,  ≤ α – β – , f :
[, ]× [, +∞)→ [, +∞) satisfied Carathéodory type conditions.
In [, ], the authors considered the fractional differential equation given by

⎧⎨
⎩Dα

+u(t) + f (t,u,u′, . . . ,u(n–)) = ,  < t < ,n –  < α ≤ n,n≥ ,

u() = u′() = · · · = u(n–)() = , u(n–)() = .
(.)

In order to obtain the existence of positive solutions of (.), they considered the following
fractional differential equation:

⎧⎨
⎩Dα–n+

+ v(t) + f (t, In–+ v(t), In–+ v(t), . . . , I+v(t), v(t)) = ,  < t < ,

v() = v() = .
(.)

In [], f = q(t)(g + h), and g , h have different monotone properties. By using the fixed
point theorem for the mixed monotone operator, Zhang obtained (.) and had a unique
positive solution u(t) = In–+ v(t) with v ∈ Q =: {x(t) : 

Mtα–n+ ≤ x(t) ≤ Mtα–n+}. But the
results are not true since v(t) is a positive solution of (.), and v() = .What causes it lies
in the unsuitable using of properties of the Green function.
In [], f ∈ C([, ]× [, +∞)×Rn– → [, +∞)), f (t, y, y, . . . , yn–) is increasing for yi ≥

, i = , , . . . ,n– . By using the positive properties of the Green function obtained in []
and fixed point theory for the u concave operator, the authors obtained the uniqueness
of a positive solution for the BVP (.).
Motivated by the worksmentioned above, in this paper we aim to establish the existence

and uniqueness of a positive solution to the BVP (.). Our work presented in this paper
has the following features. Firstly, the BVP (.) possesses singularity, that is, f may be
singular at t = , t = , and u = . Secondly, we impose weaker positivity conditions on the
nonlocal boundary term, that is, some of the coefficients ηi can be negative. Thirdly, the
unique positive solution can be approximated by an iterative scheme.
The rest of the paper is organized as follows. In Section , we present some preliminaries

and lemmas thatwill be used to prove ourmain results.We also develop somenewpositive
properties of the Green function. In Section , we discuss the existence and uniqueness of
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a positive solution of the BVP (.), we also give an example to demonstrate the application
of our theoretical results.

2 Preliminaries
For the convenience of the reader, we present here the necessary definitions from frac-
tional calculus theory. These definitions can be found in recent literature.

Definition . The fractional integral of order α >  of a function u : (, +∞)→ R is given
by

Iα+u(t) =


�(α)

∫ t


(t – s)α–u(s)ds

provided the right-hand side is defined pointwise on (,+∞).

Definition . The fractional derivative of order α >  of a continuous function u :
(, +∞)→ R is given by

Dα
+u(t) =


�(n – α)

(
d
dt

)n ∫ t


(t – s)n–α–u(s)ds,

where n = [α] + , [α] denotes the integral part of the number α, provided the right-hand
side is pointwisely defined on (,+∞).

Definition . By u ∈ L(, ), we mean
∫ 
 |u(t)|dt <∞.

Lemma . ([]) Let α > . Then the following equality holds for u ∈ L(, ), Dα
+u ∈ L(, ),

Iα+D
α
+u(t) = u(t) + ctα– + ctα– + · · · + cntα–n,

where ci ∈ R, i = , , . . . ,n, n –  < α ≤ n.

Set

G(t, s) =


�(α)

⎧⎨
⎩tα–( – s)α–β–,  ≤ t ≤ s ≤ ,

tα–( – s)α–β– – (t – s)α–,  ≤ s ≤ t ≤ ,
(.)

p(s) =  –
∑
s≤ξi

ηi

(
ξi – s
 – s

)α–β–

, (.)

G(t, s) =G(t, s) + q(s)tα–, (.)

where

q(s) =
p(s) – p()
�(α)p()

( – s)α–β–, p() =  –
m–∑
i=

ηiξ
α–β–
i . (.)

For the convenience in presentation, we here list the assumption to be used throughout
the paper.

(H) p() > , q(s) ≥  on [, ].

http://www.boundaryvalueproblems.com/content/2012/1/81
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Remark . If ηi =  (i = , . . . ,m–), we have p() =  and q(s)≡ . If ηi ≥  (i = , . . . ,m–
) and

∑m–
i= ηiξ

α–β–
i < , we have p() >  and q(s) ≥  on [, ].

Lemma . ([]) Assume that g ∈ L(, ) and α >  ≥ β ≥ . Then

Dβ
+

∫ t


(t – s)α–g(s)ds =

�(α)
�(α – β)

∫ t


(t – s)α–β–g(s)ds.

Lemma . Assume (H) holds, and y ∈ L(, ). Then the unique solution of the problem

⎧⎨
⎩Dα

+u(t) + y(t) = ,  < t < ,

u() = , Dβ
+u() =

∑m–
i= ηiDβ

+u(ξi),
(.)

is

u(t) =
∫ 


G(t, s)y(s)ds,

where G(t, s) is called the Green function of BVP (.).

Proof From Lemma ., we have the solution of (.) given by

u(t) = –Iα+y(t) + ctα– + ctα–.

Consequently,

u(t) = –


�(α)

∫ t


(t – s)α–y(s)ds + ctα– + ctα–.

From u() = , we have c = .
By Lemma ., we have

Dβ
+u(t) = –


�(α – β)

∫ t


(t – s)α–β–y(s)ds +

c�(α)
�(α – β)

tα–β–.

Therefore,

Dβ
+u() = –


�(α – β)

∫ 


( – s)α–β–y(s)ds +

c�(α)
�(α – β)

,

and

Dβ
+u(ξi) = –


�(α – β)

∫ ξi


(ξi – s)α–β–y(s)ds +

c�(α)
�(α – β)

ξ
α–β–
i .

By Dβ
+u() =

∑m–
i= ηiDβ

+u(ξi), we have

c =
∫ 
 ( – s)α–y(s)ds –

∑m–
i= ηi

∫ ξi
 (ξi – s)α–β–y(s)ds

�(α)p()
=

∫ 
 ( – s)α–β–p(s)y(s)ds

�(α)p()
.

http://www.boundaryvalueproblems.com/content/2012/1/81
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Therefore, the solution of (.) is

u(t) = ctα– –


�(α)

∫ t


(t – s)α–y(s)ds =

∫ 


G(t, s)y(s)ds. �

Lemma . The function G(t, s) has the following properties:
() G(t, s) > , for t, s ∈ (, );
() �(α)G(t, s)≤ tα–, for t, s ∈ [, ];
() βtα–h(s)≤ �(α)G(t, s)≤ h(s)tα–, for t, s ∈ (, ), where

h(s) = s( – s)α–β–. (.)

Proof It is obvious that (), () hold. In the following, we will prove ().
(i) When  < s ≤ t < , noticing  < β < α –  ≤ , we have

∂

∂β

{
tα–s( – s)α–β– – tα–( – s)α–β–}

= tα–( – s)α–β–(t – s) ln( – s)≤ . (.)

Therefore,

tα–s( – s)α–β– –
(
tα–( – s)α–β– – (t – s)α–

)
≥ tα–s – tα– + (t – s)α–

= –tα–(t – s) + (t – s)α– ≥ ,

which implies

�(α)G(t, s)≤ h(s)tα–. (.)

On the other hand, we have

∂

∂s
{
βs + ( – s)β

} ≤ , s ∈ [, ).

Therefore, βs + ( – s)β ≤ , which implies

[
 – ( – s)β

] ≥ βs.

Then

�(α)G(t, s) = tα–( – s)α–β– – (t – s)α–

≥ tα–( – s)α–β– – (t – s)β (t – ts)α–β–

=
[
 –

(
 –

s
t

)β]
tα–( – s)α–β–

≥ [
 – ( – s)β

]
tα–( – s)α–β– ≥ βtα–h(s). (.)

http://www.boundaryvalueproblems.com/content/2012/1/81
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(ii) When  < t ≤ s < , we have

�(α)G(t, s) = tα–( – s)α–β– = tα–t( – s)α–β–

≤ tα–s( – s)α–β– = h(s)tα–. (.)

On the other hand, clearly we have

�(α)G(t, s) = tα–( – s)α–β– ≥ βtα–h(s). (.)

(.)-(.) implies () holds. �

By Lemma . we have the following results.

Lemma . Assume (H) holds, then the Green function defined by (.) satisfies:
() G(t, s) > , ∀t, s ∈ (, );
() G(t, s) ≤ tα–( 

�(α) + q(s)), ∀t, s ∈ [, ];
() βtα–�(s)≤ G(t, s)≤ tα–�(s), ∀t, s ∈ (, ), where

�(s) =
h(s)
�(α)

+ q(s).

Lemma . Assume (H) holds, then the function G∗(t, s) =: t–αG(t, s) satisfies:
() G∗(t, s) > , ∀t, s ∈ (, );
() G∗(t, s)≤ t( 

�(α) + q(s)), ∀t, s ∈ [, ];
() βt�(s)≤ G∗(t, s)≤ �(s), ∀t, s ∈ [, ].

For convenience, we list here two more assumptions to be used later:

(H) f (t,u) = g(t,u,u), here g ∈ C((, )× [, +∞)× (, +∞) → [, +∞)), g(t,u, v) is non-
decreasing on u, nonincreasing on v, and there exists μ ∈ (, ) such that

g
(
t, ru,

v
r

)
≥ rμg(t,u, v), ∀u, v > , r ∈ (, ). (.)

(H)

 <
∫ 


g
(
s, sα–, sα–

)
ds < +∞. (.)

Remark . Inequality (.) is equivalent to

g
(
t,
u
r
, rv

)
≤ r–μg(t,u, v), ∀u, v > , r ∈ (, ). (.)

Let E = C[, ] be endowed with the maximum norm ‖u‖ = max≤t≤ |u(t)|. Define a
cone P by

P =
{
u ∈ E : there exists lu >  such that β‖u‖t ≤ u(t) ≤ lut

}
.

http://www.boundaryvalueproblems.com/content/2012/1/81
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Let

A(u, v)(t) =
∫ 


G∗(t, s)g

(
s, sα–u(s), sα–v(s)

)
ds. (.)

Set Q = P \ {θ}, where θ is the zero element of E. We have the following lemma.

Lemma . Suppose that (H)-(H) hold. Then A :Q×Q →Q.

Proof For any u, v ∈Q, there exists l, l > , such that

β‖u‖t ≤ u(t) ≤ lt, β‖v‖t ≤ v(t)≤ lt.

By (H), (H) and () of Lemma ., we get

A(u, v)(t) =
∫ 


G∗(t, s)g

(
s, sα–u(s), sα–v(s)

)
ds

≤ t
∫ 



(


�(α)
+ q(s)

)
g
(
s, sα–u(s), sα–v(s)

)
ds

≤ t
∫ 



(


�(α)
+ q(s)

)
g
(
s, lsα–,β‖v‖sα–)ds

≤ t
∫ 



(


�(α)
+ q(s)

)
g
(
s, ( + l)sα–,

β‖v‖
( + β)( + ‖v‖) s

α–
)
ds

≤ Lt
∫ 



(


�(α)
+ q(s)

)
g
(
s, sα–, sα–

)
ds < +∞, (.)

where L =max{( + l)μ, ( (+β)(+‖v‖)
β‖v‖ )μ}. This implies that A is well defined in Q×Q.

On the other hand, by () of Lemma ., we have

A(u, v)(t) =
∫ 


G∗(t, s)g

(
s, sα–u(s), sα–v(s)

)
ds

≥ βt
∫ 


�(s)g

(
s, sα–u(s), sα–v(s)

)
ds,

A(u, v)(t) =
∫ 


G∗(t, s)g

(
s, sα–u(s), sα–v(s)

)
ds

≤
∫ 


�(s)g

(
s, sα–u(s), sα–v(s)

)
ds.

Therefore, A(u, v)(t) ≥ β‖A(u, v)‖t. Combining with (.), we have A :Q×Q →Q. �

Remark . By (H) and (.), A is a mixed monotone operator.

3 Main results
Theorem . Suppose that (H)-(H) hold. Then the BVP (.) has a unique positive solu-
tion.

http://www.boundaryvalueproblems.com/content/2012/1/81
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Proof For any r ∈ (, ), by Remark ., we have

A
(
u
r
, rv

)
≤ r–μA(u, v), ∀u, v ∈Q.

For any w ∈Q, noticing A(w,w) ∈ Q, we can choose r ∈ (, ) small enough such that

r–μ
 w≤ A(w,w) ≤ r–(–μ)

 w. (.)

Set

u = rw, v = r– w. (.)

Clearly,

u, v ∈Q, u ≤ v.

Let

un = A(un–, vn–), vn = A(vn–,un–), n = , , . . . . (.)

It is easy to see that

u ≤ u ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · ≤ v ≤ v. (.)

Noticing

u = A
(
rw, r– w

) ≥ rμA(w,w),

v = A
(
r– w, rw

) ≤ r–μ
 A(w,w),

therefore,

u ≥ rμ v.

Suppose that un ≥ rμ
n

 vn, then vn ≤ r–μ
n

 un, and

un+ = A(un, vn) ≥ A
(
rμ

n

 vn, r–μ
n

 un
) ≥ rμ

n+

 A(vn,un).

By induction, we can get

un ≥ rμ
n

 vn, n = , , . . . . (.)

By (.), (.), we have

 ≤ un+m – un ≤ vn – un ≤ (
 – rμ

n


)
vn ≤ (

 – rμ
n


)
v,

http://www.boundaryvalueproblems.com/content/2012/1/81
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which implies {un} is a Cauchy sequence. Similarly, {vn} is a Cauchy sequence. Noticing
(.), there exist u∗, v∗ ∈Q, such that {un} converges to u∗ and {vn} converges to v∗. More-
over,

un ≤ u∗ ≤ v∗ ≤ vn, n = , , . . . . (.)

(.) and (.) imply that

∥∥v∗ – u∗∥∥ ≤ ‖vn – un‖ ≤ (
 – rμ

n


)‖v‖, n = , , . . . . (.)

This implies that u∗ = v∗.
By the mixed monotone property of A and (.), we have

A
(
u∗, v∗) ≥ A(un, vn) = un+, A

(
v∗,u∗) ≤ A(vn,un) = vn+, n = , , . . . .

Let n→ +∞, we get

u∗ ≤ A
(
u∗, v∗) = A

(
v∗,u∗) ≤ v∗.

Since u∗ = v∗, we have u∗ is a positive fixed point of A.
In the following, we will prove the positive fixed point of A is unique.
Suppose u �= u∗ is a positive fixed point of A. By Lemma ., we can get u ∈Q. Let

r = sup
{
r ∈ (, ) : ru∗ ≤ u≤ r–u∗}.

Then  < r < , and ru∗ ≤ u≤ r– u∗. Therefore

u = A(u,u) ≥ A
(
ru∗, r– u∗) ≥ rμ A

(
u∗,u∗) = rμ u

∗,

u = A(u,u) ≤ A
(
r– u∗, ru∗) ≤ r–μ

 A
(
u∗,u∗) = r–μ

 u∗.

Thus, rμ u∗ ≤ u≤ r–μ
 u∗, which contradicts the definition of r. Consequently, the positive

fixed point of A is unique.
It is clear that y(t) = tα–u∗(t) satisfies

y(t) =
∫ 


G(t, s)g

(
s, y(s), y(s)

)
ds =

∫ 


G(t, s)f

(
s, y(s)

)
ds, t ∈ (, ].

On the other hand, since u∗ ∈Q, we have β‖u∗‖t ≤ u∗(t) ≤ lu∗ t. Then, β‖u∗‖tα– ≤ y(t) ≤
lu∗ tα–. By Lemma . and (H), (H), we can get g(t, y(t), y(t)) ∈ L(, ). Moreover,

lim
t→

y(t) = lim
t→

∫ 


G(t, s)g

(
s, y(s), y(s)

)
ds

≤ tα–
∫ 



(


�(α)
+ q(s)

)
g
(
s, y(s), y(s)

)
ds

= .

Lemma . implies y(t) = tα–u∗(t) is a positive solution of (.).

http://www.boundaryvalueproblems.com/content/2012/1/81
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On the other hand, if y(t) is a positive solution of (.), then

y(t) =
∫ 


G(t, s)g

(
s, y(s), y(s)

)
ds.

By Lemma ., we have there exists l, l >  such that

ltα– ≤ y(t) ≤ ltα–.

Set u(t) = t–αy(t), we have

lt ≤ u(t) ≤ lt,

and

u(t) =
∫ 


G∗(t, s)g

(
s, sα–u(s), sα–v(s)

)
ds,

which implies u is a positive fixed point of A.
Then y(t) = tα–u∗(t) is the unique positive solution of the BVP (.). �

Remark . The unique positive solution y of (.) can be approximated by the itera-
tive schemes: for any w ∈ Q, let u, v be defined as (.) and un = A(un–, vn–), vn =
A(vn–,un–), n = , , . . . , then tα–un → y.

Example . (A -point BVPwith coefficients of both signs) Consider the following prob-
lem:

⎧⎨
⎩D



+u(t) + f (t,u(t)) = , t ∈ (, ),

u() = , D


+u() =D



+u(


 ) –


D



+u(


 )

(.)

with

f (t,x) = –x

 ln t – x–


 ln( – t) + x–


 ln

(
 + x



)
.

Then

G(t, s) =


�(  )

⎧⎨
⎩t  ( – s)  ,  ≤ t ≤ s ≤ ,

t  ( – s)  – (t – s)  ,  ≤ s ≤ t ≤ 

and

p(s) =

⎧⎪⎪⎨
⎪⎪⎩
 – (


 –s
–s )


 – 

 (

 –s
–s )


 ,  ≤ s≤ 

 ,

 – 
 (


 –s
–s )


 , 

 < s≤ 
 ,

, 
 < s≤ .

By direct calculations, we have p() = 
 and q(s)≥ , which implies (H) holds.

http://www.boundaryvalueproblems.com/content/2012/1/81
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Let

g(t,x, y) = –x

 ln t – y–


 ln( – t) + y–


 ln

(
 + x



)
.

Obviously, g ∈ C((, ) × [, +∞) × (, +∞) → [, +∞)), g(t,x, y) is nondecreasing on x
and nonincreasing on y. It is easy to see that

ln( + rx)≥ r ln( + x), ∀x≥ , r ∈ (, ). (.)

Then

g
(
t, rx,

y
r

)
≥ r


 g(t,x, y), ∀x, y > , r ∈ (, ).

Therefore (H) holds. It is easy to get that (H) holds. Therefore, the assumptions of The-
orem . are satisfied. Thus Theorem . ensures that the BVP (.) has a unique positive
solution.
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