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1 Introduction
Differential equations of fractional order arise in several research areas of science and
engineering, such as physics, chemistry, aerodynamics, electro-dynamics of complex
medium, polymer rheology, electrical networks, control of dynamical systems, etc. Frac-
tional differential equations provide an excellent tool for description of memory and
hereditary properties of various materials and processes. Some recent contributions to
the theory of fractional differential equations and its applications can be seen in [–].
Recently, many researchers have given attention to the existence of solutions of the ini-

tial and boundary value problems for fractional differential equations. There are some
papers that have studied the existence of solutions to boundary value problems with two-
point, three-point, multi-point or integral boundary conditions. See for examples [–].
However, to the best of the authors’ knowledge, there are only a few papers that consider
nonlinear fractional differential equations with nonlocal fractional order integral bound-
ary conditions, see [–].
In this article, we study the existence and uniqueness of solutions for the following non-

linear fractional integro-differential equation with m-point multi-term fractional order
integral boundary condition:

cDqx(t) = f
(
t,x(t),

(
ψνx

)
(t)

)
, t ∈ [,T],q ∈ (, ], (.)

x() = , x(T) =
m–∑
i=

ni∑
j=

αj,i
[
Ipj,i x

]∣∣ξi
ξi–

, (.)
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where cDq denotes the Caputo fractional derivative of order q, [Ipj,i x]|ξiξi– = [Ipj,i x](ξi) –
[Ipj,i x](ξi–), Ipj,i is the Riemann-Liouville fractional integral of order pj,i > , j = , , . . . ,ni,
ni ∈ N = {, , . . .}, i = , , . . . ,m – ,  = ξ < ξ < ξ < · · · < ξm– < ξm– = T , f : [,T]×X ×
X → X, for φ : [,T]× [,T] → [,∞),

(
ψνx

)
(t) =

[
Iνφx

]
(t) =


�(ν)

∫ t


(t – s)ν–φ(t, s)x(s)ds, ν > ,

and αj,i ∈ R is such that
∑m–

i=
∑ni

j= αj,i(
ξ
pj,i+
i –ξ

pj,i+
i–

�(pj,i+)
) �= T . Let (X,‖ · ‖) be a Banach space

and C = C([,T],X) denote the Banach space of all continuous functions from [,T] → X
endowed with a topology of uniform convergence with the norm denoted by ‖ · ‖C .
We note that if m = , then condition (.) reduces to the two-point multi-term frac-

tional integral boundary condition

x() = , x(T) =
n∑
j=

αj,
[
Ipj,x

]
(T), n ∈N = {, , . . .}.

If ni = , i = , , . . . ,m – , then condition (.) reduces to the m-point fractional integral
boundary condition

x() = , x(T) =
m–∑
i=

α,i
[
Ip,i x

]∣∣ξi
ξi–

. (.)

Moreover, if p,i =  and α,i = αi for i = , , . . . ,m – , then condition (.) reduces to the
usualm-point integral boundary condition

x() = , x(T) = α

∫ ξ


x(s)ds + α

∫ ξ

ξ

x(s)ds + · · · + αm–

∫ T

ξm–

x(s)ds.

In this case, the boundary condition corresponds tom– intervals of area under the curve
of solution x(t) from t = ξi– to t = ξi for i = , , . . . ,m – .

2 Preliminaries
Let us recall some basic definitions [, ].

Definition . For a continuous function f : [,∞) → R, the Caputo derivative of frac-
tional order q is defined as

cDqf (t) =


�(n – q)

∫ t


(t – s)n–q–f (n)(s)ds, n –  < q < n,n = [q] + ,

provided that f (n)(t) exists, where [q] denotes the integer part of the real number q.

Definition . The Riemann-Liouville fractional integral of order q for a continuous
function f (t) is defined as

Iqf (t) =


�(q)

∫ t


(t – s)q–f (s)ds, q > ,

provided that such integral exists.
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Definition . The Riemann-Liouville fractional derivative of order q for a continuous
function f (t) is defined by

Dqf (t) =


�(n – q)

(
d
dt

)n ∫ t


(t – s)n–q–f (s)ds, n = [q] + ,

provided the right-hand side is pointwise defined on (,∞).

Lemma . (see []) Let q > , the general solution of the fractional differential equation

cDqx(t) = 

has the solution

x(t) = k + kt + kt + · · · + kn–tn–,

where ki ∈R, i = , , , . . . ,n –  (n = [q] + ).

In view of Lemma ., it follows that

Iq cDqx(t) = x(t) + k + kt + kt + · · · + kn–tn–, (.)

for some ki ∈ R, i = , , , . . . ,n –  (n = [q] + ).
We state a result due to Krasnoselskii [] which is needed to prove the existence of at

least one solution of the problem (.)-(.).

Theorem . Let M be a closed convex and nonempty subset of a Banach space X. Let A,
B be operators such that

(i) Ax + By ∈M whenever x, y ∈M,
(ii) A is compact and continuous,
(iii) B is a contraction mapping.

Then there exists z ∈ M such that z = Az + Bz.

Lemma . Let
∑m–

i=
∑ni

j= αj,i(
ξ
pj,i+
i –ξ

pj,i+
i–

�(pj,i+)
) �= T,  < q ≤ . Then for h ∈ C[,T], the prob-

lem

cDqx(t) = h(t),  < t < T , (.)

x() = , x(T) =
m–∑
i=

ni∑
j=

αj,i
[
Ipj,i x

]∣∣ξi
ξi–

, (.)

has a unique solution

x(t) =


�(q)

∫ t


(t – s)q–h(s)ds

–
t

�(q)(T –
∑m–

i=
∑ni

j= αj,i
ξ
pj,i+
i –ξ

pj,i+
i–

�(pj,i+)
)

∫ T


(T – s)q–h(s)ds
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+
t

�(q)(T –
∑m–

i=
∑ni

j= αj,i
ξ
pj,i+
i –ξ

pj,i+
i–

�(pj,i+)
)

m–∑
i=

ni∑
j=

αj,i

�(pj,i)

×
[∫ ξi



∫ s


(ξi – s)pj,i–(s – r)q–h(r)dr ds

–
∫ ξi–



∫ s


(ξi– – s)pj,i–(s – r)q–h(r)dr ds

]
. (.)

Proof We may apply (.) to reduce (.) to an equivalent integral equation

x(t) =


�(q)

∫ t


(t – s)q–h(s)ds – c – ct, (.)

for some constants c, c ∈R.
From x() = , it follows that c = . Taking the Riemann-Liouville fractional integral of

order pj,i for (.), we get

[
Ipj,i x

]
(t) =


�(pj,i)

∫ t


(t – s)pj,i–

[


�(q)

∫ s


(s – r)q–h(r)dr – cs

]
ds

=


�(pj,i)�(q)

∫ t



∫ s


(t – s)pj,i–(s – r)q–h(r)dr ds – c

tpj,i+

�(pj,i + )
.

On the other hand, for  ≤ ξi– ≤ ξi ≤ T , we obtain

[
Ipj,i x

]∣∣ξi
ξi–

=
[
Ipj,i x

]
(ξi) –

[
Ipj,i x

]
(ξi–)

=


�(pj,i)�(q)

[∫ ξi



∫ s


(ξi – s)pj,i–(s – r)q–h(r)dr ds

–
∫ ξi–



∫ s


(ξi– – s)pj,i–(s – r)q–h(r)dr ds

]

– c
(

ξ
pj,i+
i – ξ

pj,i+
i–

�(pj,i + )

)
.

The second condition of (.) implies that


�(q)

m–∑
i=

ni∑
j=

αj,i

�(pj,i)

[∫ ξi



∫ s


(ξi – s)pj,i–(s – r)q–h(r)dr ds

–
∫ ξi–



∫ s


(ξi– – s)pj,i–(s – r)q–h(r)dr ds

]

– c
m–∑
i=

ni∑
j=

αj,i

(
ξ
pj,i+
i – ξ

pj,i+
i–

�(pj,i + )

)

=


�(q)

∫ T


(T – s)q–h(s)ds – cT .
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Thus,

c =


�(q)(T –
∑m–

i=
∑ni

j= αj,i
ξ
pj,i+
i –ξ

pj,i+
i–

�(pj,i+)
)

∫ T


(T – s)q–h(s)ds

–


�(q)(T –
∑m–

i=
∑ni

j= αj,i
ξ
pj,i+
i –ξ

pj,i+
i–

�(pj,i+)
)

m–∑
i=

ni∑
j=

αj,i

�(pj,i)

×
[∫ ξi



∫ s


(ξi – s)pj,i–(s – r)q–h(r)dr ds

–
∫ ξi–



∫ s


(ξi– – s)pj,i–(s – r)q–h(r)dr ds

]
.

Substituting the values of c and c in (.), we obtain the solution (.). �

In the following, for the sake of convenience, set

λ = T –
m–∑
i=

ni∑
j=

αj,i
ξ
pj,i+
i – ξ

pj,i+
i–

�(pj,i + )
�= , (.)

	 =
Tq

�(q + )
+

Tq+

|λ|�(q + )
+

T
|λ|

m–∑
i=

ni∑
j=

αj,i
ξ
q+pj,i
i – ξ

q+pj,i
i–

�(q + pj,i + )
. (.)

We denote B(·, ·) as the standard beta function such that

B(b + ,a) =
∫ 


( – s)a–sb ds =

�(a)�(b + )
�(a + b + )

.

3 Main results
Nowwe are in the position to establish themain result. Our first result is based onBanach’s
fixed point theorem.

Theorem. Assume that f : [,T]×X×X → X is jointly continuous andmaps bounded
subsets of [,T] × X × X in to relatively compact subsets of X, and φ : [,T] × [,T] →
[,∞) is continuous with φ =max{φ(t, s) : (t, s) ∈ [,T]× [,T]}. In addition, suppose that
there exist positive constants L, L such that

(H) ‖f (t,x(t), (ψνx)(t)) – f (t, y(t), (ψνy)(t))‖ ≤ L‖x – y‖ + L‖(ψνx) – (ψνy)‖, for all t ∈
[,T], x, y ∈ X ,

(H) 
 =: (L + LφTν

�(ν+) )	 < , where 	 is defined by (.).

Then the problem (.)-(.) has a unique solution.

Proof We transform the BVP (.)-(.) into a fixed point problem. In view of Lemma .
and (.), we consider the operator F : C → C defined by

(Fx)(t) =


�(q)

∫ t


(t – s)q–f

(
s,x(s),

(
ψνx

)
(s)

)
ds

–
t

λ�(q)

∫ T


(T – s)q–f

(
s,x(s),

(
ψνx

)
(s)

)
ds
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+
t

λ�(q)

m–∑
i=

ni∑
j=

αj,i

�(pj,i)

×
[∫ ξi



∫ s


(ξi – s)pj,i–(s – r)q–f

(
r,x(r),

(
ψνx

)
(r)

)
dr ds

–
∫ ξi–



∫ s


(ξi– – s)pj,i–(s – r)q–f

(
r,x(r),

(
ψνx

)
(r)

)
dr ds

]
,

for t ∈ [,T]. By setting supt∈[,T] ‖f (t, , )‖ =M, and choosing

r ≥ M	

 –

, (.)

we will show that FBr ⊂ Br , where Br = {x ∈ C : ‖x‖ ≤ r}. Then, for x ∈ Br , we have

∥∥(Fx)(t)∥∥ ≤ 
�(q)

∫ t


(t – s)q–

∥∥f (s,x(s), (ψνx
)
(s)

)∥∥ds
+

T
|λ|�(q)

∫ T


(T – s)q–

∥∥f (s,x(s), (ψνx
)
(s)

)∥∥ds
+

T
|λ|�(q)

m–∑
i=

ni∑
j=

αj,i

�(pj,i)

×
[∫ ξi



∫ s


(ξi – s)pj,i–(s – r)q–

∥∥f (r,x(r), (ψνx
)
(r)

)∥∥dr ds
–

∫ ξi–



∫ s


(ξi– – s)pj,i–(s – r)q–

∥∥f (r,x(r), (ψνx
)
(r)

)∥∥dr ds]

≤ 
�(q)

∫ t


(t – s)q–

(∥∥f (s,x(s), (ψνx
)
(s)

)
– f (s, , )

∥∥ +
∥∥f (s, , )∥∥)

ds

+
T

|λ|�(q)
∫ T


(T – s)q–

(∥∥f (s,x(s), (ψνx
)
(s)

)
– f (s, , )

∥∥ +
∥∥f (s, , )∥∥)

ds

+
T

|λ|�(q)
m–∑
i=

ni∑
j=

αj,i

�(pj,i)

[∫ ξi



∫ s


(ξi – s)pj,i–(s – r)q–

× (∥∥f (r,x(r), (ψνx
)
(r)

)
– f (s, , )

∥∥ +
∥∥f (s, , )∥∥)

dr ds

–
∫ ξi–



∫ s


(ξi– – s)pj,i–(s – r)q–

× (∥∥f (r,x(r), (ψνx
)
(r)

)
– f (s, , )

∥∥ +
∥∥f (s, , )∥∥)

dr ds
]

≤ 
�(q)

[(
L +

LφTν

�(ν + )

)
r +M

]∫ t


(t – s)q– ds

+
T

|λ|�(q)
[(

L +
LφTν

�(ν + )

)
r +M

]∫ T


(T – s)q– ds

+
T

|λ|�(q)
[(

L +
LφTν

�(ν + )

)
r +M

]

×
m–∑
i=

ni∑
j=

αj,i

�(pj,i)

[∫ ξi



∫ s


(ξi – s)pj,i–(s – r)q– dr ds

http://www.boundaryvalueproblems.com/content/2012/1/94
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–
∫ ξi–



∫ s


(ξi– – s)pj,i–(s – r)q– dr ds

]

≤
((

L +
LφTν

�(ν + )

)
r +M

)[
Tq

�(q + )
+

Tq+

|λ|�(q + )

+
T

|λ|�(q + )

m–∑
i=

ni∑
j=

αj,i

�(pj,i)
(
ξ
q+pj,i
i B(q + ,pj,i) – ξ

q+pj,i
i– B(q + ,pj,i)

)]

=
((

L +
LφTν

�(ν + )

)
r +M

)[
Tq

�(q + )
+

Tq+

|λ|�(q + )

+
T
|λ|

m–∑
i=

ni∑
j=

αj,i
ξ
q+pj,i
i – ξ

q+pj,i
i–

�(q + pj,i + )

]
= 	

[(
L +

LφTν

�(ν + )

)
r +M

]
≤ r.

In the following, from (H) for x, y ∈ C and for each t ∈ [,T], we have

∥∥(Fx)(t) – (Fy)(t)
∥∥

≤ 
�(q)

∫ t


(t – s)q–

∥∥f (s,x(s), (ψνx
)
(s)

)
– f

(
s, y(s),

(
ψνy

)
(s)

)∥∥ds
+

T
|λ|�(q)

∫ T


(T – s)q–

∥∥f (s,x(s), (ψνx
)
(s)

)
– f

(
s, y(s),

(
ψνy

)
(s)

)∥∥ds
+

T
|λ|�(q)

m–∑
i=

ni∑
j=

αj,i

�(pj,i)

×
[∫ ξi



∫ s


(ξi – s)pj,i–(s – r)q–

∥∥f (r,x(r), (ψνx
)
(r)

)
– f

(
r, y(r),

(
ψνy

)
(r)

)∥∥dr ds
–

∫ ξi–



∫ s


(ξi– – s)pj,i–(s – r)q–

∥∥f (r,x(r), (ψνx
)
(r)

)
– f

(
r, y(r),

(
ψνy

)
(r)

)∥∥dr ds]

≤ 
�(q)

(
L +

LφTν

�(ν + )

)
‖x – y‖C

∫ t


(t – s)q– ds

+
T

|λ|�(q)
(
L +

LφTν

�(ν + )

)
‖x – y‖C

∫ T


(T – s)q– ds

+
T

|λ|�(q)
(
L +

LφTν

�(ν + )

)
‖x – y‖C

×
m–∑
i=

ni∑
j=

αj,i

�(pj,i)

[∫ ξi



∫ s


(ξi – s)pj,i–(s – r)q– dr ds

–
∫ ξi–



∫ s


(ξi– – s)pj,i–(s – r)q– dr ds

]

≤
(
L +

LφTν

�(ν + )

)
	‖x – y‖C = 
‖x – y‖C .

By (H), 
 < , therefore, F is a contraction. Hence, by the Banach fixed point theorem,
we get that F has a fixed point which is a unique solution of the problem (.)-(.). �

Our second result is based on Krasnoselskii’s fixed point theorem.

http://www.boundaryvalueproblems.com/content/2012/1/94
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Theorem . Assume that (H) and (H) hold with

∥∥f (t,x(t), (ψνx
)
(t)

)∥∥ ≤ μ(t), (.)

for all (t,x, (ψνx)) ∈ [,T]×X ×X, where μ ∈ L([,T],R+).
Then the BVP (.)-(.) has at least one solution on [,T].

Proof First, we choose

r ≥ ‖μ‖L	,

where 	 is defined by (.), and consider Br = {x ∈ C : ‖x‖ ≤ r}. On Br we define the oper-
ators S and U as follows:

(Sx)(t) =


�(q)

∫ t


(t – s)q–f

(
s,x(s),

(
ψνx

)
(s)

)
ds

(Ux)(t) =
t

λ�(q)

m–∑
i=

ni∑
j=

αj,i

�(pj,i)

×
[∫ ξi



∫ s


(ξi – s)pj,i–(s – r)q–f

(
r,x(r),

(
ψνx

)
(r)

)
dr ds

–
∫ ξi–



∫ s


(ξi– – s)pj,i–(s – r)q–f

(
r,x(r),

(
ψνx

)
(r)

)
dr ds

]

–
t

λ�(q)

∫ T


(T – s)q–f

(
s,x(s),

(
ψνx

)
(s)

)
ds.

Now we shall show that S +U has a fixed point in Br . For x, y ∈ Br , we have

‖Sx +Uy‖ ≤ ‖μ‖L
(


�(q)

∫ t


(t – s)q– ds +

T
|λ|�(q)

∫ T


(T – s)q– ds

+
T

|λ|�(q)
m–∑
i=

ni∑
j=

αj,i

�(pj,i)

×
[∫ ξi



∫ s


(ξi – s)pj,i–(s – r)q– dr ds

–
∫ ξi–



∫ s


(ξi– – s)pj,i–(s – r)q– dr ds

])

≤ ‖μ‖L	 ≤ r.

Therefore, Sx +Uy ∈ Br .
From assumptions (H) and (H) for x, y ∈ C and for each t ∈ [,T], we get that

∥∥(Ux)(t) – (Uy)(t)
∥∥ ≤ 
‖x – y‖C .

Hence, U is a contraction mapping.
Next, we show that S is compact and continuous.

http://www.boundaryvalueproblems.com/content/2012/1/94
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The continuity of f implies that the operator S is continuous. By using condition (.),
we have that S is uniformly bounded on Br as

‖Sx‖ ≤ ‖μ‖LTq

�(q + )
.

Furthermore, in view of (H), we define sup(t,x,(ψνx))∈[,T]×Br×Br ‖f (t,x, (ψνx))‖ = f , and con-
sequently we get

∥∥(Sx)(t) – (Sx)(t)
∥∥

=
∥∥∥∥ 
�(q)

∫ t


(t – s)q–f

(
s,x(s),

(
ψνx

)
(s)

)
ds

–


�(q)

∫ t


(t – s)q–f

(
s,x(s),

(
ψνx

)
(s)

)
ds

∥∥∥∥
≤ 

�(q)

∫ t



(
(t – s)q– – (t – s)q–

)∥∥f (s,x(s), (ψνx
)
(s)

)∥∥ds
+


�(q)

∫ t

t
(t – s)q–

∥∥f (s,x(s), (ψνx
)
(s)

)∥∥ds
≤ f

�(q + )
∣∣(t – t)q + tq – tq

∣∣,
which is independent of x. As t → t, the right-hand side of the above inequality tends
to zero. So, S is relatively compact on Br . Hence, by Arzelá-Ascoli theorem, S is compact
on Br . Thus, all the assumptions of Theorem . are satisfied. As a consequence of Theo-
rem ., we have that the boundary value problem (.)-(.) has at least one solution on
[,T]. This completes the proof. �

4 An example
Example . Consider the following four-point multi-term fractional integral boundary
value problem:

cD

 x(t) =


(t + )

· |x|
|x| + 

+
∫ t



(t – s)– 


�(  )
· e

–(s–t)


x(s)ds, t ∈ [, ], (.)

x() = ,

x() =


[
I

 x

]∣∣
 –



[
I

 x

]∣∣
 +



[
I

 x

]∣∣
 – 

[
I

 x

]∣∣
 + 

[
I

 x

]∣∣
 – 

[
I

 x

]∣∣
.

(.)

Set q = /,m = , ξ = , ξ = , ξ = , ξ = T = , n = , p, = /, p, = /, α, = /,
α, = –/, n = , p, = /, α, = /, n = , p, = /, p, = /, p, = /, α, = –,
α, = , α, = –, ν = /, φ(t, s) = e–(s–t)/, f (t,x) = (/(t + ))(|x|/(|x| + )) + (ψ 

 x)(t).
Since ‖f (t,x, (ψ 

 x))– f (t, y, (ψ 
 y))‖ ≤ (/)‖x– y‖+‖(ψ 

 x)– (ψ 
 y)‖, then (H) and (H)

are satisfied with

λ = T –
m–∑
i=

ni∑
j=

αj,i
ξ
pj,i+
i – ξ

pj,i+
i–

�(pj,i + )
≈ . �= ,
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	 =
Tq

�(q + )
+

Tq+

|λ|�(q + )
+

T
|λ|

m–∑
i=

ni∑
j=

αj,i
ξ
q+pj,i
i – ξ

q+pj,i
i–

�(q + pj,i + )
≈ .,

L = /, L = , φ = e/, Tν =
√
, �(ν + ) =

√
π/. We can show that


 =
(
L +

LφTν

�(ν + )

)
	 ≈ . < .

Hence, by Theorem ., the boundary value problem (.)-(.) has a unique solution on
[, ].
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