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Abstract
In this paper, a nonlocal initial value problem to a p-Laplacian equation on time scales
is studied. The existence of solutions for such a problem is obtained by using the
topological degree method.
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1 Introduction
In this paper, we are concerned with the existence of solutions of the following nonlocal
p-Laplacian dynamic equation on a time scale T:

–
(
φp

(
u�(t)

))∇ =
λa(t)f (u(t))

(
∫ T
 f (u(s))∇s)k

, ∀t ∈ (,T)T, (.)

with integral initial value

u() =
∫ T


g(s)u(s)∇s,

u�() = A,
(.)

where φp(·) is the p-Laplace operator defined by φp(s) = |s|p–s, p > , φ–
p = φq with q the

Hölder conjugate of p, i.e., 
p +


q = , λ > , k > , f : [,T]T –→R

+∗ is continuous (R+∗ de-
notes positive real numbers), a : [,T]T –→ R

+ is left dense continuous, g(s) ∈ L([,T]T)
and A is a real constant.
This model arises in ohmic heating phenomena, which occur in shear bands of metals

which are deformed at high strain rates [, ], in the theory of gravitational equilibrium of
polytropic stars [], in the investigation of the fully turbulent behavior of real flows, using
invariant measures for the Euler equation [], in modeling aggregation of cells via interac-
tion with a chemical substance (chemotaxis) []. For the one-dimensional case, problems
with the nonlocal initial condition appear in the investigation of diffusion phenomena
for a small amount of gas in a transparent tube [, ]; nonlocal initial value problems in
higher dimension are important from the point of view of their practical applications to
modeling and investigating of pollution processes in rivers and seas, which are caused by
sew-age [].
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The study of dynamic equations on time scales has led to some important applications
[–], and an amount of literature has been devoted to the study the existence of solutions
of second-order nonlinear boundary value problems (e.g., see [–]).
Motivated by the above works, in this paper, we study the existence of solutions to Prob-

lem (.), (.). Compared with the works mentioned above, this article has the follow-
ing new features: firstly, the main technique used in this paper is the topological degree
method; secondly, Problem (.), (.) involves the integral initial condition.
The paper is organized as follows.We introduce some necessary definitions and lemmas

in the rest of this section. In Section , we provide some necessary preliminaries, and in
Section , the main results are stated and proved.

Definition . For t < supT and r > infT, define the forward jump operator σ and the
backward jump operator ρ , respectively,

σ (t) = inf{τ ∈ T | τ > t} ∈ T, ρ(r) = sup{τ ∈ T | τ < r} ∈ T

for all t, r ∈ T. If σ (t) > t, t is said to be right scattered, and if ρ(r) < r, r is said to be left
scattered. If σ (t) = t, t is said to be right dense, and if ρ(r) = r, r is said to be left dense. If
T has a right scattered minimumm, define Tk = T – {m}; otherwise, set Tk = T. If T has a
left scattered maximumM, define Tk = T – {M}; otherwise, set Tk = T.

Definition . For x : T –→ R and t ∈ T
k, we define the delta derivative of x(t), x�(t), to

be the number (when it exists) with the property that for any ε > , there is a neighborhood
U of t such that

∣∣[x(σ (t)) – x(s)
]
– x�(t)

[
σ (t) – s

]∣∣ < ε
∣∣σ (t) – s

∣∣

for all s ∈ U . For x : T –→ R and t ∈ Tk, we define the nabla derivative of x(t), x∇ (t), to be
the number (when it exists) with the property that for any ε > , there is a neighborhood
V of t such that

∣∣[x(ρ(t)) – x(s)
]
– x∇ (t)

[
ρ(t) – s

]∣∣ < ε
∣∣ρ(t) – s

∣∣

for all s ∈ V .

Definition . If F�(t) = f (t), then we define the delta integral by

∫ t

a
f (s)�s = F(t) – F(a).

If �∇ (t) = f (t), then we define the nabla integral by

∫ t

a
f (s)∇s = �(t) –�(a).

Throughout this paper, we assume that T is a nonempty closed subset of R with  ∈ Tk ,
T ∈ T

k .
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Lemma . (Alternative theorem) Suppose that X is a Banach space and A is a completely
continuous operator from X to X . Then for any λ �= , only one of the following statements
holds:

(i) For any y ∈ X , there exists a unique x ∈ X , such that

(A – λI)x = y;

(ii) There exists an x ∈ X , x �= , such that

(A – λI)x = .

2 Preliminaries
Let E = Cld([,T]T ,R) be a Banach space equipped with the maximum norm ‖u‖ =
max lim[,T]T |u(t)|.
Consider the following problem:

–
(
φp

(
x�(t)

))∇ = y(t), ∀t ∈ (,T)T, (.)

x() =
∫ T


g(s)x(s)∇s,

x�() = A,
(.)

where y ∈ C([,T]T),
∫ T
 g(s)∇s �= .

Integrating Eq. (.) from  to t, one obtains

φp
(
x�(t)

)
– φp

(
x�()

)
= –

∫ t


y(s)∇s.

Using the initial condition (.), we have

x�(t) = φ–
p

(
φp(A) –

∫ t


y(s)∇s

)
.

Integrating the above equality from  to t again, we obtain

x(t) –
∫ T


g(s)x(s)∇s =

∫ t


φ–
p

(
φp(A) –

∫ τ


y(s)∇s

)
�τ . (.)

Let F(t) :=
∫ t
 φ–

p (φp(A) –
∫ τ

 y(s)∇s)�τ .
Define an operator K : Cld([,T]T) –→ Cld([,T]T) by

(Kx) =
∫ T


g(s)x(s)∇s,

then (.) can be rewritten as

(I –K)x(t) = F(t). (.)

Thus, x(t) is a solution to (.), (.) if and only if it is a solution to (.).

Lemma . I –K is a Fredholm operator.
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Proof To prove that I – K is a Fredholm operator, we need only to show that K is com-
pletely continuous.
It is easy to see from the definition of K that K is a bounded linear operator from

Cld([,T]T) to Cld([,T]T). Obviously, dimR(K) = . So, K is a completely continuous op-
erator. This completes the proof. �

Lemma . Problem (.), (.) admits a unique solution.

Proof Since Problem (.), (.) is equivalent to Problem (.), we need only to show that
Problem (.) has a unique solution.
Using Lemma . and the alternative theorem, it is sufficient to prove that

(I –K)x(t) =  (.)

has a trivial solution x ≡  only.
On the contrary, suppose (.) has a nontrivial solution μ, then μ is a constant, and we

have

Iμ = Kμ = μ.

The definition of K and the above equality yield

[
 –

∫ T


g(s)∇s

]
μ = ,

which is a contradiction to the assumptions
∫ T
 g(s)∇s �=  and μ �≡ .

Thus, we complete the proof. �

3 Main results
Throughout this section, we assume that the following conditions hold.
(H)

∫ T
 |g(s)|∇s =M < ;

(H) f : [,T]T –→R
+∗ is continuous;

(H) a : [,T]T –→R
+ is left dense continuous and maxt∈[,T]T a(t)≤ M;

(H) f (y) ≤ [cφp(|y|) + c]


–k , c, c >  and c <
φp( –M

q–T
)

λMT–k , when k < ;

(H) f (y) ≥ [cφp(|y|)] 
–k , c >  and c <

φp( –M
q–T

)

λMT–k , when k > .
From Lemma . we know that u(t) is a solution to Problem (.), (.) if and only if it is

a solution to the following integral equation:

(I –K)u(t) =
∫ t


φ–
p

(
φp(A) –

∫ τ



λa(s)f (u(s))
(
∫ T
 f (u(s))∇s)k

∇s
)

�τ . (.)

Define an operator F : Cld([,T]T) –→ Cld([,T]T) by

(Fu)(t) =
∫ t


φ–
p

(
φp(A) –

∫ τ



λa(s)f (u(s))
(
∫ T
 f (u(s))∇s)k

∇s
)

�τ ,
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then (.) can be rewritten as

(I –K)u(t) = (Fu)(t).

In order to prove the existence of solutions to (.), we need the following lemmas.

Lemma . F is completely continuous.

Proof Let R be an arbitrary positive real number and denote B = {u ∈ Cld([,T]T);‖u‖ ≤
R}. Then we have for any u ∈ B,

∣∣(Fu)(t)∣∣ ≤
∫ t



∣∣∣∣φ–
p

(
φp(A) –

∫ τ



λa(s)f (u(s))
(
∫ T
 f (u(s))∇s)k

∇s
)∣∣∣∣�τ

≤
∫ T


φ–
p

(∣∣φp(A)
∣∣ +

∣∣∣∣
∫ T



λa(s) supu∈B f
(T infu∈B f )k

∇s
∣∣∣∣
)

�τ

≤ φ–
p

(∣∣φp(A)
∣∣ +MT

λ supu∈B f
(T infu∈B f )k

)
T .

This shows that F(B) is uniformly bounded.
Moreover, for any t ∈ [,T]T, we have

∣∣(Fu)�(t)∣∣ =
∣∣∣∣φ–

p

(
φp(A) –

∫ t



λa(s)f (u(s))
(
∫ T
 f (u(s))∇s)k

∇s
)∣∣∣∣

≤ φ–
p

(∣∣φp(A)
∣∣ +MT

λ supu∈B f
(T infu∈B f )k

)
.

Thus, it is easy to prove that F(B) is equicontinuous. This together with the Ascoli-
Arzelà theorem guarantees that F(B) is relatively compact in Cld([,T]T).
Therefore, F is completely continuous. The proof of Lemma . is completed. �

Theorem. Assume that conditions (H)-(H) hold.Then Problem (.), (.) has at least
one solution.

Proof Lemma . and Lemma . imply that the operator K + F is completely continuous.
It suffices for us to prove that the equation

(
I – (K + F)

)
u =  (.)

has at least one solution.
Define H : [, ]×Cld([,T]T) → Cld([,T]T) as

H(σ ,u) = (K + σF)u,

and it is clear that H is completely continuous.
Set hσ (u) = u –H(σ ,u), then we have

h(u) = (I –K)u,

h(u) =
[
I – (K + F)

]
u.

http://www.boundaryvalueproblems.com/content/2013/1/1


Song and Gao Boundary Value Problems 2013, 2013:1 Page 6 of 7
http://www.boundaryvalueproblems.com/content/2013/1/1

To apply the Leray-Schauder degree to hσ , we need only to show that there exists a ball
BR(θ ) in Cld([,T]T), whose radius R will be fixed later, such that θ /∈ hσ (∂BR(θ )).
If k < , choosing R > q–φ–

p (|φp(A)|+λMT–kc)T
–M–q–φ–

p (λMT–kc)T
, then for any fixed u ∈ ∂BR(θ ), there exists

a t ∈ [,T]T such that |u(t)| = R. By direct calculation, we have

∣∣(hσu)(t)
∣∣

=
∣∣∣∣u(t) –

[∫ T


g(s)u(s)∇s + σ

∫ t


φ–
p

(
φp(A) –

∫ τ



λa(s)f (u(s))
(
∫ T
 f (u(s))∇s)k

∇s
)

�τ

]∣∣∣∣

≥ ∣∣u(t)∣∣ –
∣∣∣∣
∫ T


g(s)u(s)∇s

∣∣∣∣ –
∣∣∣∣
∫ t


φ–
p

(
φp(A) –

∫ τ



λa(s)f (u(s))
(
∫ T
 f (u(s))∇s)k

∇s
)

�τ

∣∣∣∣

≥ ( –M)R –
∫ T


φ–
p

(∣∣φp(A)
∣∣ +

∫ T



λa(s)f (u(s))
(
∫ T
 f (u(s))∇s)k

∇s
)

�τ . (.)

From (H), we have

∣∣(hσu)(t)
∣∣ ≥ ( –M)R –

∫ T


φ–
p

(∣∣φp(A)
∣∣ + λM

(∫ T


f
(
u(s)

)∇s
)–k)

�τ

≥ ( –M)R –
∫ T


φ–
p

[∣∣φp(A)
∣∣ + λMT –k(cφp

(‖u‖) + c
)]�τ

> . (.)

If k > , choosing R > q–|A|T
–M–q–φ–

p (λMT–kc)T
, then for any fixed u ∈ ∂BR(θ ), there exists a

t ∈ [,T]T such that |u(t)| = R. From (H), we have

∣∣(hσu)(t)
∣∣ ≥ ( –M)R –

∫ T


φ–
p

(∣∣φp(A)
∣∣ + λM

(
∫ T
 f (u(s))∇s)k–

)
�τ

≥ ( –M)R –
∫ T


φ–
p

[∣∣φp(A)
∣∣ + λMT –kcφp

(‖u‖)]�τ

> . (.)

If k = , choosing R > φ–
p (|φp(A)|+λM)T

–M , then for any fixed u ∈ ∂BR(θ ), there exists a t ∈
[,T]T such that |u(t)| = R. By direct calculation, we have

∣∣(hσu)(t)
∣∣ ≥ ( –M)R –

∫ T


φ–
p

(∣∣φp(A)
∣∣ + λM

)�τ

> . (.)

This implies hσu �= θ and hence we obtain θ /∈ hσ (∂BR(θ )).
Since deg(h,BR(θ ), θ ) = deg(h,BR(θ ), θ ) = ± �= , we know that (.) admits a solution

u ∈ BR(θ ), which implies that (.), (.) also admits a solution in BR(θ ). �
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