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Abstract
In this paper, we study the blow-up and nonextinction phenomenon of
reaction-diffusion equations with absorption under the null Dirichlet boundary
condition. We at first discuss the existence and nonexistence of global solutions to
the problem, and then give the blow-up rate estimates for the nonglobal solutions. In
addition, the nonextinction of solutions is also concerned.
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1 Introduction
In this paper, we consider the reaction-diffusion equations with absorption

ut = �um + up – uq, x ∈ �, t > ,
u(x, t) = , x ∈ ∂�, t > , (.)
u(x, ) = u(x), x ∈ �,

where m > , p > , q ≥ , p �= q, � ⊂ R
N is a bounded domain with smooth boundary

∂�, and u(x) is a nontrivial, nonnegative, bounded, and appropriately smooth function.
Parabolic equations like (.) appear in population dynamics, chemical reactions, heat
transfer, and so on. We refer to [, , ] for details on physical models involving more
general reaction-diffusion equations.
The semilinear case (m = ) of (.) has been investigated by Bedjaoui and Souplet [].

They obtained that the solutions exist globally if either p <max{q, } or p =max{q, }, and
the solutions may blow up in finite time for large initial value if p >max{q, }. Recently, Xi-
ang et al. [] considered the blow-up rate estimates for nonglobal solutions of (.) (m = )
with p > max{q, }, and obtained that (i) max� u(x, t) ≥ c(T – t)–


p– ; (ii) max� u(x, t) ≤

C(T – t)–


p– if p ≤  + 
N+ , where c,C >  are positive constants. Liu et al. [] studied

the extinction phenomenon of solutions of (.) for the case  <m <  with q =  and ob-
tained some sufficient conditions about the extinction in finite time and decay estimates
of solutions in � ⊂R

N (N > ).
Recently, Zhou et al. [] investigated positive solutions of the degenerate parabolic

equation not in divergence form

ut = up�u + auq – bur , x ∈ �, t > ,
u(x, t) = , x ∈ ∂�, t > , (.)
u(x, ) = u(x), x ∈ �,
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where p ≥ , q,a,b > , r > . They at first gave some conditions about the existence and
nonexistence of global solutions to (.), and then studied the large time behavior for the
global solutions.
Motivated by the abovementionedworks, the aim of this paper is threefold. First, we de-

termine optimal conditions for the existence and nonexistence of global solutions to (.).
Secondly, by using the scaling arguments we establish the exact blow-up rate estimates
for solutions which blow up in a finite time. Finally, we prove that every solution to (.) is
nonextinction.
As it is well known that degenerate equations need not possess classical solutions, we

give a precise definition of a weak solution to (.).

Definition . Let T >  and QT = � × (,T), E = {u ∈ Lp(QT ) ∩ Lq(QT );ut ,∇u ∈
L(QT )}, E = {u ∈ E;u =  on ∂�}, a nonnegative function u(x, t) ∈ E is called a weak up-
per (or lower) solution to (.) in QT if for any nonnegative function ϕ ∈ E, one has∫ ∫

QT

utϕ dxdt +
∫ ∫

QT

∇um∇ϕ dxdt ≥ (≤)
∫ ∫

QT

upϕ – uqϕ dxdt,

u(x, t) ≥ (≤) on ∂� × (,T) and u(x, )≥ (≤)u(x) a.e. in �.

In particular, u(x, t) is called a weak solution of (.) if it is both a weak upper and a
weak lower solution. For every T < ∞, if u(x, t) is a weak solution of (.) in QT , we say
that u(x, t) is global. The local in time existence of nonnegative weak solutions have been
established (see the survey []), and the weak comparison principle is stated and proved
in the Appendix in this paper.
The behavior of the weak solutions is determined by the interactions among the multi-

nonlinearmechanisms in the nonlinear diffusion equations in (.).Wedivide the (m,p,q)-
parameter region into three classes: (i) p <max{m,q}; (ii) p =max{m,q}; (iii) p >max{m,q}.

Theorem . If p <max{m,q}, then all solutions of (.) are bounded.

Let φ(x) be the first eigenfunction of

–�φ(x) = λφ(x) in �, φ(x) =  in ∂� (.)

with the first eigenvalue λ, normalized by ‖φ‖∞ = , then λ >  and φ >  in �.

Theorem . Assume that p =max{m,q}. Then all solutions are global if λ ≥ , and there
exist both global and nonglobal solutions if λ < .

Theorem . If p >max{m,q}, then there exist both global and nonglobal solutions to (.).

To obtain the blow-up rate of blow-up solutions to (.), we need an extra assumption
that� = BR() = {x ∈R

N : |x| < R} and u = u(r), u′
(r)≤ , here r = |x|. By the assumption

and comparison principle, we know that u is radially decreasing in r with max� u(x, t) =
u(, t).

Theorem . Suppose that p > max{m,q}. If the solution u(x, t) of (.) blows up in finite
time T, then there exists a positive constant c such that

max
�

u(x, t)≥ c(T – t)–


p– as t → T .
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Furthermore, if p > m ≥ q, then we have also the upper estimate, that is, there exists a
positive constant C such that

max
�

u(x, t)≤ C(T – t)–


p– as t → T .

We remark that in � = R
N , Liang [] studied the blow up rate of blow-up solutions to

the following Cauchy problem

ut = �um + up, (x, t) ∈R
N × (,T) (.)

with the bounded initial function,  < m < p < m N+
(N–)+ , and obtained that ‖u‖L∞(RN ) <

C(T – t)–


p– for t ∈ (,T). By using the same scaling arguments in this paper, we can find
that Theorem . is correct for (.) with p >m.
Now, we pay attention to the nonextinction property of solutions and have the following

result.

Theorem . Any solution of (.) does not go extinct in finite time for any nontrivial and
nonnegative initial value u(x) withmeas{x ∈ �;u(x) > } > .

The rest of this paper is organized as follows. In the next section, we discuss the global
existence and nonexistence of solutions, and prove Theorems .-.. Subsequently, in
Sects.  and , we consider the estimate of the blow-up rate and study the nonextinction
phenomenon for the problem (.). The weak comparison principle is stated and proved
in the Appendix.

2 Global existence and nonexistence

Proof of Theorem . If m ≥ q, that is p <m, then by the comparison principle, we have
u≤ w, where w satisfies

wt = �wm +wp, x ∈ �, t > ,
w(x, t) = , x ∈ ∂�, t > , (.)
w(x, ) = u(x), x ∈ �.

We know from [, ] that w is bounded.
Ifm < q, we have p < q. It is obvious that u =max{,‖u‖∞} is a time-independent upper

solution to (.). �

Proof of Theorem . Since p �= q and p =max{m,q} imply p =m > q. Due to the fact that
the solution of (.) is an upper solution of (.), the conclusions for λ ≥  is obvious true;
see [, ].
Now consider λ <  with small initial data. Let ψ(x) be the unique solution of

–�ψ(x) =  in �, ψ(x) =  on ∂�, (.)

and h(t) solves h′(t) = –δh(t)m with h() = h, where  < δ ≤ ‖ψ‖– 
m∞ . Set u = h(t)ψ 

m (x).
Then

ut –�um – um + uq = –δhmψ

m + hm – hmψ + hqψ

q
m

= hm
(
 – δψ


m

)
+ hqψ

q
m

(
 – hm–qψ

m–q
m

) ≥ 
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provided hm–q
 ψ

m–q
m ≤ . Thus, u is an upper solution of (.), and consequently, u ≤ u =

h(t)ψ 
m (x) →  as t → ∞.

If λ <  with large initial data, we first introduce some transformations. Let v = um and
τ =mt, then (.) becomes the following equations not in divergence form:

vτ = vr
(
�v + v – vs

)
, x ∈ �, τ > ,

v(x, τ ) = , x ∈ ∂�, τ > ,
v(x, ) = v(x), x ∈ �,

where r = m–
m , s = q

m <  and v(x) = um (x).
Let J(τ ) = 

–r
∫
�
v–rφ dx, where φ is given in (.). Then we have

J ′(τ ) =
∫

�

(
�v + v – vs

)
φ(x)dx

= ( – λ)
∫

�

vφ dx –
∫

�

vsφ dx. (.)

By using Hölder’s inequality, we discover
∫

�

vsφ dx ≤
(∫

�

vφ dx
)s(∫

�

φ dx
)–s

(.)

and ∫
�

v–rφ dx≤
(∫

�

vφ dx
)–r(∫

�

φ dx
)r

i.e.,
∫

�

vφ dx ≥
[
( – r)J(τ )

(∫
�

φ dx
)–r] 

–r
. (.)

Inserting (.) into (.), we have

J ′(τ )≥ ( – λ)
∫

�

vφ dx –
(∫

�

vφ dx
)s(∫

�

φ dx
)–s

=
(∫

�

vφ dx
)s[

( – λ)
(∫

�

vφ dx
)–s

–
(∫

�

φ dx
)–s]

. (.)

According to (.), (.), we obtain

J ′(τ )≥ ( – λ)


[
( – r)

(∫
�

φ dx
)–r] 

–r
J(τ )


–r (.)

as long as

J(τ ) ≥ 
 – r

(


 – λ

) –r
–s

(∫
�

φ dx
)
.

Hence, if u satisfies

J() ≥ 
 – r

(


 – λ

) –r
–s

(∫
�

φ dx
)
,

we then follow from (.) that J(τ ), and consequently u(x, t), blows up in finite time since
J(τ ) is increasing and 

–r =m > . �

Proof of Theorem . Let h(t) solves h′(t) = –h(t)p with h() = h, and set u = h(t)ψ 
m (x),

where ψ is defined in (.). Then

http://www.boundaryvalueproblems.com/content/2012/1/84
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ut –�um – up + uq = –hpψ

m + hm – hpψ

p
m + hqψ

q
m

= hm
(
 – hp–mψ


m
)
+ hqψ

q
m
(
 – hp–qψ

p–q
m

)
.

Since p > max{m,q}, we can choose h small enough such that ut – �um – up + uq ≥ .
Thus, u is an upper solution of (.) provided u(x) ≤ hψ


m (x), and consequently, u≤ u =

h(t)ψ 
m (x) →  as t → ∞.

Now deal with the nonexistence of global solutions, we seek a blow-up self-similar lower
solution of the problem (.). Without loss of generality, we may assume that � contains
the origin. Since p >max{m,q}, we can choose constant α such that


p – 

< α <min

{


m – 
,


q – 

}
,

and consider the function

u(x, t) = (T – t)–αf (ξ ), ξ =
|x|

(T – t)β
,β =

 – (m – )α


, (.)

where f (ξ ) = (a – ξ )


m–
+ . Note that the support of u(x, t) is contained in B(,aTβ), which

is included in � if T is sufficiently small.
After some computations, we have

ut = (T – t)–(α+)
(
αf (ξ ) + βξ f ′(ξ )

)
,

�um = (T – t)–(mα+β)
[(
f m

)′′(ξ ) +
N – 

ξ

(
f m

)′(ξ )
]
.

It will be obtained from the above equalities that

ut –�um – up + uq ≤ , in � × (,T),

if f (ξ ) satisfies

(T – t)–(α+)
[
αf (ξ ) + βξ f ′(ξ ) –

(
f m

)′′(ξ ) –
N – 

ξ

(
f m

)′(ξ )
]
+ (T – t)–qαf q(ξ )

≤ (T – t)–pαf p(ξ ). (.)

It is easy to see that

f ′(ξ ) = –


m – 
(
a – ξ ) –m

m–
+ ξ ,

(
f m

)′(ξ ) = –
m
m – 

(
a – ξ ) 

m–
+ ξ ,

(
f m

)′′(ξ ) =
m

(m – )
(
a – ξ ) –m

m–
+ ξ  –

m
m – 

(
a – ξ ) 

m–
+ .

To satisfy (.), we distinguish the two zones  < ξ ≤ θa and θa < ξ < a, where

θ =

√√√√ α + mN
m–

α + mN
m– + m

(m–)
< . (.)

For θa < ξ < a, we have

αf (ξ ) + βξ f ′(ξ ) –
(
f m

)′′(ξ ) –
N – 

ξ

(
f m

)′(ξ )

=
(
a – ξ ) –m

m–
+

[(
α +

mN
m – 

)
a –

(
α +

mN
m – 

+
β

m – 
+

m
(m – )

)
ξ 

]

≤ (
a – ξ ) –m

m–
+

[(
α +

mN
m – 

)
a –

(
α +

mN
m – 

+
β

m – 
+

m
(m – )

)
θa

]

≤ –
β

m – 
θa

(
a – ξ ) –m

m–
+ ,
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then

(T – t)–(α+)
[
αf (ξ ) + βξ f ′(ξ ) –

(
f m

)′′(ξ ) –
N – 

ξ

(
f m

)′(ξ )
]
+ (T – t)–qαf q(ξ )

≤ (
a – ξ ) –m

m–
+

[
–(T – t)–(α+)

β
m – 

θa + (T – t)–qα
(
a – ξ )m+q–

m–
+

]
.

For  < ξ ≤ θa, we have f (ξ ) ≥ ( – θ) 
m– a 

m– > . It follow from pα > α +  > qα that
(.) is satisfied for  < ξ ≤ θa, θa < ξ < a if T is sufficiently small. Therefore, u given
by (.) is a blow-up lower solution of the problem (.) with appropriately large u. And
consequently, there exist nonglobal solutions to (.). �

3 Blow-up rate
In this section,we study the speeds atwhich the solutions to (.) blowup.Assume that� =
BR() = {x ∈ R

N : |x| < R} and u = u(r), u′
(r) ≤ , here r = |x|. Then we know from the

assumption and comparison principle that u is radially decreasing in r withmax� u(x, t) =
u(, t). In this section, denote by T the blow-up time for the nonglobal solutions to (.).

Proof of Theorem . Fix t ∈ (,T) such thatM(t) =max� u(x, t) ≥ , and let

a =M– p–m
 , b =M–p,

and define the function ψM(y, s) = 
M(t)u(ay,bs + t) in B

M
p–m
 R

() × (,S), where S =
Mp–(T – t). ψM blows up at s = S, moreover, it is a solution of the following problem:

(ψM)s = �ψm
M +ψ

p
M –Mq–pψ

q
M, (y, s) ∈ B

M
p–m
 R

()× (,S),

ψM(y, s) = , (y, s) ∈ ∂B
M

p–m
 R

()× (,S), (.)

ψM(y, ) =

M

u(ay, t), y ∈ B
M

p–m
 R

().

We now construct an upper solution for this problem. Set

w(y, s) = (S – s)–α
(
L + δ(L – ξ )+

) 
m– , ξ = |y|(S – s)–β ,

where α = 
p– , β = p–m

(p–) , and

 < L < α
m–
p– –

p+m–
p– , S–α

 L


m– > ,  < δ <min

{
,
(m – )α

β
,
m – 


√
αL
m

}
.

After a direct computation, for  < ξ < L, we have

ws(y, s) = α(S – s)–(α+)
(
L + δ(L – ξ )+

) 
m–

–
δβ

m – 
(S – s)–(α+)

(
L + δ(L – ξ )+

) –m
m– ξ ,

�wm(y, s) = (S – s)–(mα+β)
[

mδ

(m – )
(
L + δ(L – ξ )+

) –m
m–

–
mδ

m – 
(
L + δ(L – ξ )+

) 
m– N – 

ξ

]
.

Then

ws –�wm –wp +Mq–pwq

≥ (S – s)
–p
p–

(
L + δ(L – ξ )+

) –m
m– ×

[
α
(
L + δ(L – ξ )+

)
–

δβ

m – 
L

–
mδ

(m – )
–

(
L + δ(L – ξ )+

) p+m–
m–

]
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Du and Li Boundary Value Problems 2012, 2012:84 Page 7 of 11
http://www.boundaryvalueproblems.com/content/2012/1/84

≥ (S – s)
–p
p–

(
L + δ(L – ξ )+

) –m
m– ×

[(
α


L +

(
α


–

δβ

m – 

)
L –

mδ

(m – )

)

+ L
(

α


– ( + δ)

p+m–
m– L

p–
m–

)]

≥  for  < ξ < L.

Clearly, ws – �wm – wp +Mq–pwq ≥  for ξ > L, and w(y, s) >  on ∂B
M

p–m
 R

() × (,S),
w(y, ) ≥ ψM(y, ) in B

M
p–m
 R

(). We have an upper solution independent of M, for all M
large enough. Therefore, the blow-up time ofψM is greater than S, that isMp–(T –t) ≥ S.
This implies

max
�

u(x, t)≥ c(T – t)–


p– ,

and the lower estimate is obtained.
In order to obtained the upper estimates for the blow-up rate, we look for a lower solu-

tion to (.) withM(t) >M. Set

w(y, s) = (S – s)–αf (ξ ), ξ =
|y|

(S – s)β
,

where α = 
p– , β = p–m

(p–) , f (ξ ) = (a – ξ )


m–
+ , a

(p–)
m– > ( – θ)

–p
m– (α + mN

m– ) and θ is given
in (.). LetM satisfies

M ≥ max

{(
m – 
β

θ–S(p–q)α a
(q–)
m–

) 
p–q

,
(
aSβ

R
–) 

p–m ,
(

μ
S–(q–)α a

(q–)
m–

) 
p–q

,

(((
 – θ) p–

m– a
(p–)
m– –

(
α +

mN
m – 

))–

S(p–q)α a
(q–)
m–

) 
p–q

}
,

where S, μ are to be determined later. Clearly, w(y, s) =  on ∂B
M

p–m
 R

()× (,S). As the
same arguments in the proof of Theorem ., we have for θa≤ ξ < a that

ws –�wm –wp +Mq–pwq

≤ (S – s)–(α+)
[
αf (ξ ) + βξ f ′(ξ ) –

(
f m

)′′(ξ ) –
N – 

ξ

(
f m

)′(ξ )
]

+Mq–p(S – s)–qαf q(ξ )

≤ (
a – ξ ) –m

m–
+ (S – s)–(α+)

[
–

β
m – 

θa +Mq–p(S – s)(p–q)α
(
a – ξ )m+q–

m–
+

]

≤ a
(
a – ξ ) –m

m–
+ (S – s)–(α+)

[
–

β
m – 

θ +Mq–pS(p–q)α a
(q–)
m–

]

≤ .

For  < ξ ≤ θa, we have that

ws –�wm –wp +Mq–pwq

≤ (
a – ξ ) 

m–
+ (S – s)–(α+)

[(
α +

mN
m – 

)
–

(
a – ξ ) p–

m–

+ (S – s)(p–q)αMq–p(a – ξ ) q–
m–

]

≤ (
a – ξ ) 

m–
+ (S – s)–(α+)

[(
α +

mN
m – 

)
–

(
 – θ) p–

m– a
(p–)
m–

+ S(p–q)α Mq–pa
(q–)
m–

]

≤ .
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Now, in order to deal with the initial data, consider the function

z(y, s) = S–α


(
a –

|y|
Sβ

s–λ

) 
m–

+
s–μ,

where λ = 
(m–)N+ , μ = –λ

m– , and S = m
(m–)λ .

After a direct computation, we have

zs(y, s) =
λ

m – 
|y|
Sα+β


(
a –

|y|
Sβ

s–λ

) –m
m–

+
s–(λ+μ+)

–μS–α


(
a –

|y|
Sβ

s–λ

) 
m–

+
s–(μ+),

�zm(y, s) =
m

(m – )
|y|

Smα+β


(
a –

|y|
Sβ

s–λ

) –m
m–

+
s–(λ+mμ)

–
mN
m – 

S–(mα+β)


(
a –

|y|
Sβ

s–λ

) 
m–

+
s–(λ+mμ).

Then

zs –�zm – zp +Mq–pzq

≤ –S–(α+β)

(
a –

|y|
Sβ

s–λ

) –m
m–

+
|y|s–(λ+μ+)

[
m

(m – )
S– –

λ

m – 

]

– S–α


(
a –

|y|
Sβ

s–λ

) 
m–

+
s–(μ+)

[(
μ


–
mN
m – 

S–

)

+
(

μ


– S–(q–)α Mq–pa

(q–)
m– sμ+–qμ

)]

≤ –S–(α+β)

(
a –

|y|
Sβ

s–λ

) –m
m–

+
|y|s–(λ+μ+)

[
m

(m – )
S– –

λ

m – 

]

– S–α


(
a –

|y|
Sβ

s–λ

) 
m–

+
s–(μ+)

[(
μ


–
mN
m – 

S–

)
+

(
μ


– S–(q–)α Mq–pa

(q–)
m–

)]

≤  for s≤ .

Furthermore, z(y, s) =  on ∂B
M

p–m
 R

()× (, ). In addition, z(y, ) = lims→ z(y, s) =  a.e.
in B

M
p–m
 R

(). Therefore, by the comparison principle, we have that ψM(y, s) ≥ z(y, s) for
 ≤ s ≤ . By the virtue of w(y, ) = z(y, ), we have ψM(y, s + ) ≥ w(y, s).
We have a lower solution independent ofM, for allM >M. Therefore, the blow-up time

of ψM is less than S + , that isMp–(T – t) ≤ S + . This implies

max
�

u(x, t)≤ C(T – t)–


p– ,

and the upper estimate is obtained. �

4 Nonextinction
We discuss the nonextinction of the solution to the problem (.) in this section. For p < ,
the uniqueness of the weak solution to (.)may not hold. In this case, we only consider the
maximal solution, which can be obtained by standard regularized approximation meth-
ods. Clearly, the comparison principle is valid for the maximal solution.
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Proof of Theorem . For meas{x ∈ �;u(x) > } > , there exists a region � ⊂ � and
ε ∈ (, ) such that u(x) ≥ ε a.e. in �. λ is the first Dirichlet eigenvalue of –� on �

with corresponding eigenfunction φ(x), normalized by ‖φ‖∞ = , and prolong solution
φ by  in � \ �. We treat the five subcases for the proof.
(a) For p ≤ , set u = h(t)φ


m
 , where

h′(t) = hp(t)
(
 – λhm–p – hq–p

)
,

h() = , h(t) >  for t > .

Then

ut –�um – up + uq

= hp(t)
(
 – λhm–p – hq–p

)
φ


m
 + λhmφ – hpφ

p
m
 + hqφ

q
m


= –λhmφ

m


(
 – φ

m–
m


)
– hpφ

p
m


(
 – φ

–p
m


)
– hqφ


m
(
 – φ

q–
m


)

≤ .

By the comparison principle, we have u≥ u >  in �.
(b) For p > ,  ≤ q ≤ m, we let u = h(t)φ


m
 , h′(t) = –( + λ)hq(t) with h() = h < ε.

Then

ut –�um – up + uq ≤ –( + λ)hq(t)φ

m
 + λhmφ + hqφ

q
m


= –hq(t)φ

m


(
 + λ – λhm–qφ

m–q
m

 – φ
q–
m


)

≤ .

Then we know by the comparison principle that u≥ u >  in �.
(c) For  < p <m, q >m, we let u = h(t)φ


m
 , and

h′(t) = hp(t)
(
 –Mhm–p),

h() = δ >M


p–m ,

where δ <min{ε, ( 
+λ

)


m–p }. It is easy to see that h(t) is nonincreasing and

h(t)→M


p–m as t → ∞.

ut –�um – up + uq = hp(t)
(
 –Mhm–p)φ 

m
 + λhmφ(x) – hpφ

p
m
 + hqφ

q
m


= –hmφ

m


(
M – λφ

m–
m

 – hq–mφ
q–
m


)
+ hpφ


m


(
 – φ

p–
m


)

≤ –hmφ

m


(
M – ( + λ)φ

p–
m


)
+ hpφ


m


(
 – φ

p–
m


)

≤ .

And consequently, u≥ u >  in �.
(d) For p =m, q >m, we let u = h(t)φ


m
 , where

h′(t) = –(k + λ)hm,

h() =M– 
m– , M > ε–m.

Obviously, h(t) is nonincreasing and h(t) →  as t → ∞.

ut –�um – up + uq = –( + λ)hmφ

m
 + λhmφ – hpφ

p
m
 + hqφ

q
m


≤ –hmφ

m


(
 + λ – λφ

m–
m

 – hq–mφ
q–
m


)

≤ .

Thus, we have u ≥ u >  in �.
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(e) For p >m, q >m, we let u = h(t)φ

m
 , and

h′(t) = hm(t)
(
hp–m – c

)
,

h() = (c –  – λ)


p–m ,

where c satisfies  + λ < c <  + λ + εp–m. It is easy to see that h(t) is nonincreasing
and h(t) →  as t → ∞.

ut –�um – up + uq = hm(t)
(
hp–m – c

)
φ


m
 + λhmφ – hpφ

p
m
 (x) + hqφ

q
m


= hpφ

m


(
 – φ

p–
m


)
+ hm(t)φ


m


(
λφ

m–
m

 + hq–mφ
q–
m

 – c
)

≤ hpφ

m
 + hm(t)φ


m
 ( + λ – c)

≤ .

By the comparison principle, we have u≥ u >  in �.
�

Appendix
Theorem A. (Comparison principle) Let u and u are a weak lower and a weak upper solutions of (.) in QT . If p ≥ 1
or u has a positive lower bound, then u ≤ u a.e. in QT .

Proof From the definition of weak upper and lower solutions, for any 0≤ ϕ ∈ E0 , we obtain∫ ∫
QT

(ut – ut )ϕ dx dt +
∫ ∫

QT

(∇um –∇um
)∇ϕ dx dt

≤
∫ ∫

QT

(
up – up

)
ϕ –

(
uq – uq

)
ϕ dx dt.

Let Qt =� × (0, t) for t ∈ (0, T ). Choose ϕ = χ[0,t] (u – u)+ , where χ[0,t] is the characteristic function defined on [0, t], Then
we arrive at

∫ ∫
Qt

(ut – ut )(u – u)+ dx dτ +
∫ ∫

Qt

(∇um –∇um
)∇(u – u)+ dx dτ

≤
∫ ∫

Qt

(
up – up

)
(u – u)+ –

(
uq – uq

)
(u – u)+ dx dτ .

By a simple calculation, we have
∫

�

(u – u)2+ dx + 2
∫ ∫

Qt

(∇um –∇um
)∇(u – u)+ dx dτ

≤ 2
∫ ∫

Qt

(
up – up

)
(u – u)+ –

(
uq – uq

)
(u – u)+ dx dτ . (A.)

Noticing

(
an – bn

)
+

≤ C(n)(a – b)+ for n≥ 1,
(
an – bn

)
+

≤ an–1(a – b)+ ≤ bn–1(a – b)+ for n < 1,

we get
∫ ∫

Qt

(
up – up

)
(u – u)+ –

(
uq – uq

)
(u – u)+ dx dτ

≤
∫ ∫

Qt

(
up – up

)
(u – u)+ +

(
uq – uq

)
(u – u)+ dx dτ

≤ L
∫ ∫

Qt

(u – u)2+ dx dτ , (A.)

where L is a positive constant. By (A.1), (A.2), we have∫
�

(u – u)2+ dx ≤ 2L
∫ ∫

Qt

(u – u)2+ dx dτ .
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It follows immediately by using the Gronwall’s inequality that∫
�

(u – u)2+ dx = 0,

for almost all t ∈ (0, T ), and hence u≤ u a.e. in � × (0, T ). �
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