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1 Introduction
Many authors have studied the existence, nonexistence, and multiplicity of positive solu-
tions for multipoint boundary value problems by using the fixed-point theorem, the fixed
point index theory, and the lower and upper solutions method. We refer the readers to
the references [–]. Recently, Hao, Liu and Wu [] studied the existence, nonexistence,
and multiplicity of positive solutions for the following nonhomogeneous boundary value
problems:⎧⎨⎩–u′′(t) = a(t)f (t,u(t)),

u() = , u() –
∑m–

i= kiu(ξi) = b,

where b > , ki >  (i = , , . . . ,m – ),  < ξ < ξ < · · · < ξm– < ,
∑m–

i= kiξi < , a(t) may
be singular at t =  and/or t = . They showed that there exists a positive number b* > 
such that the problem has at least two positive solutions for  < b < b*, at least one positive
solution for b = b* and no solution for b > b* by using the Krasnosel’skii-Guo fixed-point
theorem, the upper-lower solutions method, and the topological degree theory.
Inspired by the above references, the purpose of this paper is to study the followingmore

general nonhomogeneous boundary value problems:⎧⎨⎩–u′′(t) = λh(t)f (u(t)),

u() = , u() –
∑m–

i= kiu(ξi) = μ
∫ 
 g(u(s))ds,

()

where λ, μ are positive parameters, ki > ,  < ξ < ξ < · · · < ξm– < . The main result of
the present paper is summarized as follows.
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Theorem . Assume the following conditions hold:
(H) (λ,μ) ∈ R

+\{(, )} are nonnegative parameters;
(H) h : [, ]→ [, +∞) is continuous, h(t) does not vanish identically on any

subinterval of [, ] and
∫ 
 G(s, s)h(s)ds < +∞, where G(s, s) is given in Sect. ;

(H) f , g ∈ C(R+,R+) is nondecreasing with respect to u, respectively, that is,

f (u)≤ f (u) if u ≤ u,

g(u) ≤ g(u) if u ≤ u.

And either f () >  or g() > ;
(H) There exist constants m,m >  such that f (u)≥ mu and g(u) ≥ mu,

respectively, for all u ≥ ;
(H) lim|u|→+∞ f (u)

u = +∞, lim|u|→+∞ g(u)
u = +∞.

If  <
∑m–

i= ki < , then there exists a bounded and continuous curve � separating
R
+\{(, )} into two disjoint subsets � and � such that () has at least two positive so-

lutions for (λ,μ) ∈ �, one positive solution for (λ,μ) ∈ �, and no solution for (λ,μ) ∈ �.
Moreover, let �+ ∪ � be the parametric representation of �, where

�+ : μ = μ(λ) > , � : μ = μ(λ) = .

Then on �+, the function μ = μ(λ) is continuous and nonincreasing, that is, if λ ≤ λ′, we
have μ(λ)≥ μ(λ′).

For the proof of Theorem ., we also need the following lemmas.

Lemma . [] Let E be a Banach space, K a cone in E and � bounded open in E. Let
 ∈ � and T : K ∩ � → K be condensing. Suppose that Tx 
= λx for all x ∈ K ∩ ∂� and all
λ ≥ . Then

i(T ,K ∩ �,K) = .

Lemma . [] Let E be a Banach space and K a cone in E. For r > , define Kr = {x ∈
K : ‖x‖ < r}. Assume that T : Kr → K is a compact map such that Tx 
= x for x ∈ ∂Kr. If
‖x‖ ≤ ‖Tx‖ for all x ∈ ∂Kr, then

i(T ,Kr ,K) = .

2 Preliminaries
Lemma . [] Assume that  <

∑m–
i= kiξi < . If y(t) ∈ C(, ) with

∫ 
 G(s, s)y(s)ds < +∞,

then the Green function for the homogeneous BVP

⎧⎨⎩–u′′(t) = y(t),

u() = , u() –
∑m–

i= kiu(ξi) = 
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is given by

G(t, s) =


 –
∑m–

i= kiξi

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s( – t) –
∑m–

i= ki(ξi – t)s, s ≤ t, s≤ ξ,

t[( – s) –
∑m–

i= ki(ξi – s)], t ≤ s ≤ ξ,

s( – t) +
∑j

i= kiξi(t – s) –
∑m–

i=j+ ki(ξi – t)s,

ξj ≤ s≤ ξj+, s≤ t, j = , , . . . ,m – ,

t[( – s) –
∑m–

i=j+ ki(ξi – s)],

ξj ≤ s≤ ξj+, t ≤ s, j = , , . . . ,m – ,

s( – t) +
∑m–

i= kiξi(t – s), ξm– ≤ s ≤ t,

t( – s), ξm– ≤ s, t ≤ s.

Moreover, the Green function satisfies the following properties:
(i) G(t, s) >  for t, s ∈ (, ), and G(t, s) is continuous on [, ]× [, ];
(ii) G(t, s) ≤ G(s, s) for all t, s ∈ [, ].

Lemma. Assume that (H)-(H) hold. If  <
∑m–

i= kiξi < , then u ∈ C[, ] is a solution
of () if and only if u ∈ C[, ] satisfies the following nonlinear integral equation:

u(t) = λ

∫ 


G(t, s)h(s)f

(
u(s)

)
ds +

μ
∫ 
 g(u(s))ds

 –
∑m–

i= kiξi
t.

Proof Integrating both sides of () from to t twice and applying the boundary conditions,
then we can obtain

u(t) =
μ

∫ 
 g(u(s))ds

 –
∑m–

i= kiξi
t – λ

∫ t


(t – s)h(s)f

(
u(s)

)
ds

+ λ
t

 –
∑m–

i= kiξi

[∫ 


( – s)h(s)f

(
u(s)

)
ds –

m–∑
i=

ki
∫ ξi


(ξi – s)h(s)f

(
u(s)

)
ds

]
.

Furthermore, by Lemma ., we can obtain

u(t) = λ

∫ 


G(t, s)h(s)f

(
u(s)

)
ds +

μ
∫ 
 g(u(s))ds

 –
∑m–

i= kiξi
t. �

Let E denote the Banach space C[, ] with the norm ‖u‖ =maxt∈[,] |u(t)|. A function
u(t) is said to be a solution of () if u ∈ C[, ] ∩ C(, ) satisfies (). Moreover, from
Lemma ., it is clear to see that u(t) is a solution of () is equivalent to the fixed point
of the operator T defined as

Tu(t) = λ

∫ 


G(t, s)h(s)f

(
u(s)

)
ds +μ

∫ 
 g(u(s))ds

 –
∑m–

i= kiξi
t.

In addition, define a cone K ⊂ E as

K =
{
u ∈ E : u(t) ≥ , t ∈ [, ], inf

t∈[ξ,ξm–]
u(t) ≥ θ‖u‖

}
,

where θ = kξmin[ – ξ, ξ]. Then we have

http://www.boundaryvalueproblems.com/content/2012/1/87
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Lemma . If (H)-(H) hold, then T : K → K is completely continuous.

The proof procedure of Lemma . is standard, so we omit it.
Now, we will establish the classical lower and upper solutions method for our problem.

As usual, we say that x(t) is a lower solution for () if

⎧⎨⎩x′′(t) + λh(t)f (x(t))≥ ,

x()≤ , x() –
∑m–

i= kix(ξi) ≤
∫ 
 g(x(s))ds.

Similarly, we define the upper solution y(t) of the problem ():

⎧⎨⎩y′′(t) + λh(t)f (y(t)) ≤ ,

y() ≥ , y() –
∑m–

i= kiy(ξi) ≥
∫ 
 g(y(s))ds.

Lemma . Let x(t), y(t) be lower and upper solutions, respectively, of () such that  ≤
x(t)≤ y(t). Then () has a nonnegative solution u(t) satisfying x(t)≤ u(t) ≤ y(t) for t ∈ [, ].

Proof Define

Dy
x =

{
u ∈ R : x(t)≤ u(t) ≤ y(t),∀t ∈ [, ]

}
.

It is clear to see that Dy
x is a bounded, convex and closed subset in Banach space E. Now

we can prove that T :Dy
x →Dy

x.
For any u(t) ∈Dy

x, from (H), we have

Tu(t) = λ

∫ 


G(t, s)h(s)f

(
u(s)

)
ds +μ

∫ 
 g(u(s))ds

 –
∑m–

i= kiξi
t

≤ λ

∫ 


G(t, s)h(s)f

(
y(s)

)
ds +μ

∫ 
 g(y(s))ds

 –
∑m–

i= kiξi
t

= y(t).

On the other hand, we also have

Tu(t) = λ

∫ 


G(t, s)h(s)f

(
u(s)

)
ds +μ

∫ 
 g(u(s))ds

 –
∑m–

i= kiξi
t

≥ λ

∫ 


G(t, s)h(s)f

(
x(s)

)
ds +μ

∫ 
 g(x(s))ds

 –
∑m–

i= kiξi
t

= x(t).

From above inequalities, we obtain that T :Dy
x →Dy

x.
Therefore, by Schauder’s fixed theorem, the operatorT has a fixed point u(t) ∈Dy

x, which
is the solution of (). �

http://www.boundaryvalueproblems.com/content/2012/1/87
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3 Proof of Theorem 1.1
Lemma . Assume (H)-(H) hold and � be a compact subset of R

+\{(, )}. Then there
exists a constant C� >  such that for all (λ,μ) ∈ � and all possible positive solutions u(t)
of () at (λ,μ), one has ‖u‖ ≤ C� .

Proof Suppose on the contrary that there exists a sequence {un} of positive solutions of
Eq. () at (λn,μn) such that (λn,μn) ∈ � for all n ∈N and

‖un‖ → ∞.

Then un(t) ∈ K , and thus

inf
t∈[ξ,ξm–]

un(t) ≥ θ‖un‖. ()

Since � is compact, the sequence {(λn,μn)}∞n= has a convergent subsequence which we
denote without loss of generality still by {(λn,μn)}∞n= such that

lim
n→∞λn = λ*, lim

n→∞μn = μ*

and at least λ* >  or μ* > .
Case (I). If λ* > , we have λn ≥ λ*/ >  for n sufficient large. Then by (H), there exists

a R >  such that

f (u) ≥ Lu, ∀u≥ R,

where L satisfies

λ*


Lθ min

t∈[,]

∫ ξm–

ξ

G(t, s)h(s)ds > .

Since ‖un‖ → ∞, for n sufficient large, we

un(t) = λn

∫ 


G(t, s)h(s)f

(
un(s)

)
ds +μn

∫ 
 g(un(s))ds

 –
∑m–

i= kiξi
t

≥ λn

∫ 


G(t, s)h(s)f

(
un(s)

)
ds

≥ λn

∫ 


G(t, s)h(s)Lun(s)ds

≥ λ*



∫ ξm–

ξ

G(t, s)h(s)Lun(s)ds

≥ λ*


Lθ‖un‖ min

t∈[,]

∫ ξm–

ξ

G(t, s)h(s)ds

> ‖un‖.

This is a contradiction.

http://www.boundaryvalueproblems.com/content/2012/1/87
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Case (II). Ifμ* > , thenwehaveμn ≥ μ*/ >  for n sufficient large. Since lim|u|→+∞ g(u)
u =

+∞, there exists a R >  such that

g(u) ≥ Mu, ∀u≥ R,

whereM satisfies

μ*


Mθξ(ξm– – ξ)
 –

∑m–
i= kiξi

> .

Since ‖un‖ → ∞, then for n sufficient large, we have

un(ξ) = λn

∫ 


G(ξ, s)h(s)f

(
un(s)

)
ds +μn

∫ 
 g(un(s))ds

 –
∑m–

i= kiξi
ξ

≥ μn

∫ 
 g(un(s))ds

 –
∑m–

i= kiξi
ξ

≥ μn

∫ 
 Mun(s)ds

 –
∑m–

i= kiξi
ξ

≥ μ*


Mθ‖u‖ξ(ξm– – ξ)

 –
∑m–

i= kiξi
> ‖un‖.

This is a contradiction. �

Lemma . Assume (H)-(H) hold. If () has a positive solution at (λ,μ), then Eq. () has
a positive solution at (λ,μ) ∈ R

+\{(, )} for all (λ,μ) ≤ (λ,μ).

Proof Let u(t) be the solution of Eq. () at (λ,μ), then u(t) be the upper solution of () at
(λ,μ) ∈ R

+\{(, )} with (λ,μ) ≤ (λ,μ). Since f () >  or g() > , u =  is not a solution
of (), but it is the lower solution of () at (λ,μ). Therefore, by Lemma ., we obtain the
result. �

Lemma . Assume (H)-(H) hold. Then there exists (λ*,μ*) > (, ) such that Eq. () has
a positive solution for all (λ,μ)≤ (λ*,μ*).

Proof Let β(t) be the unique solution of⎧⎨⎩–u′′(t) = h(t),

u() = , u() –
∑m–

i= kiu(ξi) = .
()

It is clear to see that β(t) is a positive solution of (). Let Mf = maxt∈[,] f (β(t)),
Mg = maxt∈[,] g(β(t)), then by (H), we know that Mf >  and Mg > . Set (λ*,μ*) =
(/Mf , /Mg), we have⎧⎨⎩β ′′(t) + λ*h(t)f (β(t)) = –h(t) + λ*h(t)f (β(t)) = h(t)(λ*f (β(t)) – ) ≤ ,

β() = , β() –
∑m–

i= kiβ(ξi) –μ* ∫ 
 g(β(s))ds =

∫ 
  –μ*g(β(s))ds≥ ,

http://www.boundaryvalueproblems.com/content/2012/1/87
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which implies that β(t) is an upper solution of () at (λ*,μ*). On the other hand,  is a
lower solution of () and  ≤ β(t). By (H),  is not a solution of (). Hence, () has a
positive solution at (λ*,μ*), Lemma . now implies the conclusion of Lemma .. �

Define a set S by

S =
{
(λ,μ) ∈ R

+\
{
(, )

}
: () has a positive solution at (λ,μ)

}
.

Then it follows from Lemma . that S 
= ∅ and (S,≤) is a partially ordered set.

Lemma . Assume (H)-(H) hold. Then (S,≤) is bounded above.

Proof Let (λ,μ) ∈ S and u(t) be a positive solution of () at (λ,μ), then we have

‖u‖ ≥ u(ξ) = λ

∫ 


G(ξ, s)h(s)f

(
u(s)

)
ds +μ

∫ 
 g(u(s))ds

 –
∑m–

i= kiξi
ξ

≥ λ

∫ 


G(ξ, s)h(s)mu(s)ds +μ

∫ 
 mu(s)ds

 –
∑m–

i= kiξi
ξ

≥ λ

∫ ξm–

ξ

G(ξ, s)h(s)mu(s)ds +μ
mθ‖u‖ξ(ξm– – ξ)

 –
∑m–

i= kiξi

≥ λmθ‖u‖
∫ ξm–

ξ

G(ξ, s)h(s)ds +μ
mθ‖u‖ξ(ξm– – ξ)

 –
∑m–

i= kiξi

by (H). Furthermore, we can obtain that

λmθ

∫ ξm–

ξ

G(ξ, s)h(s)ds +μ
mθξ(ξm– – ξ)
 –

∑m–
i= kiξi

≤ . �

Lemma . Assume (H)-(H) hold. Then every chain in S has a unique supremum in S.

Lemma . Assume (H)-(H) hold. Then there exists a λ̃ ∈ [λ*,λ] such () has a positive
solution at (λ, ) for all  < λ ≤ λ̃, no solution at (λ, ) for all λ > λ̃. Similarly, there exists a
μ̃ ∈ [μ*,μ] such that () has a positive solution at (,μ) for all  < μ ≤ μ̃, and no solution
at (,μ) for all μ > μ̃.

Lemma . Assume (H)-(H) hold. Then there exists a continuous curve � separating
R
+\{(, )} into two disjoint subsets � and � such that � is bounded and � is un-

bounded, Eq. () has at least one solution for (λ,μ) ∈ �∪�, and no solution for (λ,μ) ∈ �.
The function μ = μ(λ) is nonincreasing, that is, if

λ ≤ λ′ ≤ λ̃,

then

μ(λ)≥ μ
(
λ′).

http://www.boundaryvalueproblems.com/content/2012/1/87
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Lemma . Let (λ,μ) ∈ �. Then there exists ε >  such that (u* + ε, v* + ε) is an upper
solution of () at (λ,μ) for all  < ε ≤ ε, where (u*, v*) is the positive solution of Eq. ()
corresponding to some (λ*,μ*) ∈ � satisfying

(λ,μ)≤ (
λ*,μ*).

Proof From (H), there exists constantM >  such that

f
(
u*(t)

) ≥ M > , g
(
u*(t)

) ≥ M > , for all t ∈ [, ].

Then by the uniform continuity of f and g on a compact set, there exist ε >  such that

∣∣f (u*(t) + ε
)
– f

(
u*(t)

)∣∣ < M(λ* – λ)
λ

,

∣∣g(u*(t) + ε
)
– g

(
u*(t)

)∣∣ < M(μ* –μ)
μ

,

for all t ∈ [, ] and  < ε ≤ ε.
Let u*ε = u* + ε, then we have

u*
′′

ε (t) + λh(t)f
(
u*ε(t)

)
= –λ*h(t)f

(
u*ε(t)

)
+ λh(t)f

(
u*ε(t)

) ≤ h(t)
(
λ* – λ

)(
M – f

(
u*

)) ≤ ,

u*ε() = ε > ,

and

u*ε() –
m–∑
i=

kiu*ε(ξi) –μ

∫ 


g
(
u*ε

)
ds

= u*() + ε –
m–∑
i=

ki
(
u*(ξi) + ε

)
–μ

∫ 


g
(
u* + ε

)
ds

= u*() –
m–∑
i=

ki
(
u*(ξi)

)
+ ε –

m–∑
i=

kiε –μ

∫ 


g
(
u* + ε

)
ds

= μ*
∫ 


g
(
u*

)
ds –μ

∫ 


g
(
u* + ε

)
ds +

(
 –

m–∑
i=

ki

)
ε

=
(
μ* –μ

)∫ 


g
(
u*

)
ds +μ

(∫ 


g
(
u*

)
– g

(
u* + ε

))
ds

+

(
 –

m–∑
i=

ki

)
ε

≥
(
 –

m–∑
i=

ki

)
ε > .

From above inequalities, it is clear to see that u*ε , is an upper solution of () at (λ,μ) for all
 < ε ≤ ε. �

http://www.boundaryvalueproblems.com/content/2012/1/87
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Proof of Theorem . From above lemmas, we need only to show the existence of the sec-
ond positive solution of () for (λ,μ) ∈ �. Let (λ,μ) ∈ �, then there exists (λ*,μ*) ∈ �

such that

(λ,μ)≤ (
λ*,μ*).

Let (u*, v*) be the positive solution of () at (λ*,μ*). Then for ε >  given by Lemma .
and for all ε :  < ε ≤ ε, denote

ũ* = u* + ε, ṽ* = v* + ε.

Define the set

D =
{
u ∈ E : –ε < u < ũ*

}
.

Then D is bounded open set in E and  ∈ D. The map T satisfies K ∩ D → K and is
condensing, since it is completely continuous. Now let (u, v) ∈ K ∩ ∂D, then there exists
ξ ∈ [, ] such that either u(ξ ) = ũ*(ξ ). Then by (H) and Lemma ., we obtain

Tu(ξ ) = λ

∫ 


G(ξ , s)h(s)f

(
u(s)

)
ds +μ

∫ 
 g(u(s))ds

 –
∑m–

i= kiξi
ξ

≤ λ

∫ 


G(ξ , s)h(s)f

(̃
u*(s)

)
ds +μ

∫ 
 g (̃u

*(s))ds
 –

∑m–
i= kiξi

ξ

< ũ*(ξ ) = u(ξ ) ≤ ϑu(ξ )

for all ϑ ≥ . Thus, T(u) 
= ϑu for all u ∈ K ∩ ∂D and ϑ ≥ , Lemma . now implies that

i(T ,K ∩D,K) = .

Now for some fixed λ and μ, it follows from assumption (H) that there exists a R > 
such that

f (u) ≥ Lu, and g(u) ≥ Lu, ∀u≥ R, ()

where L satisfies

Lθ

(
λ

∫ ξm–

ξ

G(ξ, s)h(s)ds +μ
ξ(ξm– – ξ)
 –

∑m–
i= kiξi

)
> .

Let R* =max{C� , θ–R,‖(̃u*, ṽ*)‖} where C� is given by Lemma . with � a compact set
in R

+\{(, )} containing (λ,μ). Let

KR* =
{
u ∈ K : ‖u‖ < R*}.

Then it follows from Lemma .,

T(u) 
= u ∀u ∈ ∂KR* .

http://www.boundaryvalueproblems.com/content/2012/1/87
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Moreover, for u ∈ ∂KR* , we have

inf
t∈[ξ,ξm–]

u(t) ≥ θ‖u‖ ≥ R.

Furthermore, we have

Tu(ξ) = λ

∫ 


G(ξ, s)h(s)f

(
u(s)

)
ds +μ

∫ 
 g(u(s))ds

 –
∑m–

i= kiξi
ξ

≥
∫ 


G(ξ, s)h(s)Lu(s)ds +μ

∫ 
 Lu(s)ds

 –
∑m–

i= kiξi
ξ

≥ λLθ‖u‖
∫ ξm–

ξ

G(ξ, s)h(s)ds +μ
Lθ‖u‖ξ(ξm– – ξ)

 –
∑m–

i= kiξi

= Lθ

(
λ

∫ ξm–

ξ

G(ξ, s)h(s)ds +μ
ξ(ξm– – ξ)
 –

∑m–
i= kiξi

)
‖u‖

> ‖u‖.

Thus, ‖Tu‖ > ‖u‖ and it follows from Lemma . that

i(T ,KR* ,K) = .

By the additivity of the fixed-point index,

 = i(T ,KR* ,K) = i(T ,K ∩D,K) + i(T ,KR*\K ∩D,K)

=  + i(T ,KR*\K ∩D,K),

which yields

i(T ,KR*\K ∩D,K) = –.

Hence, T has at least one fixed point in K ∩D and another one in KR*\K ∩D; this shows
that in �, () has at least two positive solution. �

Example Consider the following boundary value problem:⎧⎨⎩–u′′(t) = λ(u + ),

u() = , u() –
∑m–

i= kiu(ξi) = μ
∫ 
 (u(s) + ) ds,

()

where f (u) = (u + ), g(u) = (u + ), and h(t) = .
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