RESEARCH

Open Access

Existence of positive solutions of elliptic mixed boundary value problem

Guofa Li*

*Correspondence: ligf8855@yahoo.com.cn Department of Mathematics and Information Science, Qujing Normal University, Qujing, 655011, P.R. China

Abstract

In this paper, we use variational methods to prove two existence of positive solutions of the following mixed boundary value problem:

$$\begin{cases} -\Delta u = f(x,u), & x \in \Omega, \\ u = 0, & x \in \sigma, \\ \frac{\partial u}{\partial v} = g(x,u), & x \in \Gamma. \end{cases}$$

One deals with the asymptotic behaviors of f(x, u) near zero and infinity and the other deals with superlinear of f(x, u) at infinity. **MSC:** 35M12; 35D30

Keywords: elliptic mixed boundary value problem; positive solutions; mountain pass theorem; Sobolev embedding theorem

1 Introduction and preliminaries

This paper is concerned with the existence of positive solutions of the following elliptic mixed boundary value problem:

$$\begin{cases} -\Delta u = f(x, u), & x \in \Omega, \\ u = 0, & x \in \sigma, \\ \frac{\partial u}{\partial v} = g(x, u), & x \in \Gamma, \end{cases}$$
(1)

where Ω is a bounded domain in \mathbb{R}^n with Lipschitz boundary $\partial \Omega$, $\sigma \cup \Gamma = \partial \Omega$, $\sigma \cap \Gamma = \emptyset$, Γ is a sufficiently smooth (n - 1)-dimensional manifold, and ν is the outward normal vector on $\partial \Omega$. We assume $f : \Omega \times \mathbb{R} \to \mathbb{R}$, $g : \Gamma \times \mathbb{R} \to \mathbb{R}$ are continuous and satisfy

- (S1) $f(x,t) \ge 0, \forall t \ge 0, x \in \Omega, f(x,0) = 0. f(x,t) \equiv 0, \forall t < 0, x \in \Omega.$
- (S2) For almost every $x \in \Omega$, $\frac{f(x,t)}{t}$ is nondecreasing with respect to t > 0.
- (S3) $\lim_{t\to 0} \frac{f(x,t)}{t} = p(x)$, $\lim_{t\to +\infty} \frac{f(x,t)}{t} = q(x) \neq 0$ uniformly in a.e. $x \in \Omega$, where $\|p(x)\|_{\infty} < \lambda_1, \lambda_1$ is the first eigenvalue of (2), $0 \le p(x), q(x) \in L^{\infty}(\Omega)$.
- (S4) There exists $c_1, c_2 > 0$ such that $|f(x, t)| \le c_1 + c_2 |t|^{p-1}$ for some $p \in (2, \frac{2n}{n-2})$ as $n \ge 3$ and $p \in (2, +\infty)$ as n = 1, 2.

© 2012 Li; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The eigenvalue problem of (1) is studied by Liu and Su in [1]

$$\begin{cases} -\Delta u = \lambda u & \text{in } \Omega, \\ u = 0 & \text{on } \sigma, \\ \frac{\partial u}{\partial u} = \lambda u & \text{on } \Gamma. \end{cases}$$
(2)

There exists a set of eigenvalues $\{\lambda_k\}$ and corresponding eigenfunctions $\{u_k\}$ which solve problem (2), where $0 \le \lambda_1 \le \lambda_2 \le \cdots \le \lambda_k \le \cdots$, $\lambda_k \to \infty$ as $k \to \infty$, $\lambda_1 = \inf_{0 \ne u \in V} \frac{\int_{\Omega} |\nabla u|^2 dx}{\int_{\Omega} |u|^2 dx + \int_{\Gamma} |u|^2 ds}$.

There have been many papers concerned with similar problems at resonance under the boundary condition; see [2-10]. Moreover, some multiplicity theorems are obtained by the topological degree technique and variational methods; interested readers can see [11-17]. Problem (1) is different from the classical ones, such as those with Dirichlet, Neuman, Robin, No-flux, or Steklov boundary conditions.

In this paper, we assume $V := \{v \in H^1(\Omega) : v|_{\sigma} = 0\}$ is a closed subspace of $H^1(\Omega)$. We define the norm in V as $||u||^2 = \int_{\Omega} |\nabla u|^2 dx + \int_{\Gamma} |\gamma u|^2 ds$, $|| \cdot ||_{L^p(\Omega)}$ is the $L^p(\Omega)$ norm, $|| \cdot ||_{L^p(\Gamma)}$ is the $L^p(\Gamma)$ norm, $\gamma : V \to L^2(\Gamma)$ is the trace operator with $\gamma u = u_{\Gamma}$ for all $u \in H^1(\Omega)$, that is continuous and compact (see [18]). Furthermore, we define $g = \gamma f$, $0 \le g(x, t) \le |\gamma f(x, t)|$ for t > 0 (see [1]). Then, by (S3), we obtain

$$\lim_{t \to +\infty} \frac{g(x,t)}{t} \le \lim_{t \to +\infty} \frac{|\gamma f(x,t)|}{t} = q(x) \neq 0, \quad \text{a.e. } x \in \overline{\Omega}.$$
(3)

Let Ω be a bounded domain with a Lipschitz boundary; there is a continuous embedding $V \hookrightarrow L^{y}(\Omega)$ for $y \in [2, \frac{2n}{n-2}]$ when $n \ge 3$, and $y \in [2, +\infty)$ when n = 1, 2. Then there exists $\gamma_{y} > 0$, such that

$$\|u\|_{L^{y}(\Omega)} \le \gamma_{y} \|u\|, \quad \forall u \in V.$$

$$\tag{4}$$

Moreover, there is a continuous boundary trace embedding $V \hookrightarrow L^{z}(\Gamma)$ for $z \in [2, \frac{2(n-1)}{n-2}]$ when $n \ge 3$, and $z \in [2, +\infty)$ when n = 1, 2. Then there exists $k_{z} > 0$, such that

$$\|u\|_{L^{z}(\Gamma)} \le k_{z} \|u\|, \quad \forall u \in V.$$
⁽⁵⁾

It is well known that to seek a nontrivial weak solution of problem (1) is equivalent to finding a nonzero critical value of the C^1 functional

$$J(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx - \int_{\Omega} F(x, u) dx - \int_{\Gamma} G(s, u) ds,$$
(6)

where $u \in V$, $F(x, u) = \int_0^u f(x, t) dt$, $G(x, u) = \int_0^u g(x, t) dt$. Moreover, by (S1) and the Strong maximum principle, a nonzero critical point of *J* is in fact a positive solution of (1). In order to find critical points of the functional (6), one often requires the technique condition, that is, for some $\mu > 2$, $\forall |u| \ge M > 0$, $x \in \Omega$,

$$0 < \mu F(x, u) \le u f(x, u), \quad F(x, u) = \int_0^u f(x, t) dt.$$
 (AR)

It is easy to see that the condition (AR) implies that $\lim_{u\to+\infty} \frac{F(x,u)}{u^2} = +\infty$, that is, f(x, u) must be superlinear with respect to u at infinity. In the present paper, motivated by [19] and [20], we study the existence and nonexistence of positive solutions for problem (1) with the asymptotic behavior assumptions (S3) of f at zero and infinity. Moreover, we also study superlinear of f at infinity with $q(x) \equiv +\infty$ in (S3), which is weaker than the (AR) condition, that is the (AR) condition does not hold.

In order to get our conclusion, we define the minimization problem

$$\Lambda = \inf\left\{\int_{\Omega} |\nabla u|^2 \, dx : u \in V, \int_{\Omega} q(x)u^2 \, dx + \int_{\Gamma} q(s)u^2 \, ds = 1\right\},\tag{7}$$

then $\Lambda > 0$, which is achieved by some $\varphi_{\Lambda} \in V$ with $\varphi_{\Lambda}(x) > 0$ a.e. in Ω ; see Lemma 1.

We denote by c, c_1 , c_2 universal constants unless specified otherwise. Our main results are as follows.

Theorem 1 Let conditions (S1) to (S3) hold, then:

- (i) If $\Lambda > 1$, then the problem (1) has no any positive solution in V.
- (ii) If $\Lambda < 1$, then the problem (1) has at least one positive solution in V.
- (iii) If $\Lambda = 1$, then the problem (1) has one positive solution $u(x) \in V$ if and only if there exists a constant c > 0 such that $u(x) = c\varphi_{\Lambda}(x)$ and f(x, u) = q(x)u(x), g(x, u) = q(x)u(x) a.e. $x \in \Omega$, where $\varphi_{\Lambda}(x) > 0$ is the function which achieves Λ .

Corollary 2 Let conditions (S1) to (S3) with $q(x) \equiv l > 0$ hold, then:

- (i) If $l < \lambda_1$, then the problem (1) has no any positive solution in V.
- (ii) If $\lambda_1 < l < +\infty$, then the problem (1) has at least one positive solution in V.
- (iii) If $l = \lambda_1$, then the problem (1) has one positive solution $u(x) \in V$ if and only if there exists a constant c > 0 such that $u(x) = c\varphi_1(x)$ and $f(x, u) = \lambda_1 u(x)$, $g(x, u) = \lambda_1 u(x)$ a.e. $x \in \Omega$, where $\varphi_1(x) > 0$ is the eigenfunction of the λ_1 .

Theorem 3 Let conditions (S1) to (S4) with $q(x) \equiv +\infty$ hold, then the problem (1) has at least one positive solution in V.

2 Some lemmas

We need the following lemmas.

Lemma 1 If $q(x) \in L^{\infty}(\Omega)$, $q(x) \ge 0$, $q(x) \ne 0$, then $\Lambda > 0$ and there exists $\varphi_{\Lambda}(x) \in V$ such that $\Lambda = \int_{\Omega} |\nabla \varphi_{\Lambda}|^2 dx$ and $\int_{\Omega} q(x)\varphi_{\Lambda}^2 dx + \int_{\Gamma} q(s)\varphi_{\Lambda}^2 ds = 1$. Moreover, $\varphi_{\Lambda}(x) > 0$ a.e. in V.

Proof By the Sobolev embedding function $V \hookrightarrow L^2(\Omega)$ and Fatou's lemma, it is easy to know that $\Lambda > 0$ and there exists $\varphi_{\Lambda}(x) \in V$, which satisfies Λ , that is, $\int_{\Omega} q(x)\varphi_{\Lambda}^2 dx + \int_{\Gamma} q(s)\varphi_{\Lambda}^2 ds = 1$. Furthermore, we assume $\varphi_{\Lambda}(x) \ge 0$, then $\varphi_{\Lambda}(x)$ could replace by $|\varphi_{\Lambda}(x)|$. By the Strong maximum principle, we know $\varphi_{\Lambda}(x) > 0$ a.e. in V.

Lemma 2 If conditions (S1) to (S3) hold, then there exists β , $\rho > 0$ such that $J|_{\partial B_{\rho}(0)} \ge \beta$, $\forall u \in V$, $||u|| = \rho$.

Proof By condition (S3), there exists $\delta > 0$, $\varepsilon > 0$ such that $\frac{f(x,u)}{u} \le \lambda_1 - \varepsilon$, $\frac{g(x,u)}{u} \le \frac{\gamma f(x,u)}{u} \le \lambda_1 - \varepsilon$ as $0 < |u| \le \delta$. Which implies that $F(x, u) \le \frac{1}{2}(\lambda_1 - \varepsilon)u^2 + c|u|^y$, $G(x, u) \le \frac{1}{2}(\lambda_1 - \varepsilon)u^2 + c|u|^z$.

By (4) and (5), we obtain

$$\begin{split} J(u) &= \frac{1}{2} \|\nabla u\|_{L^{2}(\Omega)}^{2} - \int_{\Omega} F(x,u) \, dx - \int_{\Gamma} G(s,u) \, ds \\ &\geq \frac{1}{2} \|\nabla u\|_{L^{2}(\Omega)}^{2} + \frac{1}{2} \|\gamma u\|_{L^{2}(\Gamma)}^{2} - \frac{1}{2} \|\gamma u\|_{L^{2}(\Gamma)}^{2} - \frac{1}{2} (\lambda_{1} - \varepsilon) \|u\|_{L^{2}(\Omega)}^{2} \\ &\quad - c \|u\|_{L^{y}(\Omega)}^{y} - \frac{1}{2} (\lambda_{1} - \varepsilon) \|u\|_{L^{2}(\Gamma)}^{2} - c \|u\|_{L^{z}(\Gamma)}^{z} \\ &\geq \frac{1}{2} \|u\|^{2} - \frac{1}{2} (\lambda_{1} - \varepsilon) \frac{1}{\lambda_{1}} \|u\|^{2} - c\gamma_{y}^{y} \|u\|^{y} - \frac{1}{2} (\lambda_{1} - \varepsilon + 1) \frac{1}{\lambda_{1} + 1} \|u\|^{2} - ck_{z}^{z} \|u\|^{z} \\ &= \left[\frac{\varepsilon(2\lambda_{1} + 1)}{2\lambda_{1}(\lambda_{1} + 1)} - \frac{1}{2} \right] \|u\|^{2} - c\gamma_{y}^{y} \|u\|^{y} - ck_{z}^{z} \|u\|^{z}. \end{split}$$

Hence, y, z > 2; we take ε which satisfies $\frac{\varepsilon(2\lambda_1+1)}{2\lambda_1(\lambda_1+1)} - \frac{1}{2} > 0$, that is, $\varepsilon > \frac{\lambda_1(\lambda_1+1)}{2\lambda_1+1}$. Then we take a positive constant β such that $J|_{\partial B_{\rho}(0)} \ge \beta$ as $||u|| = \rho$, and is small enough. \Box

Lemma 3 If conditions (S1) to (S3) hold, $\Lambda < 1$, $\varphi_{\Lambda}(x) > 0$ is defined by Lemma 1, then $J(t\varphi_{\Lambda}(x)) \rightarrow -\infty$ as $t \rightarrow +\infty$.

Proof If $\Lambda < 1$, $\varphi_{\Lambda}(x) > 0$ is defined by Lemma 1, by Fatou's lemma, and (S3), we have

$$\begin{split} \lim_{t \to +\infty} \frac{J(t\varphi_{\Lambda}(x))}{t^{2}} \\ &= \frac{1}{2} \int_{\Omega} \left| \nabla \varphi_{\Lambda}(x) \right|^{2} dx - \lim_{t \to +\infty} \frac{\int_{\Omega} F(x, t\varphi_{\Lambda}(x)) dx}{t^{2}} - \lim_{t \to +\infty} \frac{\int_{\Gamma} G(s, t\varphi_{\Lambda}(s)) ds}{t^{2}} \\ &\leq \frac{1}{2} \int_{\Omega} \left| \nabla \varphi_{\Lambda}(x) \right|^{2} dx - \int_{\Omega} \lim_{t \to +\infty} \frac{F(x, t\varphi_{\Lambda}(x))}{t^{2}\varphi_{\Lambda}^{2}(x)} \varphi_{\Lambda}^{2}(x) dx \\ &- \int_{\Gamma} \lim_{t \to +\infty} \frac{G(s, t\varphi_{\Lambda}(s))}{t^{2}\varphi_{\Lambda}^{2}(s)} \varphi_{\Lambda}^{2}(s) ds \\ &= \frac{1}{2} \int_{\Omega} \left| \nabla \varphi_{\Lambda}(x) \right|^{2} dx - \frac{1}{2} \int_{\Omega} \frac{f(x, t\varphi_{\Lambda}(x))}{t\varphi_{\Lambda}(x)} \varphi_{\Lambda}^{2}(x) dx - \frac{1}{2} \int_{\Gamma} \frac{g(s, t\varphi_{\Lambda}(s))}{t\varphi_{\Lambda}(s)} \varphi_{\Lambda}^{2}(s) ds \\ &= \frac{1}{2} \int_{\Omega} \left| \nabla \varphi_{\Lambda}(x) \right|^{2} dx - \frac{1}{2} \left[\int_{\Omega} q(x) \varphi_{\Lambda}^{2}(x) dx + \int_{\Gamma} q(s) \varphi_{\Lambda}^{2}(s) ds \right] \\ &= \frac{1}{2\Lambda} (\Lambda - 1) \int_{\Omega} \left| \nabla \varphi_{\Lambda}(x) \right|^{2} dx \\ &< 0. \end{split}$$

So, $J(t\varphi_{\Lambda}(x)) \to -\infty$ as $t \to +\infty$.

Lemma 4 Let conditions (S1) and (S2) hold. If a sequence $\{u_n\} \subset V$ satisfies $\langle J'(u_n), u_n \rangle \rightarrow 0$ as $n \rightarrow +\infty$, then there exists a subsequence of $\{u_n\}$, still denoted by $\{u_n\}$ such that $J(tu_n) \leq \frac{1+t^2}{2n} + J(u_n)$ for all t > 0, $n \ge 1$.

Proof Since $\langle J'(u_n), u_n \rangle \to 0$ as $n \to +\infty$, for a subsequence, we may assume that

$$-\frac{1}{n} < \langle J'(u_n), u_n \rangle = \|\nabla u_n\|_{L^2(\Omega)}^2 - \int_{\Omega} f(x, u_n) u_n \, dx - \int_{\Gamma} g(s, u_n) u_n \, ds < \frac{1}{n}, \quad \forall n \ge 1.$$
(8)

For any fixed $x \in \Omega$ and $n \ge 1$, set

$$\psi_1(t) = \frac{t^2}{2} f(x, u_n) u_n - F(x, tu_n), \qquad \psi_2(t) = \frac{t^2}{2} g(s, u_n) u_n - G(s, tu_n).$$

Then (S2) implies that

$$\psi_1'(t) = tf(x, u_n)u_n - f(x, tu_n)u_n$$

= $tu_n \left[f(x, u_n) - \frac{f(x, tu_n)}{t} \right]$
= $\begin{cases} \ge 0, \quad 0 < t \le 1; \\ \le 0, \quad t > 1. \end{cases}$

It implies that $\psi_1(t) \le \psi_1(1)$, $\forall t > 0$. Following the same procedures, we obtain $\psi_2(t) \le \psi_2(1)$, $\forall t > 0$.

For all t > 0 and positive integer *n*, by (8), we have

$$J(tu_{n}) = \frac{t^{2}}{2} \|\nabla u_{n}\|_{L^{2}(\Omega)}^{2} - \int_{\Omega} F(x, tu_{n}) dx - \int_{\Gamma} G(s, tu_{n}) ds$$

$$\leq \frac{t^{2}}{2} \left[\frac{1}{n} + \int_{\Omega} f(x, u_{n}) u_{n} dx + \int_{\Gamma} g(s, u_{n}) u_{n} ds \right]$$

$$- \int_{\Omega} F(x, tu_{n}) dx - \int_{\Gamma} G(s, tu_{n}) ds$$

$$\leq \frac{t^{2}}{2n} + \int_{\Omega} \left[\frac{1}{2} f(x, u_{n}) u_{n} - F(x, u_{n}) \right] dx + \int_{\Gamma} \left[\frac{1}{2} g(s, u_{n}) u_{n} - G(s, u_{n}) \right] ds.$$
(9)

On the other hand, by (8), one has

$$\begin{split} J(u_n) &= \frac{1}{2} \|\nabla u_n\|_{L^2(\Omega)}^2 - \int_{\Omega} F(x, u_n) \, dx - \int_{\Gamma} G(s, u_n) \, ds \\ &\geq \frac{1}{2} \bigg[-\frac{1}{n} + \int_{\Omega} f(x, u_n) u_n \, dx + \int_{\Gamma} g(s, u_n) u_n \, ds \bigg] - \int_{\Omega} F(x, u_n) \, dx - \int_{\Gamma} G(s, u_n) \, ds \\ &= -\frac{1}{2n} + \int_{\Omega} \bigg[\frac{1}{2} f(x, u_n) u_n - F(x, u_n) \bigg] \, dx + \int_{\Gamma} \bigg[\frac{1}{2} g(s, u_n) u_n - G(s, u_n) \bigg] \, ds. \end{split}$$

One has

$$\int_{\Omega} \left[\frac{1}{2} f(x, u_n) u_n - F(x, u_n) \right] dx + \int_{\Gamma} \left[\frac{1}{2} g(s, u_n) u_n - G(s, u_n) \right] ds \le J(u_n) + \frac{1}{2n}.$$
 (10)

Combining (9) and (10), we have $J(tu_n) \le \frac{1+t^2}{2n} + J(u_n)$.

Lemma 5 (see [21]) Suppose *E* is a real Banach space, $J \in C^1(E, \mathbb{R})$ satisfies the following geometrical conditions:

(i) J(0) = 0; there exists $\rho > 0$ such that $J|_{\partial B_{\rho}(0)} \ge r > 0$;

(ii) There exists $e \in E \setminus \overline{B_{\rho}(0)}$ such that $J(e) \leq 0$. Let Γ_1 be the set of all continuous paths joining 0 and e:

$$\Gamma_1 = \{h \in C([0,1], E) | h(0) = 0, h(1) = e\},\$$

and

$$c = \inf_{h \in \Gamma_1} \max_{t \in [0,1]} J(h(t)).$$

Then there exists a sequence $\{u_n\} \subset E$ such that $J(u_n) \to c \geq \beta$ and $(1 + ||u_n||) \times ||J'(u_n)||_{E^*} \to 0.$

3 Proofs of main results

Proof of Theorem 1 (i) If $u \in V$ is one positive solution of problem (1), by (3), one has

$$0 = \langle J'(u), u \rangle = \int_{\Omega} |\nabla u|^2 dx - \int_{\Omega} f(x, u) u dx - \int_{\Gamma} g(s, u) u ds.$$

That is,

$$\int_{\Omega} |\nabla u|^2 dx = \int_{\Omega} f(x, u) u dx + \int_{\Gamma} g(s, u) u ds$$
$$\leq \int_{\Omega} q(x) u^2 dx + \int_{\Gamma} q(s) u^2 ds = 1.$$

It implies that $\Lambda \leq 1$. This completes the proof of Theorem 1(i).

(ii) By Lemma 2, there exists β , $\rho > 0$ such that $J|_{\partial B_{\rho}(0)} \ge \beta$ with $||u|| = \rho$. By Lemma 3, we obtain $J(t_0\varphi_{\Lambda}(x)) < 0$ as $t_0 \to +\infty$. Define

$$\Gamma_1 = \left\{ h \in C([0,1], V) | h(0) = 0, h(1) = t_0 \varphi_\Lambda(x) \right\},\tag{11}$$

$$c = \inf_{h \in \Gamma_1} \max_{t \in [0,1]} J(h(t)),$$
(12)

where $\varphi_{\Lambda}(x) > 0$ is given by Lemma 1. Then $c \ge \beta > 0$ and by Lemma 3, there exists $\{u_n\} \subset V$ such that

$$J(u_n) = \frac{1}{2} \|\nabla u_n\|_{L^2(\Omega)}^2 - \int_{\Omega} F(x, u_n) \, dx - \int_{\Gamma} G(s, u_n) \, ds = c + o(1), \tag{13}$$

$$(1 + ||u_n||) ||J'(u_n)||_{V^*} \to 0.$$
(14)

(14) implies that

$$\langle J'(u_n), u_n \rangle = \|\nabla u_n\|_{L^2(\Omega)}^2 - \int_{\Omega} f(x, u_n) u_n \, dx - \int_{\Gamma} g(s, u_n) u_n \, ds = o(1).$$
(15)

Here, in what follows, we use o(1) to denote any quantity which tends to zero as $n \to +\infty$.

If $\{u_n\}$ is bounded in *V*, when Ω is bounded and f(x, u), g(x, u) are subcritical, we can get $\{u_n\}$ has a subsequence strong convergence to a critical value of *J*, and our proof is complete. So, to prove the theorem, we only need show that $\{u_n\}$ is bounded in *V*. Supposing that $\{u_n\}$ is unbounded, that is, $||u_n|| \to +\infty$ as $n \to +\infty$. We order

$$t_n = \frac{2\sqrt{c}}{\|u_n\|}, \qquad w_n = t_n u_n = \frac{2\sqrt{c}u_n}{\|u_n\|}.$$
 (16)

Then $\{w_n\}$ is bounded in *V*. By extracting a subsequence, we suppose $w_n \to w$ is a strong convergence in $L^2(\Omega)$, $w_n \to w$ is a convergence a.e. $x \in \Omega$, $w_n \to w$ is a weak convergence in *V*.

We claim that $w \neq 0$. In fact, by (S1) and (S3), we know $\forall x \in \Omega$, $u_n \ge 0$, and there exists $M_1, M_2 > 0$ such that $|\frac{f(x,u_n)}{u_n}| \le M_1, |\frac{g(x,u_n)}{u_n}| \le M_2$. If $w = 0, w_n \to 0$ is a strong convergence in $L^2(\Omega)$, and by (15) and (16) we know

$$\begin{aligned} 4c &= t_n^2 \|u_n\|^2 = t_n^2 \left(\|\nabla u_n\|_{L^2(\Omega)}^2 + \|\gamma u_n\|_{L^2(\Gamma)}^2 \right) \\ &= t_n^2 \int_{\Omega} f(x, u_n) u_n \, dx + t_n^2 \int_{\Gamma} g(s, u_n) u_n \, ds + t_n^2 \|\gamma u_n\|_{L^2(\Gamma)}^2 + o(1) \\ &= \int_{\Omega} \frac{f(x, u_n)}{u_n} w_n^2 \, dx + \int_{\Gamma} \frac{g(s, u_n)}{u_n} w_n^2 \, ds + t_n^2 \|u_n\|_{L^2(\Gamma)}^2 + o(1) \\ &\leq M_1 \int_{\Omega} w_n^2 \, dx + M_2 \int_{\Gamma} w_n^2 \, ds + \|w_n\|_{L^2(\Gamma)}^2 + o(1) \\ &\to 0. \end{aligned}$$

It is contradiction with c > 0, so $w \neq 0$. As follows, we prove $w \neq 0$ satisfies

$$\int_{\Omega} \nabla \varphi(x) \nabla w(x) \, dx - \int_{\Omega} q_1(x) \varphi(x) w(x) \, dx - \int_{\Gamma} q_2(s) \varphi(s) w(s) \, ds = 0.$$

We order

$$p_n(x) = \begin{cases} f(x, u_n)/u_n, & u_n \ge 0, x \in \Omega, \\ 0, & u_n < 0, x \in \Omega, \end{cases}$$
$$q_n(x) = \begin{cases} g(x, u_n)/u_n, & u_n \ge 0, x \in \Gamma, \\ 0, & u_n < 0, x \in \Gamma. \end{cases}$$

By (S1) and (S3), there exists $M_3 > 0$ such that $0 \le p_n(x) \le M_3$, $0 \le q_n(x) \le M_3$, $\forall x \in \overline{\Omega}$. We select a suitable subsequence and there exists $h_1(x) \in L^2(\Omega)$, $h_2(x) \in L^2(\Gamma)$ such that $p_n(x) \to h_1(x)$ is a strong convergence in $L^2(\Omega)$, $q_n(x) \to h_2(x)$ is a strong convergence in $L^2(\Gamma)$, and $0 \le h_1(x) \le M_3$, $0 \le h_2(x) \le M_3$, $\forall x \in \overline{\Omega}$.

It follows from $w_n \to w$ is a strong convergence in $L^2(\Omega)$ that

$$\int_{\Omega} p_n(x)w_n(x)\varphi(x)\,dx = \int_{\Omega} p_n(x)w_n^+(x)\varphi(x)\,dx \to \int_{\Omega} h_1(x)w^+(x)\varphi(x)\,dx,$$
$$\int_{\Gamma} q_n(s)w_n(s)\varphi(s)\,ds = \int_{\Gamma} q_n(s)w_n^+(s)\varphi(s)\,ds \to \int_{\Gamma} h_2(s)w^+(s)\varphi(s)\,ds.$$

Hence, $\{p_n(x)w_n(x)\}$ is bounded in $L^2(\Omega)$, $p_n(x)w_n(x) \rightarrow h_1(x)w^+(x)$ in $L^2(\Omega)$; $\{q_n(x)w_n(x)\}$ is bounded in $L^2(\Gamma)$, $q_n(x)w_n(x) \rightarrow h_2(x)w^+(x)$ in $L^2(\Gamma)$.

By (16), we have

$$\begin{split} \left| \int_{\Omega} \nabla w_n(x) \nabla \varphi(x) \, dx - \int_{\Omega} p_n(x) w_n(x) \varphi(x) \, dx - \int_{\Gamma} q_n(s) w_n(s) \varphi(s) \, ds \right| \\ &= \left| \int_{\Omega} \nabla (t_n u_n(x)) \nabla \varphi(x) \, dx - \int_{\Omega} p_n(x) t_n u_n(x) \varphi(x) \, dx - \int_{\Gamma} q_n(s) t_n u_n(s) \varphi(s) \, ds \right| \\ &= \frac{2\sqrt{c}}{\|u_n\|} \left| \int_{\Omega} \nabla u_n(x) \nabla \varphi(x) \, dx - \int_{\Omega} p_n(x) u_n(x) \varphi(x) \, dx - \int_{\Gamma} q_n(s) u_n(s) \varphi(s) \, ds \right| \\ &\to 0. \end{split}$$

Since $w_n \rightarrow w$ is a weak convergence in *V*, we obtain

$$\int_{\Omega} \nabla \varphi(x) \nabla w(x) \, dx - \int_{\Omega} h_1(x) \varphi(x) w^+(x) \, dx - \int_{\Gamma} h_2(s) \varphi(s) w^+(s) \, ds = 0, \quad \varphi \in V.$$

We order $\varphi = w^-$; this yields $||w^-||^2 = 0$, so $w = w^+ \ge 0$. By the Strong maximum principle, we know w > 0 a.e. in Ω , so $u_n \to \infty$ a.e. in Ω . Combining (S3) and (3), we obtain

$$\int_{\Omega} \nabla \varphi(x) \nabla w(x) \, dx - \int_{\Omega} q(x) \varphi(x) w(x) \, dx - \int_{\Gamma} q(s) \varphi(s) w(s) \, ds = 0, \quad \forall \varphi \in V$$

This is a contradiction with $\Lambda < 1$. This completes the proof of Theorem 1(ii). (iii) If $\Lambda = 1$, by Lemma 1, there exists some $\varphi_{\Lambda}(x) > 0$, such that

$$\int_{\Omega} \nabla \nu(x) \nabla \varphi_{\Lambda}(x) \, dx = \int_{\Omega} q(x) \nu(x) \varphi_{\Lambda}(x) \, dx + \int_{\Gamma} q(s) \nu(s) \varphi_{\Lambda}(s) \, ds. \tag{17}$$

If *u* is a positive solution of (1), for the above $\varphi_{\Lambda}(x)$, we have

$$\int_{\Omega} \nabla u(x) \nabla \varphi_{\Lambda}(x) \, dx = \int_{\Omega} f(x, u(x)) \varphi_{\Lambda}(x) \, dx + \int_{\Gamma} g(s, u(s)) \varphi_{\Lambda}(s) \, ds. \tag{18}$$

We order v = u in (17), and it follows from (18) that

$$\int_{\Omega} \nabla u(x) \nabla \varphi_{\Lambda}(x) \, dx = \int_{\Omega} q(x) u(x) \varphi_{\Lambda}(x) \, dx + \int_{\Gamma} q(s) u(s) \varphi_{\Lambda}(s) \, ds$$
$$= \int_{\Omega} f(x, u(x)) \varphi_{\Lambda}(x) \, dx + \int_{\Gamma} g(s, u(s)) \varphi_{\Lambda}(s) \, ds$$
$$\leq \int_{\Omega} q(x) u(x) \varphi_{\Lambda}(x) \, dx + \int_{\Gamma} q(s) u(s) \varphi_{\Lambda}(s) \, ds,$$

which implies that $\int_{\Omega} (f(x, u) - q(x)u(x))\varphi_{\Lambda}(x) dx + \int_{\Gamma} (g(s, u) - q(s)u(s))\varphi_{\Lambda}(s) ds = 0$. When $\varphi_{\Lambda}(x) > 0$ a.e. in Ω , combining (S2), (S3), and (3), we obtain

 $f(x,u) \le q(x)u(x), \qquad g(x,u) \le q(x)u(x).$

Then we must have f(x, u) = q(x)u(x), g(x, u) = q(x)u(x) a.e. in Ω , u(x) > 0 also achieves Λ (= 1). When $u = c\varphi_{\Lambda}$, c > 0, we have $\int_{\Omega} |\nabla \varphi_{\Lambda}|^2 dx = \int_{\Omega} q(x)\varphi_{\Lambda}^2 dx + \int_{\Gamma} q(s)\varphi_{\Lambda}^2 ds$, which achieves Λ .

On the other hand, if for some c > 0, $u(x) = c\varphi_{\Lambda}(x)$ and $f(x, c\varphi_{\Lambda}(x)) = cq(x)\varphi_{\Lambda}(x)$, $g(x, u) = cq(x)\varphi_{\Lambda}(x)$ a.e. $x \in \Omega$, since $c\varphi_{\Lambda}(x)$ also achieves Λ . This means $u(x) = c\varphi_{\Lambda}(x)$ is a solution of problem (1) as $\Lambda = 1$. This completes the proof of Theorem 1(iii).

Proof of Corollary 2 Note that when $q(x) \equiv l$, then $\Lambda = \frac{\lambda_1}{l}$. The conclusion follows from Theorem 1.

Proof of Theorem 3 When $q(x) \equiv +\infty$, we can replace φ_{Λ} by φ_1 in (11) and define *c* as in (12), then following the same procedures as in the proof of Theorem 1(ii), we need to show only that $\{u_n\}$ is bounded in *V*. For this purpose, let $\{w_n\}$ be defined as in (16). If $\{w_n\}$ is bounded in *V*, we know $w_n \to w$ is a strong convergence in $L^2(\Omega)$, $w_n \to w$ is convergence a.e. $x \in \Omega$, $w_n \to w$ is a weak convergence in *V*, and $w \in V$.

If $||u_n|| \to +\infty$, then $t_n \to 0$ and $w(x) \equiv 0$. We set $\Omega_1 = \{x \in \Omega : w(x) = 0\}$, $\Omega_2 = \{x \in \Omega : w(x) \neq 0\}$. Obviously, by (16), $|u_n| \to +\infty$ a.e. in Ω_2 . When $q(x) \equiv +\infty$ in (S3), there exists $K_1, K_2 > 0$ and *n* large enough we have $|\frac{f(x,u_n)}{u_n}| \ge K_1$, $|\frac{g(x,u_n)}{u_n}| \ge K_2$ uniformly in $x \in \Omega_2$. Hence, by (15) and (16), we obtain

$$\begin{aligned} 4c &= \lim_{n \to +\infty} t_n^2 \|u_n\|^2 \\ &= \lim_{n \to +\infty} t_n^2 \left(\|\nabla u_n\|_{L^2(\Omega)}^2 + \|\gamma u_n\|_{L^2(\Gamma)}^2 \right) \\ &= \lim_{n \to +\infty} t_n^2 \left(\int_{\Omega} f(x, u_n) u_n \, dx + \int_{\Gamma} g(s, u_n) u_n \, ds + \|\gamma u_n\|_{L^2(\Gamma)}^2 \right) \\ &= \lim_{n \to +\infty} \left(\int_{\Omega} \frac{f(x, u_n)}{u_n} w_n^2 \, dx + \int_{\Gamma} \frac{g(s, u_n)}{u_n} w_n^2 \, ds + t_n^2 \|\gamma u_n\|_{L^2(\Gamma)}^2 \right) \\ &\geq K_1 \int_{\Omega} w^2 \, dx + K_2 \int_{\Gamma} w^2 \, ds + \|w\|_{L^2(\Gamma)}^2. \end{aligned}$$

Noticing that $w(x) \neq 0$ in Ω_2 and K_1 , K_2 can be chosen large enough, so $m\Omega_2 \equiv 0$ and then $w(x) \equiv 0$ in Ω .

Then we know $\lim_{n\to+\infty} \int_{\Omega} F(x, w_n) dx + \lim_{n\to+\infty} \int_{\Gamma} G(s, w_n) ds = 0$, and consequently,

$$J(w_n) = \frac{1}{2} \|\nabla w_n\|_{L^2(\Omega)}^2 + o(1)$$

$$= \frac{1}{2} \|w_n\|^2 - \frac{1}{2} \|w_n\|_{L^2(\Gamma)}^2 + o(1)$$

$$\ge \frac{1}{2} \left(1 - \frac{1}{\lambda_1 + 1}\right) \|w_n\|^2 + o(1)$$

$$= 2c \left(1 - \frac{1}{\lambda_1 + 1}\right) + o(1).$$
(19)

By $||u_n|| \to +\infty$, $t_n \to 0$ as $n \to +\infty$, then it follows Lemma 4 and (13), we obtain

$$J(w_n) = J(t_n u_n) \le \frac{1 + t_n^2}{2n} \le c.$$
 (20)

Obviously, (19) and (20) are contradictory. So $\{u_n\}$ is bounded in *V*. This completes the proof of Theorem 3.

4 Example

In this section, we give two examples on f(x, u): One satisfies (S1) to (S3) with $q(x) \equiv +\infty$, but does not satisfy the (AR) condition; the other illustrates how the assumptions on the boundary are not trivial and compatible with the inner assumptions in Ω .

Example 1 Set:

$$f(x,t) = \begin{cases} 0, & t \leq 0; \\ t \ln(1+t), & t > 0. \end{cases}$$

Then it is easy to verify that f(x, t) satisfies (S1) to (S3) with p(x) = 0 as $t \to 0$ and $q(x) = +\infty$ as $t \to +\infty$. In addition,

$$F(x,t) = \frac{1}{2}t^2\ln(1+t) - \frac{1}{4}t^2 + \frac{1}{2}t - \frac{1}{2}\ln(1+t).$$

So, for some $\mu > 2$, $\mu F(x, t) = t^2 \ln(1 + t)(\frac{\mu}{2} - \frac{\mu}{4\ln(1+t)} + \frac{\mu}{2t\ln(1+t)} - \frac{\mu}{2t^2}) > t^2 \ln(1 + t)$, for all *t* large.

This means f(x, t) does not satisfy the (AR) condition.

Example 2 Consider the following problem:

$$\begin{cases}
-u''(x) = \alpha u(x), & 0 < x < l, \\
u(0) = 0, & (21) \\
u'(l) = \alpha u(l),
\end{cases}$$

where $\alpha > 0$ is a constant. It is obvious that $g = \gamma f$ as $f(x, u) = \alpha u(x)$. Problem (21) is a case of (1); we can obtain the nontrivial solution: $u(x) = \widetilde{C} \sin \sqrt{\alpha x}$, $\widetilde{C} \neq 0$.

Competing interests

The author declares that he has no competing interests.

Author's contributions

Li G carried out all studies in this article.

Acknowledgements

The author would like to thank the referees for carefully reading this article and making valuable comments and suggestions.

Received: 19 January 2012 Accepted: 6 August 2012 Published: 16 August 2012

References

- Liu, H, Su, N: Well-posedness for a class of mixed problem of wave equations. Nonlinear Anal. 71, 17-27 (2009). doi:10.1016/j.na.2008.10.027
- Landesman, EM, Lazer, AC: Nonlinear perturbations of linear elliptic boundary value problems at resonance. J. Math. Mech. 19, 609-623 (1970)
- Ahmad, S, Lazer, AC, Paul, JL: Elementary critical point theory and perturbations of elliptic boundary value problems at resonance. Indiana Univ. Math. J. 25, 933-944 (1976)
- 4. Berestycki, H, De Figueiredo, DG: Double resonance in semilinear elliptic problems. Commun. Partial Differ. Equ. 6, 91-120 (1981)
- Costa, DG, Oliveira, AS: Existence of solution for a class of semilinear elliptic problems at double resonance. Bol. Soc. Bras. Mat. 19, 21-37 (1988)
- Omari, P, Zanolin, F: Resonance at two consecutive eigenvalues for semilinear elliptic equations. Ann. Mat. Pura Appl. 163, 181-198 (1993)

- Binding, PA, Drábek, P, Huang, YX: Existence of multiple solutions of critical quasilinear elliptic Neumann problems. Nonlinear Anal. 42, 613-629 (2000). doi:10.1016/S0362-546X(99)00118-2
- Li, G, Zhou, HS: Asymptotically linear Dirichlet problem for the *p*-Laplacian. Nonlinear Anal. 43, 1043-1055 (2001). doi:10.1016/S0362-546X(99)00243-6
- Escobar, JF: A comparison theorem for the first non-zero Steklov eigenvalue. J. Funct. Anal. 178, 143-155 (2000). doi:10.1006/jfan.2000.3662
- Kaur, BS, Sreenadh, K: Multiple positive solutions for a singular elliptic equation with Neumann boundary condition in two dimensions. Electron. J. Differ. Equ. 43, 1-13 (2009)
- Ahmad, S: Multiple nontrivial solutions of resonant and nonresonant asymptotically problems. Proc. Am. Math. Soc. 96, 405-409 (1986)
- 12. Chang, KC: Infinite Dimensional Morse Theory and Multiple Solutions Problems. Birkhäuser, Boston (1993)
- 13. Hirano, N, Nishimura, T: Multiplicity results for semilinear elliptic problems at resonance and with jumping nonlinearities. J. Math. Anal. Appl. **180**, 566-586 (1993). doi:10.1006/jmaa.1993.1417
- 14. Landesman, E, Robinson, S, Rumbos, A: Multiple solution of semilinear elliptic problem at resonance. Nonlinear Anal. 24, 1049-1059 (1995). doi:10.1016/0362-546X(94)00107-S
- 15. Liu, SQ, Tang, CL, Wu, XP: Multiplicity of nontrivial solutions of semilinear elliptic equations. J. Math. Anal. Appl. 249, 289-299 (2000). doi:10.1006/jmaa.2000.6704
- 16. Li, S, Willem, M: Multiple solution for asymptotically linear boundary value problems in which the nonlinearity crosses at least one eigenvalue. Nonlinear Differ. Equ. Appl. 5, 479-490 (1998)
- 17. Mawhin, J, Willem, M: Critical Point Theory and Hamiltonien Systems. Springer, New York (1989)
- 18. Lions, JL, Magenes, E: Non-Homogeneous Boundary Value Problems and Applications. Springer, Berlin (1972)
- 19. Zhou, H: An application of a mountain pass theorem. Acta Math. Sin. Engl. Ser. 18(1), 27-36 (2002)
- 20. Cheng, BT, Wu, X: Existence results of positive solutions of Kirchhoff type problems. Nonlinear Anal. **71**, 4883-4892 (2009). doi:10.1016/j.na.2009.03.065
- Ambrosetti, A, Rabinowitz, PH: Dual variational methods in critical points theory and applications. J. Funct. Anal. 14, 349-381 (1973). doi:10.1016/0022-1236(73)90051-7

doi:10.1186/1687-2770-2012-91

Cite this article as: Li: **Existence of positive solutions of elliptic mixed boundary value** *problem. Boundary Value Problems* 2012 **2012**:91.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com