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Abstract
We give a global description of the branches of positive solutions of first-order
impulsive boundary value problem:

{
u′(t) + a(t)u(t) = λf (t,u(t)), t ∈ (0, 1), t �= tk , k = 1, . . . ,p,
u(t+k ) = u(t–k ) + λIk(u(tk)), k = 1, . . . ,p, u(0) = u(1),

which is not necessarily linearizable. Where λ > 0 is a parameter,
0 < t1 < t2 < · · · < tp < 1 are given impulsive points. Our approach is based on the
Krein-Rutman theorem, topological degree, and global bifurcation techniques.
MSC: 34B10; 34B15; 34K15; 34K10; 34C25; 92D25

Keywords: Krein-Rutman theorem; topological degree; bifurcation from interval;
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1 Introduction
Some evolution processes are distinguished by the circumstance that at certain instants
their evolution is subjected to a rapid change, that is, a jump in their states. Mathemati-
cally, this leads to an impulsive dynamical system. Differential equations involving impul-
sive effects occur in many applications: physics, population dynamics, ecology, biological
systems, biotechnology, industrial robotic, pharmacokinetics, optimal control, etc. There-
fore, the study of this class of impulsive differential equations has gained prominence and
it is a rapidly growing field. See [–] and the references therein.
Let us consider the equation

u′(t) + a(t)u(t) = λf
(
t,u(t)

)
, t ∈ J

′, (.)

subjected to the impulsive boundary condition

u
(
t+k

)
= u

(
t–k

)
+ λIk

(
u(tk)

)
, k = , . . . ,p, u() = u(), (.)

where λ >  is a real parameter, J′ = [, ]\{t, . . . , tp},  < t < t < · · · < tp <  are given
impulsive points. We make the following assumptions:
(H) a ∈ C([, ],R) is a -periodic function and

∫ 
 a(t)dt > ;
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(H) Ik ∈ C([,∞), [,∞)), k = , . . . ,p, Ik(u) >  for u > , there exist positive constants
I()k , I(∞)

k ∈ (,∞) such that

I()k = lim
u→+

Ik(u)
u

, I(∞)
k = lim

u→+∞
Ik(u)
u

;

(H) f ∈ C(J′ × [,∞), [,∞)) is -periodic function with respect to the first variable,
and f (t+k ,u), f (t

–
k ,u) exist, f (t

–
k ,u) = f (tk ,u). Moreover, there exist functions

a,a,b∞,b∞ ∈ C([, ], [,∞)) with a(t),a(t),b∞(t),b∞(t) �≡  in any
subinterval of [, ] such that

a(t)u – ξ(t,u) ≤ f (t,u) ≤ a(t)u + ξ(t,u),

where ξi ∈ C([, ]× [,∞)) with ξi(t,u) = o(|u|) as |u| →  uniformly for t ∈ [, ]
(i = , ), and

b∞(t)u – ζ(t,u) ≤ f (t,u)≤ b∞(t)u + ζ(t,u),

where ζi ∈ C([, ]× [,∞)) with ζi(t,u) = o(|u|) as |u| → ∞ uniformly for
t ∈ [, ] (i = , );

(H) f (t,u) > , (t,u) ∈ [, ]× (,∞);
(H) there exists function c ∈ C([, ], [,∞)) and c(t) �≡  in any subinterval of [, ]

such that

f (t,u) ≥ c(t)u, (t,u) ∈ [, ]× [,∞).

Some special cases of (.), (.) have been investigated. For example, Nieto [] consid-
ered the (.), (.) with λ ≡ , a≡ . By using Schaeffer’s theorem, some sufficient condi-
tions for existence of solutions of the IBVP (.), (.) with λ ≡ , a ≡  were obtained.
Li, Nieto, and Shen [] studied the existence of at least one positive periodic solutions

of (.), (.) with λ ≡ , a ≡m (m is a constant). By using Schaeffer’s fixed-point theorem,
they got the solvability under f satisfied at most linear growth and Ik is bounded or f is
bounded and Ik satisfied at most linear growth.
Liu [] studied the existence andmultiplicity of (.), (.) with λ ≡ , by using the fixed-

point theorem in cones, and he proved the following:

Theorem A ([, Theorem ..]) Let (H) hold. Assume that f (t,u) ≥ , Ik(u) ≥ , u ≥ ,
and

max
t∈[,]

{
M

∫ 


G(t, s)ds +W

p∑
k=

G(t, tk)

}
< ; (.)

and

min
t∈[,]

{
e–

∫ 
 |a(s)|dsv

∫ 


G(t, s)ds + e–

∫ 
 |a(s)|dsw

p∑
k=

G(t, tk)

}
> . (.)
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Then the problem (.), (.) with λ ≡  has at least one positive solution where G(t, s) will
be defined in (.) and

M := lim
u→+∞ sup

t∈[,]
f (t,u)
u

, Wk := lim
u→+∞

Ik(u)
u

,

v := lim
u→

inf
t∈[,]

f (t,u)
u

, wk := lim
u→

Ik(u)
u

.
(.)

Theorem B ([, Theorem ..]) Let (H) hold. Assume that f (t,u) ≥ , Ik(u) ≥ , u ≥ 
and

min
t∈[,]

{
m

∫ 


G(t, s)ds +W

p∑
k=

G(t, tk)

}
> e

∫ 
 |a(t)|dt , (.)

and

max
t∈[,]

{
V

∫ 


G(t, s)ds +w

p∑
k=

G(t, tk)

}
< . (.)

Then the problem (.), (.) with λ ≡  has at least one positive solutionwhereW, w defined
as (.) and

m := lim
u→+∞ inf

t∈[,]
f (t,u)
u

, V := lim
u→

sup
t∈[,]

f (t,u)
u

. (.)

It is worth remarking that the [, , ] only get the existence of solutions, and there is
not any information of global structure of positive periodic solutions.
By using global bifurcation techniques, we obtain a complete description of the global

structure of positive solutions for (.), (.) under weaker conditions. More precisely, our
main result is the following theorem.

Theorem . Let (H), (H), and (H) hold. Suppose f (t, ) = , t ∈ [, ], Ik() = , k =
, . . . ,p. Then
(i) [λ(b∞),λ(b∞)] is a bifurcation interval of positive solutions from infinity for (.),

(.), and there exists no bifurcation interval of positive solutions from infinity which is dis-
joint with [λ(b∞),λ(b∞)]. More precisely, there exists a component �∞ of positive solu-
tions of (.), (.) whichmeets [λ(b∞),λ(b∞)]×{∞}, where λ(b∞), λ(b∞)will be defined
in Section ;
(ii) [λ̃(a), λ̃(a)] is a bifurcation interval of positive solutions from the trivial solutions

for (.), (.), and there exists no bifurcation interval of positive solutions from the trivial
solutions which is disjoint with [λ̃(a), λ̃(a)]. More precisely, there exists a component�

of positive solutions of (.), (.) whichmeets [λ̃(a), λ̃(a)]×{}, where λ̃(a), λ̃(a)will
be defined in Section ;
(iii) If (H) and (H) also hold, then there is a number λ∗ >  such that problem (.), (.)

admits no positive solution with λ > λ∗. In this case, �∞ = �.

Remark . There is no paper except [] studying impulsive differential equations using
bifurcation ideas. However, in [], they only dealt with the case that f, f∞ ∈ (,∞), i.e. f,

http://www.boundaryvalueproblems.com/content/2012/1/83
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f∞ do exist. Where

f := lim|u|→

f (t,u)
u

and

f∞ := lim|u|→∞
f (t,u)
u

both uniformly with respect to t ∈ [, ].

From (H), it is easy to see that the f, f∞ may be not exist, the method used in [] is not
helpful any more in this case.

Remark . From (iii) of Theorem ., we know that �, �∞ are involved in [,λ∗] ×
PC[, ]. Moreover, [λ(b∞),λ(b∞)] is a unique bifurcation interval of positive solutions
from infinity for (.), (.), and [λ̃(a), λ̃(a)] is a unique bifurcation interval of positive
solutions from the trivial solutions for (.), (.). Therefore, � must be intersected with
[λ(b∞),λ(b∞)]× {∞}.

Remark . Obviously, (H) is more general than (.), (.). Moreover, if we let a(t) := v,
b∞(t) :=M, under conditions (.), (.), we get λ(b∞) > , λ̃(a) < , respectively. Hence,
� cross the hyperplane {} × PC[, ]. Therefore, Theorem .. of [] is the corollary of
Theorems . even in the special case.

Remark . Similar, if we let a(t) := V , b∞(t) := m, only under condition (.), we can
obtain λ(b∞) < . From Proposition ., we will know that �∞ is unbounded in λ direc-
tion, so, �∞ cross the hyperplane {} × PC[, ]. Therefore, Theorem .. of [] is the
corollary of Theorems . even in the special case and weaker condition.

Remark . There are many papers which get the positive solutions using bifurcation
from the interval. For example, see [, ]. However, in those papers, the linear operator
corresponding problem is self-adjoint. It is easy to see that the linear operator correspond-
ing (.), (.) is not self-adjoint. So, the method used in [, ] is not helpful in this case.

Remark . Condition (H) means that f is not necessarily linearizable near  and in-
finity. So, we will apply the following global bifurcation theorems for mappings which are
not necessarily smooth to get a global description of the branches of positive solutions of
(.), (.), and then, we obtain the existence and multiplicity of positive solutions of (.),
(.).

TheoremC (K. Schmitt, R. C. Thompson []) Let V be a real reflexive Banach space. Let
F :R×V → V be completely continuous such that F(λ, ) = , ∀λ ∈R. Let a,b ∈R (a < b)
be such that u =  is an isolated solution of the equation

u – F(λ,u) = , u ∈ V , (.)

for λ = a and λ = b, where (a, ), (b, ) are not bifurcation points of (.). Furthermore,
assume that

deg
(
I – F(a, ·),Br(), 

) �= deg
(
I – F(b, ·),Br(), 

)
,

http://www.boundaryvalueproblems.com/content/2012/1/83
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where Br() is an isolating neighborhood of the trivial solution. Let

� =
{
(λ,u) : (λ,u) is a solution of (.) with u �= 

} ∪ (
[a,b]× {}).

Then there exists a connected component C of � containing [a,b]×{} inR×V , and either
(i) C is unbounded in R×V , or
(ii) C ∩ [(R\[a,b])× {}] �= ∅.

Theorem D (K. Schmitt []) Let V be a real reflexive Banach space. Let F :R×V → V
be completely continuous, and let a,b ∈ R (a < b) be such that the solution of (.) are, a
priori, bounded in V for λ = a and λ = b, i.e., there exists an R >  such that

F(a,u) �= u �= F(b,u)

for all u with ‖u‖ ≥ R. Furthermore, assume that

deg
(
I – F(a, ·),BR(), 

) �= deg
(
I – F(b, ·),BR(), 

)
,

for R >  large. Then there exists a closed connected set C of solutions of (.) that is un-
bounded in [a,b]×V , and either

(i) C is unbounded in λ direction, or
(ii) there exist an interval [c,d] such that (a,b)∩ (c,d) = ∅, and C bifurcates from infinity

in [c,d]×V .

The rest of the paper is organized as follows: In Section , we state some notations and
preliminary results. Sections  and  are devoted to study the bifurcation from infinity and
from the trivial solution for a nonlinear problem which are not necessarily linearizable,
respectively. Finally, in Section , we consider the intertwining of the branches bifurcating
from infinity and from the trivial solution.

2 Preliminaries
Let

PC[, ] =

⎧⎪⎨
⎪⎩u

∣∣∣∣∣
u : [, ]→R,u(t) is continuous at t �= tk ,
left continuous at t = tk , and the right limit u

(
t+k

)
exists

for k = , , , . . . .

⎫⎪⎬
⎪⎭

Then PC[, ] is a Banach space with the norm ‖u‖ = supt∈[,] |u(t)|.
By a positive solution of the problem (.), (.), we mean a pair (λ,u), where λ >  and

u is a solution of (.), (.) with u > . Let � ⊂ R+ × PC[, ] be the closure of the set of
positive solutions of (.), (.), where R+ := [,∞).

Lemma . ([, Theorem .]) The spectrum σ (T) of compact linear operator T has
following properties:

(i) σ (T) is a countable set with no accumulation point which is different from zero;
(ii) each nonzero λ ∈ σ (T) is an eigenvalue of T with finite multiplicity, and λ̄ is an

eigenvalue of T∗ with the same multiplicity, where λ̄ denote the conjugate of λ, T∗

denote the conjugate operator of T .

http://www.boundaryvalueproblems.com/content/2012/1/83
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Let H := L(, ), with inner product 〈·, ·〉 and norm ‖ · ‖L .
Let Z(·) ∈ C([, ], [,∞)) and Z(·) �≡  in any subinterval of [, ]. Further define the

linear operator LZ : PC[, ] → PC[, ],

LZu =
∫ 


G(t, s)Z(s)u(s)ds +

p∑
k=

G(t, tk)I(∞)
k · u(tk), (.)

where I(∞)
k as defined in (H), G(t, s) is the Green’s function of

{
u′(t) + a(t)u(t) = , t ∈ (, ),
u() = u()

and

G(t, s) =

⎧⎨
⎩

e–[A(t)–A(s)]
–e–A() ,  ≤ s≤ t ≤ ,

e–[A()+A(t)–A(s)]
–e–A() ,  ≤ t < s ≤ ,

(.)

where A(t) =
∫ t
 a(s)ds, it is easy to see that (H) implies that G(t, s) > .

By virtue of Krein-Rutman theorems (see []), we have the following lemma.

Lemma. Suppose that (H) holds, then for the operator LZ defined by (.), has a unique
characteristic value λ(Z), which is positive, real, simple, and the corresponding eigenfunc-
tion ϕ(t) is of one sign, i.e., we have ϕ(t) = λ(Z)LZϕ(t).

Proof It is a direct consequence of the Krein-Rutman theorem [, Theorem .]. �

Remark . Since λ(Z) is real number, so fromLemma ., λ(Z) is also the characteristic
value of L∗

Z , let ϕ∗
 denote the nonnegative eigenfunction of L∗

Z corresponding to λ(Z),
where L∗

Z denote the conjugate operator of LZ . Therefore, we have

ϕ∗
 (t) = λ(Z)L∗

Zϕ∗
 (t), t ∈ [, ].

We extend the function f to function f̄ , defined on [, ]×R by

f̄ (t,u) =

{
f (t,u), (t,u) ∈ [, ]× [,∞),
f (t, ), (t,u) ∈ [, ]× (–∞, ).

Then f̄ (t,u) ≥  on [, ]×R.
For λ ≥ , the problem

{
u′(t) + a(t)u(t) = λf̄ (t,u(t)), t ∈ J′,
u(t+k ) = u(t–k ) + λIk(u(tk)), k = , . . . ,p, u() = u()

(.)

is equivalent to the operator equation Aλ : PC[, ] → PC[, ].

(Aλu)(t) = λ

∫ 


G(t, s)f̄

(
s,u(s)

)
ds + λ

p∑
k=

G(t, tk)Ik
(
u(tk)

)
.

http://www.boundaryvalueproblems.com/content/2012/1/83
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Remark . For λ > , if u is a nontrivial solution of (.), from the positivity of G(t, s)
and f̄ , we have that u(·) >  on [, ], so u is a nontrivial solution of (.), (.). Therefore,
the closure of the set of nontrivial solutions (λ,u) of (.) in R+ × PC[, ] is exactly �.

The problem (.) is now equivalent to the operator equation

u = Aλ(u), u ∈ PC[, ]. (.)

In the following, we shall apply the Leray-Schauder degree theory, mainly to the mapping
	λ : PC[, ] → PC[, ],

	λ(u) = u –Aλ(u).

For R > , let BR = {u ∈ PC[, ] : ‖u‖ < R}, let deg(	λ,BR, ) denote the degree of 	λ on
BR with respect to .

3 Bifurcation from infinity
In this section, we are devoted to study the bifurcation from infinity.

Lemma . Let 
 ⊂ R+ be a compact interval with [λ(b∞),λ(b∞)] ∩ 
 = ∅. Then there
exists a number R >  such that

	λ(u) �= , ∀λ ∈ 
,∀u ∈ PC[, ] : ‖u‖ ≥ R.

Proof Suppose on the contrary that there exists {(μn,un)} ⊂ 
×PC[, ] with ‖un‖ → ∞
(n → ∞), such that 	μn (un) = . We may assume μn → μ̄ ∈ 
. By Remark ., un >  in
[, ]. Set vn = ‖un‖–un. Then

vn =
Aμn (un)
‖un‖ .

From (H), (H), we know that ‖un‖–Aμn (un) is bounded in PC[, ], so {vn} is a relatively
compact set in PC[, ] since Aμn : PC[, ] → PC[, ] is bounded and continuous and
PC[, ] ↪→↪→ PC[, ]. Suppose vn → v̄ in PC[, ]. Then ‖v̄‖ =  and v̄ ≥  in [, ].
Now, from condition (H), we know that there exist ρk ∈ C([,∞), [,∞)), such that

Ik(u) = I(∞)
k u + ρ

(∞)
k (u) and lim|u|→∞

ρ∞
k (u)
u

= .

From (H), we have that

b∞(t)un – ξ(t,un) ≤ f (t,un) ≤ b∞(t)un + ξ(t,un).

So,

un ≤ μn

∫ 


G(t, s)b∞(s)un(s)ds +μn

p∑
k=

G(t, tk)I(∞)
k · un(tk)

+μn

∫ 


G(t, s)ξ

(
s,un(s)

)
ds +μn

p∑
k=

G(t, tk)ρ∞
k

(
un(tk)

)
,

http://www.boundaryvalueproblems.com/content/2012/1/83
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and

μn

∫ 


G(t, s)b∞(s)un(s)ds +μn

p∑
k=

G(t, tk)I(∞)
k · un(tk)

–μn

∫ 


G(t, s)ξ

(
s,un(s)

)
ds +μn

p∑
k=

G(t, tk)ρ∞
k

(
un(tk)

) ≤ un,

accordingly, we have

vn ≤ μn

∫ 


G(t, s)b∞(s)vn(s)ds +μn

p∑
k=

G(t, tk)I(∞)
k · vn(tk)

+μn

∫ 


G(t, s)

ξ(s,un(s))
un(s)

vn(s)ds +μn

p∑
k=

G(t, tk)
ρ∞
k (un(tk))
‖un‖ (.)

and

vn ≥ μn

∫ 


G(t, s)b∞(s)vn(s)ds +μn

p∑
k=

G(t, tk)I(∞)
k · vn(tk)

–mun
∫ 


G(t, s)

ξ(s,un(s))
un(s)

vn(s)ds +μn

p∑
k=

G(t, tk)
ρ∞
k (un(tk))
‖un‖ . (.)

Let ϕ∞∗ and ϕ∗∞ denote the nonnegative eigenfunctions of L∗
b∞ , L∗

b∞ corresponding to
λ(b∞), and λ(b∞), respectively. Then we have from the (.) that

〈
vn,ϕ∞

∗
〉 ≤ μn

〈
Lb∞vn,ϕ∞

∗
〉
.

Letting n → ∞, we have

〈
v̄,ϕ∞

∗
〉 ≤ μ̄

〈
Lb∞ v̄,ϕ∞

∗
〉
,

we obtain that

〈
v̄,ϕ∞

∗
〉 ≤ μ̄

〈
Lb∞ v̄,ϕ∞

∗
〉
= μ̄

〈
v̄,L∗

b∞ϕ∞
∗

〉
= μ̄

〈
v̄,


λ(b∞)

ϕ∞
∗

〉
= μ̄


λ(b∞)

〈
v̄,ϕ∞

∗
〉
,

and consequently

μ̄ ≥ λ
(
b∞)

.

Similarly, we deduce from (.) that

μ̄ ≤ λ(b∞).

Thus, λ(b∞) ≤ μ̄ ≤ λ(b∞). This contradicts μ̄ ∈ 
. �

http://www.boundaryvalueproblems.com/content/2012/1/83
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Corollary . For μ ∈ (,λ(b∞)) and R ≥ R. Then deg(φμ,BR, ) = .

Proof Lemma ., applied to the interval 
 = [,μ], guarantees the existence of R > 
such that for R≥ R,

u – τAμ(u) �= , u ∈ PC[, ] : ‖u‖ ≥ R, τ ∈ [, ].

Hence, for any R ≥ R,

deg(φμ,BR, ) = deg(I,BR, ) = ,

which implies the assertion. �

On the other hand, we have

Lemma . Suppose λ > λ(b∞). Then there exists R >  with the property that ∀u ∈
PC[, ] with ‖u‖ ≥ R, ∀τ ≥ ,

	λ(u) �= τϕ∞,

where ϕ∞ is the nonnegative eigenfunction of Lb∞ corresponding to λ(b∞).

Proof Let us assume that for some sequence {un} in PC[, ] with ‖un‖ → ∞ and numbers
τn ≥ , such that 	λ(un) = τnϕ∞. Then

un = Aλ(un) + τnϕ∞,

and we conclude from Remark . that un >  in [, ]. So we have

〈
un,ϕ∗

∞
〉
=

〈
Aλ(un) + τnϕ∞,ϕ∗

∞
〉
=

〈
Aλ(un),ϕ∗

∞
〉
+ τn

〈
ϕ∞,ϕ∗

∞
〉
.

Choose σ >  such that

σ <
λ – λ(b∞)

λ
. (.)

By (H), there exists M > , such that

f (t,u) ≥ ( – σ )b∞(t)u, ∀u >M, t ∈ [, ].

From ‖un‖ → ∞, then exists N∗ > , such that

un >M, t ∈ [, ],∀n≥ N∗,

and consequently

f (t,un) ≥ ( – σ )b∞(t)un, ∀n≥N∗, t ∈ [, ]. (.)

http://www.boundaryvalueproblems.com/content/2012/1/83
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Let vn = un
‖un‖ , applying (.), it follows that

〈
vn,ϕ∗

∞
〉 ≥ 〈

Aλ(un)
‖un‖ ,ϕ∗

∞

〉
≥ λ( – σ )

〈
Lb∞vn,ϕ∗

∞
〉

= λ( – σ )
〈
vn,L∗

b∞ϕ∗
∞

〉
= λ( – σ )

〈
vn,


λ(b∞)

ϕ∗
∞

〉
.

Thus,

λ(b∞) ≥ λ( – σ ),

this contradicts (.). �

Corollary . For λ > λ(b∞) and R≥ R, deg(φλ,BR, ) = .

Proof By Lemma ., there exists R >  such that

	λ(u) �= τϕ∞, u ∈ PC[, ] : ‖u‖ ≥ R, τ ∈ [, ].

Then

deg(	λ,BR, ) = deg(	λ – ϕ∞,BR, ) = 

for all R ≥ R. The assertion follows. �

We are now ready to prove

Proposition. [λ(b∞),λ(b∞)] is a bifurcation interval of positive solutions from infinity
for the problem (.). There exists an unbounded component �∞ of positive solutions of
(.) whichmeets [λ(b∞),λ(b∞)]×{∞}, and is unbounded in λ direction.Moreover, there
exists no bifurcation interval of positive solutions from infinity which is disjointed with
[λ(b∞),λ(b∞)].

Proof For fixed n ∈ N with λ(b∞) – 
n > , let us take that an = λ(b∞) – 

n , bn = λ(b∞) + 
n

and R̂ =max{R,R}. It is easy to check that forR > R̂, all of the conditions of TheoremDare
satisfied. So, there exists a closed connected set Cn of solutions of (.) that is unbounded
in [an,bn]× PC[, ], and either

(i) Cn is unbounded in λ direction, or else
(ii) ∃[c,d] such that (an,bn)∩ (c,d) = ∅ and Cn bifurcates from infinity in

[c,d]× PC[, ].
By Lemma ., the case (ii) cannot occur. Thus, Cn bifurcates from infinity in [an,bn]×

PC[, ] and is unbounded in λ direction. Furthermore, we have from Lemma . that for
any closed interval I ⊂ [an,bn]\[λ(b∞),λ(b∞)], the set {u ∈ PC[, ]|(λ,u) ∈ �,λ ∈ I} is
bounded in PC[, ]. So, Cn must be bifurcated from infinity in [λ(b∞),λ(b∞)]×PC[, ]
and is unbounded in λ direction. �

Assertion (i) of Theorem . follows directly.
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4 Bifurcation from the trivial solutions
In this section, we shall study the bifurcation from the trivial solution for a nonlinear prob-
lem which is not necessarily linearizable near  and infinity.
As in Section , letZ(·) ∈ C([, ], [,∞)) andZ(·) �≡  in any subinterval of [, ]. Further

define the linear operator L̃Z : PC[, ] → PC[, ],

L̃Zu =
∫ 


G(t, s)Z(s)u(s)ds +

p∑
k=

G(t, tk)I()k · u(tk), (.)

where I()k is defined in (H), G(t, s) is defined in (.).
Similar as Lemma ., we have the following lemma.

Lemma . Suppose that (H) holds, then the operator L̃Z has a unique characteristic
value λ̃(Z), which is positive, real, simple, and the corresponding eigenfunction ϕ̃(t) is of
one sign, i.e., we have ϕ̃(t) = λ̃(Z)L̃Zϕ̃(t).

Remark . Since λ̃(Z) is real number, so fromLemma ., λ̃(Z) is also the characteristic
value of L̃∗

Z , where L̃∗
Z denote the conjugate operator of L̃Z , let ϕ̃∗

 denote the nonnegative
eigenfunction of L̃∗

Z corresponding to λ̃(Z). Therefore, we have

ϕ̃∗
 (t) = λ̃(Z)L̃∗

Zϕ̃∗
 (t), t ∈ [, ].

Lemma . Let 
 ⊂ R+ be a compact interval with [λ̃(a), λ̃(a)] ∩ 
 = ∅. Then there
exists a number δ >  such that

	λ(u) �= , ∀λ ∈ 
,∀u ∈ PC[, ] :  < ‖u‖ ≤ δ.

Proof Suppose on the contrary that there exists {(μn,un)} ⊂ 
 × PC[, ] with ‖un‖ → 
(n → ∞), such that 	μn (un) = . We may assume μn → μ̄ ∈ 
. By Remark ., un >  in
[, ]. Set vn = ‖un‖–un. Then

vn =
Aμn (un)
‖un‖ .

From (H), (H), we know that ‖un‖–Aμn (un) is bounded in PC[, ], so we infer that vn
is a relatively compact set in PC[, ], hence (for a subsequence) vn → v̄ with v̄ ≥  in
PC[, ], ‖v̄‖ = .
Now, from condition (H), we know that there exist ρ

k ∈ C([,∞), [,∞)), such that

Ik(u) = I()k · u + ρ
k (u) and lim

u→+

ρ
k (u)
u

= .

From (H), we have that

a(t)un – ζ(t,un) ≤ f (t,un) ≤ a(t)un + ζ(t,un).

So,

un ≤ μn

∫ 


G(t, s)a(s)un(s)ds +μn

p∑
k=

G(t, tk)I()k · un(tk)

http://www.boundaryvalueproblems.com/content/2012/1/83
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+μn

∫ 


G(t, s)ζ

(
s,un(s)

)
ds +μn

p∑
k=

G(t, tk)ρ
k
(
un(tk)

)
,

and

un ≥ μn

∫ 


G(t, s)a(s)un(s)ds +μn

p∑
k=

G(t, tk)I()k · un(tk)

–μn

∫ 


G(t, s)ζ

(
s,un(s)

)
ds +μn

p∑
k=

G(t, tk)ρ
k
(
un(tk)

)
,

accordingly, we have

vn ≤ μn

∫ 


G(t, s)a(s)vn(s)ds +μn

p∑
k=

G(t, tk)I()k · vn(tk),

+μn

∫ 


G(t, s)

ζ(s,un(s))
un(s)

vn(s)ds +μn

p∑
k=

G(t, tk)
ρ
k (un(tk))
‖un‖ (.)

and

vn ≥ μn

∫ 


G(t, s)a(s)vn(s)ds +μn

p∑
k=

G(t, tk)I()k · vn(tk)

–μn

∫ 


G(t, s)

ζ(s,un(s))
un(s)

vn(s)ds +μn

p∑
k=

G(t, tk)
ρ
k (un(tk))
‖un‖ . (.)

Let ϕ̃∗ and ϕ̃∗
 denote the nonnegative eigenfunctions of L̃∗

a , L̃
∗
a corresponding to λ̃(a),

and λ̃(a), respectively. Then we have from the (.) that

〈
vn, ϕ̃

∗
〉 ≤ μn

〈
L̃avn, ϕ̃

∗
〉
.

Letting n → ∞, we have

〈
v̄, ϕ̃

∗
〉 ≤ μ̄

〈
L̃a v̄, ϕ̃

∗
〉
,

we obtain that

〈
v̄, ϕ̃

∗
〉 ≤ μ̄

〈
L̃a v̄, ϕ̃

∗
〉
= μ̄

〈
v̄, L̃∗

a ϕ̃

∗
〉
= μ̄

〈
v̄,


λ̃(a)

ϕ̃
∗

〉
= μ̄


λ̃(a)

〈
v̄, ϕ̃

∗
〉
,

and consequently

μ̄ ≥ λ̃
(
a

)
.

Similarly, we deduce from (.) that

μ̄ ≤ λ̃(a).

Thus, λ̃(a) ≤ μ̄ ≤ λ̃(a). This contradicts μ̄ ∈ 
. �
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Corollary . For μ ∈ (, λ̃(a)) and δ ∈ (, δ). Then deg(	μ,Bδ , ) = .

On the other hand, we have

Lemma . Suppose λ > λ̃(a). Then there exists δ >  with the property that ∀u ∈
PC[, ] with  < ‖u‖ ≤ δ, ∀τ ≥ ,

	λ(u) �= τ ϕ̃,

where ϕ̃ is the nonnegative eigenfunction of the L̃a corresponding to λ̃(a).

Proof We assume again on the contrary that there exists τn ≥  and a sequence un with
‖un‖ >  and un →  in PC[, ], such that 	λ(un) = τnϕ̃ for all n ∈N.
Then

un = Aλ(un) + τnϕ̃,

and we conclude from Remark . that un >  in [, ]. So, we have

〈
un, ϕ̃∗


〉
=

〈
Aλ(un) + τnϕ̃, ϕ̃∗


〉
=

〈
Aλ(un), ϕ̃∗


〉
+ τn

〈
ϕ̃, ϕ̃∗


〉
.

Choose σ >  such that

σ <
λ – λ̃(a)

λ
. (.)

By (H), there exists r > , such that

f (t,u) ≥ ( – σ )a(t)u, ∀u ∈ [, r], t ∈ [, ].

From ‖un‖ → , then exists N∗ > , such that

 ≤ un ≤ r, ∀n≥ N∗,

and consequently

f (t,un) ≥ ( – σ )a(t)un, ∀n≥ N∗. (.)

Let vn = un
‖u‖ , applying (.), it follows that

〈
vn, ϕ̃∗


〉 ≥

〈
Aλ(un)
‖un‖ , ϕ̃∗



〉
≥ λ( – σ )

〈
L̃avn, ϕ̃

∗

〉

= λ( – σ )
〈
vn, L̃∗

a ϕ̃
∗

〉
= λ( – σ )

〈
vn,


λ̃(a)

ϕ̃∗


〉
.

Thus,

λ̃(a)≥ λ( – σ ),

this contradicts with (.). �
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Corollary . For λ > λ̃(a) and δ ∈ (, δ). Then deg(	λ,Bδ , ) = .

Proof By Lemma ., there exists δ >  such that

	λ(u) �= τ ϕ̃, ∀u ∈ PC[, ] :  < ‖u‖ ≤ δ, τ ∈ [, ].

Then

deg(	λ,Bδ , ) = deg(	λ – ϕ̃,Bδ , ) = 

for all δ ∈ (, δ). Then the assertion follows. �

Now, using Theorem C and the similar method to prove Proposition . with obvious
changes, we may prove the following proposition.

Proposition . [λ̃(a), λ̃(a)] is a bifurcation interval of positive solutions from the
trivial solution for the problem (.). There exists an unbounded component � of pos-
itive solutions of (.) which meets [λ̃(a), λ̃(a)] × {}. Moreover, there exists no bi-
furcation interval of positive solutions from the trivial solution which is disjointed with
[λ̃(a), λ̃(a)].

This is exactly the assertion (ii) of Theorem ..

5 Global behavior of the component of positive solutions
In this section, we consider the intertwining of the branches bifurcating from infinity and
from the trivial solution.
Let mk :=min{ Ik (u)u }, k = , . . . ,p for u �= . From (H), we havemk > , k = , . . . ,p.
Define the linear operator Tc : PC[, ] → PC[, ],

Tcu =
∫ 


G(t, s)c(s)u(s)ds +

p∑
k=

G(t, tk)mk · u(tk), (.)

where c(·) is defined in (H), G(t, s) is defined in (.).
Similar as Lemma ., we have the following lemma.

Lemma . The operator Tc has a unique characteristic value μ, which is positive, real,
simple, and the corresponding eigenfunction 	c(t) is of one sign, i.e., we have 	c(t) =
μTc	c(t).

Remark . Since μ is real number, so from Lemma ., μ is also the characteristic
value of T∗

c , where T∗
c denote the conjugate operator of Tc, let 	∗

c denote the nonnegative
eigenfunction of T∗

c corresponding to μ. Therefore, we have

	∗
c (t) = μT∗

c 	∗
c (t), t ∈ [, ].

Lemma . Let (H)-(H) hold. Then there exists a number λ∗ >  such that there is no
positive solution (λ,u) of 	λ(u) =  with λ > λ∗.
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Ma et al. Boundary Value Problems 2012, 2012:83 Page 15 of 16
http://www.boundaryvalueproblems.com/content/2012/1/83

Proof Let (λ,u) be a positive solution of 	λ(u) = . Then

u = λ

∫ 


G(t, s)f

(
s,u(s)

)
ds + λ

p∑
k=

Ik
(
u(tk)

)
, u ∈ PC[, ].

From (H) and the definition ofmk , we have

u≥ λ

∫ 


G(t, s)c(s)u(s)ds + λ

p∑
k=

mk · u(tk), u ∈ PC[, ]. (.)

From (.), we have

〈
u,	∗

c
〉 ≥ λ

〈
Tcu,	∗

c
〉
= λ

〈
u,T∗

c 	∗
c
〉
= λ

〈
u,


μ

	∗
c

〉
= λ


μ

〈
u,	∗

c
〉
.

Thus,

λ ≤ μ := λ∗. �

The assertion that � = �∞ in Theorem .(iii) now easily follows. For, in the case,
� and �∞ are contained in (,λ∗] × PC[, ]. Moreover, there exists no bifurcation in-
terval of positive solution from infinity which is disjointed with [λ(b∞),λ(b∞)], there
exists no bifurcation interval of positive solution from the trivial solution which is dis-
jointed with [λ̃(a), λ̃(a)]. In Theorem .(iii), the unbounded component � has to
meet [λ(b∞),λ(b∞)]× {∞}.
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