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Abstract
In this paper, we use variational methods to prove two existence of positive solutions
of the following mixed boundary value problem:

⎧⎪⎨
⎪⎩
–�u = f (x,u), x ∈ �,

u = 0, x ∈ σ ,
∂u
∂ν

= g(x,u), x ∈ �.

One deals with the asymptotic behaviors of f (x,u) near zero and infinity and the
other deals with superlinear of f (x,u) at infinity.
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1 Introduction and preliminaries
This paper is concerned with the existence of positive solutions of the following elliptic
mixed boundary value problem:

⎧⎪⎪⎨
⎪⎪⎩
–�u = f (x,u), x ∈ �,

u = , x ∈ σ ,
∂u
∂ν

= g(x,u), x ∈ �,

()

where� is a bounded domain inRn with Lipschitz boundary ∂�, σ ∪� = ∂�, σ ∩� =Ø,�
is a sufficiently smooth (n – )-dimensional manifold, and ν is the outward normal vector
on ∂�. We assume f : � ×R →R, g : � ×R →R are continuous and satisfy
(S) f (x, t)≥ , ∀t ≥ , x ∈ �, f (x, ) = . f (x, t)≡ , ∀t < , x ∈ �.
(S) For almost every x ∈ �, f (x,t)

t is nondecreasing with respect to t > .
(S) limt→

f (x,t)
t = p(x), limt→+∞ f (x,t)

t = q(x) 
≡  uniformly in a.e. x ∈ �, where
‖p(x)‖∞ < λ, λ is the first eigenvalue of (),  ≤ p(x), q(x) ∈ L∞(�).

(S) There exists c, c >  such that |f (x, t)| ≤ c + c|t|p– for some p ∈ (, n
n– ) as n≥ 

and p ∈ (, +∞) as n = , .
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The eigenvalue problem of () is studied by Liu and Su in []

⎧⎪⎪⎨
⎪⎪⎩
–�u = λu in �,

u =  on σ ,
∂u
∂ν

= λu on �.

()

There exists a set of eigenvalues {λk} and corresponding eigenfunctions {uk} which
solve problem (), where  ≤ λ ≤ λ ≤ · · · ≤ λk ≤ · · · , λk → ∞ as k → ∞, λ =
inf
=u∈V

∫
� |∇u| dx∫

� |u| dx+∫
� |u| ds .

There have been many papers concerned with similar problems at resonance under the
boundary condition; see [–].Moreover, somemultiplicity theorems are obtained by the
topological degree technique and variational methods; interested readers can see [–].
Problem () is different from the classical ones, such as those with Dirichlet, Neuman,
Robin, No-flux, or Steklov boundary conditions.
In this paper, we assume V := {v ∈ H(�) : v|σ = } is a closed subspace of H(�). We

define the norm in V as ‖u‖ = ∫
�

|∇u| dx +
∫
�

|γu| ds, ‖ · ‖Lp(�) is the Lp(�) norm,
‖ · ‖Lp(�) is the Lp(�) norm, γ : V → L(�) is the trace operator with γu = u� for all
u ∈ H(�), that is continuous and compact (see []). Furthermore, we define g = γ f ,
 ≤ g(x, t)≤ |γ f (x, t)| for t >  (see []). Then, by (S), we obtain

lim
t→+∞

g(x, t)
t

≤ lim
t→+∞

|γ f (x, t)|
t

= q(x) 
≡ , a.e. x ∈ �. ()

Let� be a bounded domainwith a Lipschitz boundary; there is a continuous embedding
V ↪→ Ly(�) for y ∈ [, n

n– ] when n ≥ , and y ∈ [, +∞) when n = , . Then there exists
γy > , such that

‖u‖Ly(�) ≤ γy‖u‖, ∀u ∈ V . ()

Moreover, there is a continuous boundary trace embedding V ↪→ Lz(�) for z ∈ [, (n–)n– ]
when n≥ , and z ∈ [, +∞) when n = , . Then there exists kz > , such that

‖u‖Lz(�) ≤ kz‖u‖, ∀u ∈ V . ()

It is well known that to seek a nontrivial weak solution of problem () is equivalent to
finding a nonzero critical value of the C functional

J(u) =



∫
�

|∇u| dx –
∫

�

F(x,u)dx –
∫

�

G(s,u)ds, ()

where u ∈ V , F(x,u) =
∫ u
 f (x, t)dt, G(x,u) =

∫ u
 g(x, t)dt. Moreover, by (S) and the Strong

maximumprinciple, a nonzero critical point of J is in fact a positive solution of (). In order
to find critical points of the functional (), one often requires the technique condition, that
is, for some μ > , ∀|u| ≥ M > , x ∈ �,

 < μF(x,u)≤ uf (x,u), F(x,u) =
∫ u


f (x, t)dt. (AR)
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It is easy to see that the condition (AR) implies that limu→+∞ F(x,u)
u = +∞, that is, f (x,u)

must be superlinear with respect to u at infinity. In the present paper, motivated by []
and [], we study the existence and nonexistence of positive solutions for problem ()
with the asymptotic behavior assumptions (S) of f at zero and infinity. Moreover, we also
study superlinear of f at infinity with q(x) ≡ +∞ in (S), which is weaker than the (AR)
condition, that is the (AR) condition does not hold.
In order to get our conclusion, we define the minimization problem

� = inf

{∫
�

|∇u| dx : u ∈ V ,
∫

�

q(x)u dx +
∫

�

q(s)u ds = 
}
, ()

then � > , which is achieved by some ϕ� ∈ V with ϕ�(x) >  a.e. in �; see Lemma .
We denote by c, c, c universal constants unless specified otherwise. Our main results

are as follows.

Theorem  Let conditions (S) to (S) hold, then:
(i) If � > , then the problem () has no any positive solution in V .
(ii) If � < , then the problem () has at least one positive solution in V .
(iii) If � = , then the problem () has one positive solution u(x) ∈ V if and only if there

exists a constant c >  such that u(x) = cϕ�(x) and f (x,u) = q(x)u(x),
g(x,u) = q(x)u(x) a.e. x ∈ �, where ϕ�(x) >  is the function which achieves �.

Corollary  Let conditions (S) to (S) with q(x) ≡ l >  hold, then:
(i) If l < λ, then the problem () has no any positive solution in V .
(ii) If λ < l < +∞, then the problem () has at least one positive solution in V .
(iii) If l = λ, then the problem () has one positive solution u(x) ∈ V if and only if there

exists a constant c >  such that u(x) = cϕ(x) and f (x,u) = λu(x), g(x,u) = λu(x)
a.e. x ∈ �, where ϕ(x) >  is the eigenfunction of the λ.

Theorem  Let conditions (S) to (S) with q(x) ≡ +∞ hold, then the problem () has at
least one positive solution in V .

2 Some lemmas
We need the following lemmas.

Lemma  If q(x) ∈ L∞(�), q(x) ≥ , q(x) 
≡ , then � >  and there exists ϕ�(x) ∈ V such
that � =

∫
�

|∇ϕ�| dx and ∫
�
q(x)ϕ

� dx +
∫
�
q(s)ϕ

� ds = . Moreover, ϕ�(x) >  a.e. in V .

Proof By the Sobolev embedding function V ↪→ L(�) and Fatou’s lemma, it is easy to
know that � >  and there exists ϕ�(x) ∈ V , which satisfies �, that is,

∫
�
q(x)ϕ

� dx +∫
�
q(s)ϕ

� ds = . Furthermore, we assume ϕ�(x) ≥ , then ϕ�(x) could replace by |ϕ�(x)|.
By the Strong maximum principle, we know ϕ�(x) >  a.e. in V . �

Lemma  If conditions (S) to (S) hold, then there exists β ,ρ >  such that J|∂Bρ () ≥ β ,
∀u ∈ V , ‖u‖ = ρ .

Proof By condition (S), there exists δ > , ε >  such that f (x,u)
u ≤ λ – ε, g(x,u)

u ≤ γ f (x,u)
u ≤

λ –ε as  < |u| ≤ δ.Which implies that F(x,u)≤ 
 (λ –ε)u +c|u|y,G(x,u) ≤ 

 (λ –ε)u +
c|u|z .

http://www.boundaryvalueproblems.com/content/2012/1/91
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By () and (), we obtain

J(u) =


‖∇u‖L(�) –

∫
�

F(x,u)dx –
∫

�

G(s,u)ds

≥ 

‖∇u‖L(�) +



‖γu‖L(�) –



‖γu‖L(�) –



(λ – ε)‖u‖L(�)

– c‖u‖yLy(�) –


(λ – ε)‖u‖L(�) – c‖u‖zLz(�)

≥ 

‖u‖ – 


(λ – ε)


λ

‖u‖ – cγ y
y ‖u‖y – 


(λ – ε + )


λ + 

‖u‖ – ckzz‖u‖z

=
[

ε(λ + )
λ(λ + )

–



]
‖u‖ – cγ y

y ‖u‖y – ckzz‖u‖z.

Hence, y, z > ; we take ε which satisfies ε(λ+)
λ(λ+)

– 
 > , that is, ε > λ(λ+)

λ+
. Then we

take a positive constant β such that J|∂Bρ () ≥ β as ‖u‖ = ρ , and is small enough. �

Lemma  If conditions (S) to (S) hold, � < , ϕ�(x) >  is defined by Lemma , then
J(tϕ�(x))→ –∞ as t → +∞.

Proof If � < , ϕ�(x) >  is defined by Lemma , by Fatou’s lemma, and (S), we have

lim
t→+∞

J(tϕ�(x))
t

=



∫
�

∣∣∇ϕ�(x)
∣∣ dx – lim

t→+∞

∫
�
F(x, tϕ�(x))dx

t
– lim

t→+∞

∫
�
G(s, tϕ�(s))ds

t

≤ 


∫
�

∣∣∇ϕ�(x)
∣∣ dx – ∫

�

lim
t→+∞

F(x, tϕ�(x))
tϕ

�(x)
ϕ

�(x)dx

–
∫

�

lim
t→+∞

G(s, tϕ�(s))
tϕ

�(s)
ϕ

�(s)ds

=



∫
�

∣∣∇ϕ�(x)
∣∣ dx – 



∫
�

f (x, tϕ�(x))
tϕ�(x)

ϕ
�(x)dx –




∫
�

g(s, tϕ�(s))
tϕ�(s)

ϕ
�(s)ds

=



∫
�

∣∣∇ϕ�(x)
∣∣ dx – 



[∫
�

q(x)ϕ
�(x)dx +

∫
�

q(s)ϕ
�(s)ds

]

=

�

(� – )
∫

�

∣∣∇ϕ�(x)
∣∣ dx

< .

So, J(tϕ�(x))→ –∞ as t → +∞. �

Lemma  Let conditions (S) and (S) hold. If a sequence {un} ⊂ V satisfies 〈J ′(un),un〉 →
 as n→ +∞, then there exists a subsequence of {un}, still denoted by {un} such that J(tun) ≤
+t
n + J(un) for all t > , n≥ .

Proof Since 〈J ′(un),un〉 →  as n→ +∞, for a subsequence, we may assume that

–

n
<

〈
J ′(un),un

〉
= ‖∇un‖L(�) –

∫
�

f (x,un)un dx –
∫

�

g(s,un)un ds <

n
, ∀n≥ . ()

http://www.boundaryvalueproblems.com/content/2012/1/91
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For any fixed x ∈ � and n≥ , set

ψ(t) =
t


f (x,un)un – F(x, tun), ψ(t) =

t


g(s,un)un –G(s, tun).

Then (S) implies that

ψ ′
(t) = tf (x,un)un – f (x, tun)un

= tun
[
f (x,un) –

f (x, tun)
t

]

=

⎧⎨
⎩≥ ,  < t ≤ ;

≤ , t > .

It implies that ψ(t) ≤ ψ(), ∀t > . Following the same procedures, we obtain ψ(t) ≤
ψ(), ∀t > .
For all t >  and positive integer n, by (), we have

J(tun) =
t


‖∇un‖L(�) –

∫
�

F(x, tun)dx –
∫

�

G(s, tun)ds

≤ t



[

n
+

∫
�

f (x,un)un dx +
∫

�

g(s,un)un ds
]

–
∫

�

F(x, tun)dx –
∫

�

G(s, tun)ds

≤ t

n
+

∫
�

[


f (x,un)un – F(x,un)

]
dx +

∫
�

[


g(s,un)un –G(s,un)

]
ds. ()

On the other hand, by (), one has

J(un) =


‖∇un‖L(�) –

∫
�

F(x,un)dx –
∫

�

G(s,un)ds

≥ 


[
–

n
+

∫
�

f (x,un)un dx +
∫

�

g(s,un)un ds
]
–

∫
�

F(x,un)dx –
∫

�

G(s,un)ds

= –

n

+
∫

�

[


f (x,un)un – F(x,un)

]
dx +

∫
�

[


g(s,un)un –G(s,un)

]
ds.

One has

∫
�

[


f (x,un)un – F(x,un)

]
dx +

∫
�

[


g(s,un)un –G(s,un)

]
ds≤ J(un) +


n

. ()

Combining () and (), we have J(tun) ≤ +t
n + J(un). �

Lemma  (see []) Suppose E is a real Banach space, J ∈ C(E,R) satisfies the following
geometrical conditions:

(i) J() = ; there exists ρ >  such that J|∂Bρ () ≥ r > ;

http://www.boundaryvalueproblems.com/content/2012/1/91
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(ii) There exists e ∈ E\Bρ() such that J(e) ≤ . Let � be the set of all continuous paths
joining  and e:

� =
{
h ∈ C

(
[, ],E

)|h() = ,h() = e
}
,

and

c = inf
h∈�

max
t∈[,]

J
(
h(t)

)
.

Then there exists a sequence {un} ⊂ E such that J(un) → c ≥ β and ( + ‖un‖) ×
‖J ′(un)‖E∗ → .

3 Proofs of main results

Proof of Theorem  (i) If u ∈ V is one positive solution of problem (), by (), one has

 =
〈
J ′(u),u

〉
=

∫
�

|∇u| dx –
∫

�

f (x,u)udx –
∫

�

g(s,u)uds.

That is,

∫
�

|∇u| dx =
∫

�

f (x,u)udx +
∫

�

g(s,u)uds

≤
∫

�

q(x)u dx +
∫

�

q(s)u ds = .

It implies that � ≤ . This completes the proof of Theorem (i).
(ii) By Lemma , there exists β ,ρ >  such that J|∂Bρ () ≥ β with ‖u‖ = ρ . By Lemma ,

we obtain J(tϕ�(x)) <  as t → +∞. Define

� =
{
h ∈ C

(
[, ],V

)|h() = ,h() = tϕ�(x)
}
, ()

c = inf
h∈�

max
t∈[,]

J
(
h(t)

)
, ()

where ϕ�(x) >  is given by Lemma . Then c≥ β >  and by Lemma , there exists {un} ⊂
V such that

J(un) =


‖∇un‖L(�) –

∫
�

F(x,un)dx –
∫

�

G(s,un)ds = c + o(), ()
(
 + ‖un‖

)∥∥J ′(un)∥∥V∗ → . ()

() implies that

〈
J ′(un),un

〉
= ‖∇un‖L(�) –

∫
�

f (x,un)un dx –
∫

�

g(s,un)un ds = o(). ()

Here, inwhat follows, we use o() to denote any quantity which tends to zero as n → +∞.

http://www.boundaryvalueproblems.com/content/2012/1/91
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If {un} is bounded in V , when� is bounded and f (x,u), g(x,u) are subcritical, we can get
{un} has a subsequence strong convergence to a critical value of J , and our proof is com-
plete. So, to prove the theorem, we only need show that {un} is bounded in V . Supposing
that {un} is unbounded, that is, ‖un‖ → +∞ as n→ +∞. We order

tn =

√
c

‖un‖ , wn = tnun =

√
cun

‖un‖ . ()

Then {wn} is bounded inV . By extracting a subsequence, we supposewn → w is a strong
convergence in L(�), wn → w is a convergence a.e. x ∈ �, wn ⇀ w is a weak convergence
in V .
We claim that w 
= . In fact, by (S) and (S), we know ∀x ∈ �, un ≥ , and there exists

M,M >  such that | f (x,un)un | ≤ M, | g(x,un)un | ≤ M. If w = , wn →  is a strong convergence
in L(�), and by () and () we know

c = tn‖un‖ = tn
(‖∇un‖L(�) + ‖γun‖L(�)

)
= tn

∫
�

f (x,un)un dx + tn
∫

�

g(s,un)un ds + tn‖γun‖L(�) + o()

=
∫

�

f (x,un)
un

w
n dx +

∫
�

g(s,un)
un

w
n ds + tn‖un‖L(�) + o()

≤ M

∫
�

w
n dx +M

∫
�

w
n ds + ‖wn‖L(�) + o()

→ .

It is contradiction with c > , so w 
= .
As follows, we prove w 
=  satisfies

∫
�

∇ϕ(x)∇w(x)dx –
∫

�

q(x)ϕ(x)w(x)dx –
∫

�

q(s)ϕ(s)w(s)ds = .

We order

pn(x) =

⎧⎨
⎩f (x,un)/un, un ≥ ,x ∈ �,

, un < ,x ∈ �,

qn(x) =

⎧⎨
⎩g(x,un)/un, un ≥ ,x ∈ �,

, un < ,x ∈ �.

By (S) and (S), there exists M >  such that  ≤ pn(x) ≤ M,  ≤ qn(x) ≤ M, ∀x ∈ �.
We select a suitable subsequence and there exists h(x) ∈ L(�), h(x) ∈ L(�) such that
pn(x) → h(x) is a strong convergence in L(�), qn(x) → h(x) is a strong convergence in
L(�), and ≤ h(x)≤ M,  ≤ h(x) ≤ M, ∀x ∈ �.
It follows from wn → w is a strong convergence in L(�) that

∫
�

pn(x)wn(x)ϕ(x)dx =
∫

�

pn(x)w+
n(x)ϕ(x)dx→

∫
�

h(x)w+(x)ϕ(x)dx,
∫

�

qn(s)wn(s)ϕ(s)ds =
∫

�

qn(s)w+
n(s)ϕ(s)ds→

∫
�

h(s)w+(s)ϕ(s)ds.

http://www.boundaryvalueproblems.com/content/2012/1/91
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Hence, {pn(x)wn(x)} is bounded in L(�), pn(x)wn(x)⇀ h(x)w+(x) in L(�); {qn(x)wn(x)}
is bounded in L(�), qn(x)wn(x)⇀ h(x)w+(x) in L(�).
By (), we have

∣∣∣∣
∫

�

∇wn(x)∇ϕ(x)dx –
∫

�

pn(x)wn(x)ϕ(x)dx –
∫

�

qn(s)wn(s)ϕ(s)ds
∣∣∣∣

=
∣∣∣∣
∫

�

∇(
tnun(x)

)∇ϕ(x)dx –
∫

�

pn(x)tnun(x)ϕ(x)dx –
∫

�

qn(s)tnun(s)ϕ(s)ds
∣∣∣∣

=

√
c

‖un‖
∣∣∣∣
∫

�

∇un(x)∇ϕ(x)dx –
∫

�

pn(x)un(x)ϕ(x)dx –
∫

�

qn(s)un(s)ϕ(s)ds
∣∣∣∣

→ .

Since wn ⇀ w is a weak convergence in V , we obtain
∫

�

∇ϕ(x)∇w(x)dx –
∫

�

h(x)ϕ(x)w+(x)dx –
∫

�

h(s)ϕ(s)w+(s)ds = , ϕ ∈ V .

Weorder ϕ = w–; this yields ‖w–‖ = , sow = w+ ≥ . By the Strongmaximumprinciple,
we know w >  a.e. in �, so un → ∞ a.e. in �. Combining (S) and (), we obtain

∫
�

∇ϕ(x)∇w(x)dx –
∫

�

q(x)ϕ(x)w(x)dx –
∫

�

q(s)ϕ(s)w(s)ds = , ∀ϕ ∈ V .

This is a contradiction with � < . This completes the proof of Theorem (ii).
(iii) If � = , by Lemma , there exists some ϕ�(x) > , such that

∫
�

∇v(x)∇ϕ�(x)dx =
∫

�

q(x)v(x)ϕ�(x)dx +
∫

�

q(s)v(s)ϕ�(s)ds. ()

If u is a positive solution of (), for the above ϕ�(x), we have∫
�

∇u(x)∇ϕ�(x)dx =
∫

�

f
(
x,u(x)

)
ϕ�(x)dx +

∫
�

g
(
s,u(s)

)
ϕ�(s)ds. ()

We order v = u in (), and it follows from () that∫
�

∇u(x)∇ϕ�(x)dx =
∫

�

q(x)u(x)ϕ�(x)dx +
∫

�

q(s)u(s)ϕ�(s)ds

=
∫

�

f
(
x,u(x)

)
ϕ�(x)dx +

∫
�

g
(
s,u(s)

)
ϕ�(s)ds

≤
∫

�

q(x)u(x)ϕ�(x)dx +
∫

�

q(s)u(s)ϕ�(s)ds,

which implies that
∫
�
(f (x,u) – q(x)u(x))ϕ�(x)dx +

∫
�
(g(s,u) – q(s)u(s))ϕ�(s)ds = .

When ϕ�(x) >  a.e. in �, combining (S), (S), and (), we obtain

f (x,u)≤ q(x)u(x), g(x,u) ≤ q(x)u(x).

Then we must have f (x,u) = q(x)u(x), g(x,u) = q(x)u(x) a.e. in �, u(x) >  also achieves
� (= ). When u = cϕ�, c > , we have

∫
�

|∇ϕ�| dx = ∫
�
q(x)ϕ

� dx +
∫
�
q(s)ϕ

� ds, which
achieves �.

http://www.boundaryvalueproblems.com/content/2012/1/91
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On the other hand, if for some c > , u(x) = cϕ�(x) and f (x, cϕ�(x)) = cq(x)ϕ�(x), g(x,u) =
cq(x)ϕ�(x) a.e. x ∈ �, since cϕ�(x) also achieves �. This means u(x) = cϕ�(x) is a solution
of problem () as � = . This completes the proof of Theorem (iii). �

Proof of Corollary  Note that when q(x) ≡ l, then � = λ
l . The conclusion follows from

Theorem . �

Proof of Theorem  When q(x) ≡ +∞, we can replace ϕ� by ϕ in () and define c as in
(), then following the same procedures as in the proof of Theorem (ii), we need to show
only that {un} is bounded in V . For this purpose, let {wn} be defined as in (). If {wn} is
bounded in V , we know wn → w is a strong convergence in L(�), wn → w is convergence
a.e. x ∈ �, wn ⇀ w is a weak convergence in V , and w ∈ V .
If ‖un‖ → +∞, then tn →  and w(x) ≡ . We set � = {x ∈ � : w(x) = }, � = {x ∈ � :

w(x) 
= }. Obviously, by (), |un| → +∞ a.e. in �. When q(x)≡ +∞ in (S), there exists
K,K >  and n large enough we have | f (x,un)un | ≥ K, | g(x,un)un | ≥ K uniformly in x ∈ �.
Hence, by () and (), we obtain

c = lim
n→+∞ tn‖un‖

= lim
n→+∞ tn

(‖∇un‖L(�) + ‖γun‖L(�)
)

= lim
n→+∞ tn

(∫
�

f (x,un)un dx +
∫

�

g(s,un)un ds + ‖γun‖L(�)
)

= lim
n→+∞

(∫
�

f (x,un)
un

w
n dx +

∫
�

g(s,un)
un

w
n ds + tn‖γun‖L(�)

)

≥ K

∫
�

w dx +K

∫
�

w ds + ‖w‖L(�).

Noticing that w(x) 
=  in � and K, K can be chosen large enough, so m� ≡  and
then w(x) ≡  in �.
Then we know limn→+∞

∫
�
F(x,wn)dx + limn→+∞

∫
�
G(s,wn)ds = , and consequently,

J(wn) =


‖∇wn‖L(�) + o()

=


‖wn‖ – 


‖wn‖L(�) + o()

≥ 


(
 –


λ + 

)
‖wn‖ + o()

= c
(
 –


λ + 

)
+ o(). ()

By ‖un‖ → +∞, tn →  as n→ +∞, then it follows Lemma  and (), we obtain

J(wn) = J(tnun) ≤  + tn
n

≤ c. ()

Obviously, () and () are contradictory. So {un} is bounded in V . This completes the
proof of Theorem . �
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4 Example
In this section, we give two examples on f (x,u): One satisfies (S) to (S) with q(x) ≡ +∞,
but does not satisfy the (AR) condition; the other illustrates how the assumptions on the
boundary are not trivial and compatible with the inner assumptions in �.

Example  Set:

f (x, t) =

⎧⎨
⎩, t ≤ ;

tln( + t), t > .

Then it is easy to verify that f (x, t) satisfies (S) to (S) with p(x) =  as t →  and q(x) =
+∞ as t → +∞. In addition,

F(x, t) =


t ln( + t) –



t +



t –



ln( + t).

So, for some μ > , μF(x, t) = t ln( + t)(μ

 – μ

 ln(+t) +
μ

tln(+t) –
μ

t ) > t ln( + t), for all t
large.
This means f (x, t) does not satisfy the (AR) condition.

Example  Consider the following problem:

⎧⎪⎪⎨
⎪⎪⎩
–u′′(x) = αu(x),  < x < l,

u() = ,

u′(l) = αu(l),

()

where α >  is a constant. It is obvious that g = γ f as f (x,u) = αu(x). Problem () is a case
of (); we can obtain the nontrivial solution: u(x) = C̃ sin

√
αx, C̃ 
= .
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