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Abstract
The paper deals with the problem of the existence of a branch of T -periodic solutions
originating from the isolated limit cycle of an autonomous parabolic equation in a
Banach space when it is perturbed by a nonlinear T -periodic term of small amplitude.
We solve this problem by first introducing a novel integral operator, whose fixed

points are T -periodic solutions of the considered equation and vice versa. Then we
compute the Malkin bifurcation function associated to this integral operator and we
provide conditions under which the well-known assumption of the existence of a
simple zero of the Malkin bifurcation function guarantees the existence of the branch.
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1 Introduction
In recent years, bifurcation problems for smooth and nonsmooth dynamical systems have
received a renewed attention and interest from different fields of engineering, physics and
mathematics. We mention here, among others, the monographs [–] and the review pa-
pers [, ]. Of particular interest is the study of the bifurcation of periodic solutions for
periodically perturbed autonomous systems of the form:

ẋ = φ(x) + εψ(t,x, ε), ()

where φ ∈ C(Rn,Rn), ψ ∈ C(R × R
n × [, ],Rn), ψ is T-periodic with respect to time

and ε ≥  is a small parameter. Precisely, one seeks for the existence of a family of
T-periodic solutions originating from a limit cycle x of the autonomous unperturbed
system.
Existence, uniqueness and asymptotic stability of bifurcating periodic solutions for sys-

tem () are classical problems; see [, ]. The main tool employed in these papers is the
so-called Malkin bifurcation function:

f(θ ) =
∫ T



〈
z(τ ),ψ

(
τ – θ ,x(τ ), 

)〉
dτ ,
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where z is a T-periodic solution of

ż = –
(
φ′(x(t)))∗z

the adjoint system of the linearized system

ẏ = φ′(x(t))y.
It is assumed that the linearized systemhas only one characteristicmultiplierwith absolute
value .
Since the pioneering papers [, ], a relevant bibliography devoted to this subject has

been developed. From this bibliography, we quote in the sequel some of the papers more
related to the present paper. In [], the case when the cycle x is not isolated was con-
sidered. By means of suitably defined bifurcation functions fm,n,m,n ∈N, calledMelnikov
subharmonic functions, the existence of periodic solutions near to x was proved. The pe-
riods of the solutions are inm : n ratio with respect to the period of the perturbation term.
The case when  is not a simple multiplier of the linearized system was treated in []. The
existence of at least two branches of T-periodic solutions originating from x is shown in
[, ] and their stability, in the sense of Lyapunov, follows from the results of [, ].
Developments of theMalkin’s andMelnikov’s approaches have permitted to prove several
results about the existence of bifurcating solutions in [–]. Furthermore, the use of a
Melnikov function permits to detect chaotic behavior of a suitable iterate of the Poincaré
map �ε associated to the differential equation (), which is assumed to have a homoclinic
orbit. Indeed, the existence of a simple zero of the considered Melnikov function ensures
such a chaotic behavior; see [, ].
Very recently, in [], a new method to prove bifurcation of a branch of asymptotically

stable periodic solutions to () has been proposed. Themethod consists first in converting
the problem of finding fixed points of the singular Poincaré map �ε , ε ≥ , associated to
() into the problem of the existence of zeros of an equation of the form:

P(x) + εQ(x, ε) = ,

where P : Rn → R
n and Q : Rn × [, ] → R

n are given by P(x) = �(x) – x and Q(x, ε) =
�ε (x)–�(x)

ε
with singular P′(x). Then, by a convenient scaling of the variable x, we intro-

duce an equivalent equation �(w, ε) = . For this equation, under the usual assumption
of the existence of a simple zero of the Malkin bifurcation function associated to (), the
classical implicit function theorem can be applied to prove the existence of a branch of
solutions originating from x.
The same approach has been employed in [] for a class of systems for which the re-

sulting operators P and Q satisfy regularity conditions, which permit to apply the implicit
function theorem, only along certain directions at the point x(·) of the limit cycle. Con-
ditions to ensure the existence of several branches of T-periodic solution emanating from
x are provided by means of suitably defined Malkin bifurcation functions.
In all the papers cited before, the existence of periodic solutions for ε ≥  small is a con-

sequence of the application of a convenient version of the implicit function theorem. This
requires, as assumed for system (), that φ ∈ C(Rn,Rn) and ψ ∈ C(R × R

n × [, ],Rn).
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Under less restrictive regularity conditions, by using topological tools such as the coin-
cidence degree [], the Leray-Schauder degree and the related continuation principles
[–], existence results for ε ≥  small have been proved in [] when the autonomous
system is Hamiltonian and in [, ] when the limit cycle is isolated. More precisely, in
[, ] the existence of two branches of T-periodic solutions was proved. Roughly speak-
ing, in these papers, the bifurcation functions are employed to guarantee that the topo-
logical degree of certain operators is different from zero, rather than for the application of
an implicit function theorem.
Topological degree arguments have been also employed in [] to show the existence

of periodic solutions for ε ≥  small in the case when the unperturbed system is nonau-
tonomous and the perturbation consists of two nonlinear periodic terms with multiplica-
tive different powers of ε ≥ . Finally, the behavior of the bifurcating periodic solutions
when the perturbation vanishes has been studied in [] for a nonsmooth system of the
form () having an isolated limit cycle and in [] for nonsmooth planar Hamiltonian sys-
tems.
A first attempt to extend to infinite dimensional bifurcation problem the approach out-

lined in [] has been presented in [], with the aim of studying the bifurcation of peri-
odic solutions for a functional differential equation of neutral type. In the present paper,
we precise and generalize the idea of how to use a suitable abstract Malkin bifurcation
function to deal with infinite dimensional bifurcation problems. To this aim, we consider
the following autonomous differential equation of parabolic type periodically perturbed
by a nonlinear term of small amplitude:

ẋ = Ax + φ(x) + εψ(t,x, ε), t ≥ , ε > , ()

where A is the infinitesimal generator of a strongly continuous semigroup eAt , t ≥ , act-
ing in the Banach space E, satisfying the Radon-Nikodym property, φ : E → E is twice
continuously Frechét differentiable and ψ : R × E × [, ] → E is continuously Frechét
differentiable with respect to x, ε and T-periodic with respect to time. The functions φ

and ψ satisfy suitable condensivity conditions with respect to the Hausdorff measure of
noncompactness. The crucial assumption is that the unperturbed equation at ε =  has a
continuous T-periodic isolated solution x :R → E, i.e., x ∈ CT (E).
The paper is organized as follows. In Section , we precise the conditions under which

there is at least a branch of T-periodic solutions to () emanating from x. This existence
result follows from the application of [, Theorem ]; this theorem relies on the method
introduced in []. Precisely, to solve the bifurcation problem for (), we introduce an
equivalent integral equation whose zeros are the T-periodic solutions to () and that we
rewrite in the following form:

P̃(x) + εQ̃(x, ε) = ,

where P̃ : CT (E) → CT (E) and Q̃ : CT (E) × [, ] → CT (E). This equation has a branch of
solutions originating from x(θ) if the Malkin bifurcation function given by

M(θ ) =
∫ T



〈
Q̃

(
x(θ ), 

)
(t), z(t + θ )

〉
dt, θ ∈ [,T],
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has θ ∈ [,T] as simple zero. Here, for any θ ∈ [,T],x(θ ) ∈ CT (E) is given by x(θ )(·) :=
xθ (·) = x(· + θ ), z(θ ) is the eigenvector corresponding to the simple eigenvalue  of
(P̃′(x(θ )))∗ and 〈·, ·〉 denotes the duality pairing of E with its dual E′. The main difficulty
to verify the conditions of [, Theorem ] consists in proving that the zero eigenvalue
of P̃′(x(θ )) is simple. In fact, in this case, the assumption that the linearized equation,
around the limit cycle x(θ ), θ ∈ [,T], of the autonomous system at ε = , does not have
neitherT-periodic solutions linearly independent with x′

(θ ) nor Floquet adjoint solutions
to x′

(θ ) does not guarantee that the zero eigenvalue of P̃′(x(θ )) is simple. To overcome
this difficulty, we define in Section  a novel integral operator, equivalent to that associ-
ated to () with the property that for the resulting equation P(x)+εQ(x, ε) = , the operator
P′(x(θ )) has  as simple eigenvalue.
Furthermore, in Section ,we calculate theMalkin bifurcation function associated to the

integral operator introduced in Section , and we formulate in Theorem  the result of the
existence of a branch of T-periodic solutions parameterized by ε ≥  small. Proposition 
of Section  states a somewhat surprising result: the Malkin functions associated to the
two integral operators coincide and they have the common form of the classical Malkin
function introduced for ordinary differential equations in finite dimensional spaces of the
form (). Finally, in Section , we provide a concrete example of a system of partial differ-
ential equations to which our abstract bifurcation result applies.

2 Assumptions and statement of the problem
The paper deals with the problem of the existence of bifurcation of T-periodic solutions
for the T-periodically perturbed autonomous equation of the form

ẋ = Ax + φ(x) + εψ(t,x, ε), t ≥ , ε ≥ , ()

from a T-periodic limit cycle x of the unperturbed system corresponding to ε = . Here,
A is the infinitesimal generator of a strongly continuous semigroup eAt , t ≥ , acting in
the Banach space E, which satisfies the Radon-Nikodym property; see [, Theorem ,
p.]; φ : E → E, ψ : R × E × [, ] → E is T-periodic and x ∈ CT (E), the space of T-
periodic continuous functions x :R → E.
Throughout the paper, we assume the following conditions on A, φ and ψ .
(H) (eAt)∗ = eA∗t and there exists α >  such that

∥∥eAt∥∥E ≤ e–αt , t ≥ .

(H) φ is twice continuously Fréchet differentiable, ψ is continuously Fréchet differen-
tiable with respect to the pair (x, ε). Moreover, for any nonempty, bounded set 
 ⊂ E we
have

χ
(
φ(
)

) ≤ kχ (
);

χ
(
ψ

(
[,T]× 
 × [, ]

)) ≤ lχ (
),

where  < k/α < , l >  and χ (·) is the Hausdorff measure of noncompactness [].
(H) The unperturbed equation

ẋ = Ax + φ(x) ()

http://www.boundaryvalueproblems.com/content/2013/1/101
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has a T-periodic isolated solution x ∈ CT (E), hence the set of shifts xθ (·) = x(· + θ ), for
any θ ∈ [,T], represents a family of T-periodic solutions to (). Moreover, for θ ∈ [,T],
we have that yθ (t) := x′

θ (t) is a T-periodic solution to the linearized equation

ẏ = Ay + φ′(x(θ ))y, ()

where x(θ ) := xθ .We assume that x′
(θ ) �=  for any θ ∈ [,T] and that () does not possess

neither T-periodic solution linearly independent with yθ (t) nor Floquet adjoint solution
to yθ (t), whenever θ ∈ [,T], i.e., () does not have solutions of the form

y(t) = v(t) +
t
T
yθ (t),

where v(t) is a T-periodic function.
We pose the following.

Problem To find conditions to ensure the existence of a branch of T-periodic solu-
tions to () parameterized by ε ≥ , originating, for some θ ∈ [,T], from the family of
T-periodic solutions x(θ ).

To solve this problem, we first reduce the existence of T-periodic solutions to () to the
problem of finding fixed points of an integral equation. For this, we introduce the linear
operator J : CT (E)→ CT (E) as follows:

(Jy)(t) := eAt
(
I – eAT

)– ∫ T


eA(T–s)y(s)ds +

∫ t


eA(t–s)y(s)ds.

Therefore, if we let

(
Jrε(y)

)
(t) := J

(
φ
(
y(t)

)
+ εψ

(
t, y(t), ε

))
,

then a function y ∈ CT (E) satisfying

J
(
rε(y)

)
= y ()

is a solution to () and vice versa. Moreover, it is easy to verify that the equation

(
J ′
(
r(xθ )

))
y = y

is equivalent to the linearized unperturbed equation

ẏ = Ay + aθ (t)y,

where aθ (t) := φ′(x(t + θ )). Hence, we can rewrite () in the following form:

P̃(y) + εQ̃(y, ε) = , ()

http://www.boundaryvalueproblems.com/content/2013/1/101
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where P̃ : CT (E)→ CT (E) and Q̃ : CT (E)× [, ] → CT (E) are defined as follows:

P̃(y)(t) := y(t) – eAt
(
I – eAT

)– ∫ T


eA(T–s)φ

(
y(s)

)
ds –

∫ t


eA(t–s)φ

(
y(s)

)
ds,

and

Q̃(y, ε)(t) := –eAt
(
I – eAT

)– ∫ T


eA(T–s)ψ

(
s, y(s), ε

)
ds –

∫ t


eA(t–s)ψ

(
s, y(s), ε

)
ds.

In conclusion, our problem will be solved if we show that for ε ≥  sufficiently small,
equation () has a solution. To this end, it would be sufficient to verify the conditions of
the following result.

Theorem  ([, Theorem ]) Let B be a Banach space, let P : B → B be a twice continu-
ously Fréchet differentiable map and Q : B× [, ] → B continuously Fréchet differentiable
with respect to both the variables.
Assume that the equation P(x) =  has one-dimensional set of solutions x(θ ) ∈ B, pa-

rameterized by θ ∈ [,T], such that there exists x′′
(θ ) for any θ ∈ [,T] and x′

(θ ) �= 
for any θ ∈ [,T]. Assume that the eigenvalue  ∈ σ (P′(x(θ ))) is simple and the opera-
tor I – P′(x(θ )) : B → B is compact, whenever θ ∈ [,T]. Consider the function defined
by

M(θ ) :=
∫ T



〈
Q

(
x(θ ), 

)
(t), z(t + θ )

〉
dt,

where z(θ ) is the eigenvector corresponding to the simple eigenvalue  ∈ σ (P′(x(θ )))∗.
Here, ∗ denotes the adjoint operator.
Then, for each θ ∈ [,T] such that M(θ) =  and M′(θ) �=  the equation P(x) +

εQ(x, ε) =  is solvable, for ε ≥  sufficiently small, in a neighborhood of the point x(θ)
and the solution has the form

x(ε) = x(θ) + εw + o(ε),

where w ∈ B can be determined in explicit form as shown in [, Theorem .] and [,
Lemma ].

As it has been observed in [], the compactness of the operator I – P′(x(θ )) can be
replaced by the condensivity of I –P′(x(θ )) with respect to theHausdorffmeasure of non-
compactness. Indeed, as it is shown in [], under assumptions (H)-(H), the operator
I –P and thus I –P′(x(θ )), see [, Theorem ..], are condensing with constant k/α < .
Furthermore, [, Theorem ..] ensures that zero is an eigenvalue of P′(x(θ )) of finite
multiplicity. Therefore, under assumptions (H)-(H), one can easily verify that the condi-
tions of the previous Theorem  are satisfied for () except the condition of the simplicity
of the zero eigenvalue of P̃′(x(θ )), θ ∈ [,T]. In fact, the assumption that () does not
possess neither T-periodic solutions linearly independent with yθ (t), nor Floquet adjoint
solutions to yθ (t), whenever θ ∈ [,T], does not imply that the zero eigenvalue of P̃′(x(θ ))
is simple, despite the existence of a bijection between the T-periodic solutions to () and

http://www.boundaryvalueproblems.com/content/2013/1/101
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the T-periodic solutions to P̃′(x(θ )) = . Moreover, as it shown in [] the simplicity of
the zero eigenvalue of P̃′(x(θ )) does not imply that the T-periodic solution yθ (t) to () has
the property mentioned above.
In conclusion, in order to apply Theorem , we will introduce a novel integral operator

whose fixed points are also fixed points of () and vice versa, and thusT-periodic solutions
to (). Moreover, we will show that the zero eigenvalue of the corresponding operator
P′(x(θ )) is simple. This is the aim of the next section.

3 A novel equivalent integral operator
Let Fε(y) := P̃(y) + εQ̃(y, ε), hence equation () reads as Fε(y) = . Consider the integral
equation

Fε(y)(t) – ξ (t)
∫ τ


Fε(y)(s)ds = , t ∈ [,T], ()

where ξ : E → CT (E) is defined in the next lemma and τ ∈ [,T] is a given point.
For any fixed θ ∈ [,T], let e := x′

(θ ) �= , γ :=
∫ τ

 e(s)ds and β := 〈f , ∫ τ

 (Je)(s)ds〉
where f ∈ E′.
We can now formulate the following result.

Lemma  Assume (H)-(H) and that τ ∈ [,T] and f ∈ E′ satisfy the conditions:
(H) γ �= .
(H) β �= .
(H) 〈f ,γ〉 = .

Define ξ : E → CT (E) as follows:

∀x ∈ E, ξ (t)x := 〈f ,x〉g(t), t ∈ [,T],

where g := e + 
β
(Je) ∈ CT (E). Then () is equivalent to ().Moreover, the zero eigenvalue

of P′(x(θ )) is simple, where P : CT (E)→ CT (E) is given by

P(y)(t) := P̃(y)(t) – ξ (t)
∫ τ


P̃(y)(s)ds, t ∈ [,T].

Proof First of all observe that, under our assumptions, we have that

 /∈ σ

(∫ τ


ξ (s)ds

)
.

Indeed, arguing by contradiction assume that ŷ ∈ E is such that

(∫ τ


ξ (s)ds

)
ŷ = ŷ,

then, by the definition of ξ , we obtain

(∫ τ


ξ (s)ds

)
ŷ = 〈f , ŷ〉

∫ τ


g(s)ds,

http://www.boundaryvalueproblems.com/content/2013/1/101
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hence

ŷ = 〈f , ŷ〉
∫ τ


g(s)ds,

thus ŷ and
∫ τ

 g(s)ds are linearly dependent, i.e.,
∫ τ

 g(s)ds is also an eigenvector of∫ τ

 ξ (s)ds, that is,

∫ τ


ξ (s)ds

∫ τ


g(s)ds =

∫ τ


g(s)ds.

In conclusion, we should have

〈
f ,

∫ τ


g(s)ds

〉
= .

On the other hand, as it is easy to verify our conditions imply that

〈
f ,

∫ τ


g(s)ds

〉
= . ()

We now prove the equivalence between () and (). Clearly, if Fε(y) =  for some y ∈
CT (E) then () is satisfied. Conversely, assume that y ∈ CT (E) is a solution to (), hence

Fε(y)(t) – ξ (t)
∫ τ


Fε(y)(s)ds = , t ∈ [,T].

Integrating on the interval [, τ ], we obtain

∫ τ


Fε(y)(s)ds –

∫ τ


ξ (s)ds

∫ τ


Fε(y)(s)ds = ,

or equivalently,

(
I –

∫ τ


ξ (s)ds

)∫ τ


Fε(y)(s)ds = . ()

Since  /∈ σ (
∫ τ

 ξ (s)ds) from (), it follows that
∫ τ

 Fε(y)(s)ds =  and so from () we get
Fε(y) = .
It remains to prove the second part of the lemma. For this, given θ ∈ [,T], let aθ (t) :=

φ′(x(t + θ )), t ∈ [,T], and let (αθy)(t) := aθ (t)y(t). To simplify the notation in the sequel,
we omit the subscript θ . Observe that

F ′

(
x(θ )

)
y = P̃′(x(θ ))y = y – J(αy).

Then the equation

(
F ′

(
x(θ )

)
y
)
(t) – ξ (t)

∫ τ



(
F ′

(
x(θ )

)
y
)
(s)ds = 

http://www.boundaryvalueproblems.com/content/2013/1/101
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can be rewritten as follows:

y(t) –
(
J(αy)

)
(t) – ξ (t)

∫ τ



(
y(s) –

(
J(αy)

)
(s)

)
ds = . ()

For t ∈ [,T], define

P(y)(t) := P̃(y)(t) – ξ (t)
∫ τ


P̃(y)(s)ds

and

Q(y, ε)(t) := Q̃(y, ε)(t) – ξ (t)
∫ τ


Q̃(y, ε)(s)ds,

then the equation () takes the form

P′(x(θ ))y = .

Clearly, e is an eigenvector of P′(x(θ )) corresponding to the zero eigenvalue, i.e.,
P′(x(θ ))e = . Assume now that there exists an adjoint vector e to e, namely

P′(x(θ ))e = e,

or

e(t) –
(
J(αe)

)
(t) – ξ (t)

∫ τ



(
e(s) –

(
J(αe)

)
(s)

)
ds = e(t) ()

for any t ∈ [,T]. By assumption, there are no adjoint Floquet solutions to (), thus

ė(t) = Ae(t) + a(t)e(t) – e(t) ()

does not possess T-periodic solution e(t). The integral form of () is given by

e(t) =
(
J(αe)

)
(t) – (Je)(t). ()

Therefore, it remains to show that () and () coincide, namely

ξ (t)
∫ τ



(
e(s) –

(
J(αe)

)
(s)

)
ds + e(t) = –(Je)(t). ()

For this, integrating () on the interval [, τ ], we obtain

∫ τ



(
e(s) –

(
J(αe)

)
(s)

)
ds –

∫ τ


ξ (s)ds

∫ τ



(
e(s) –

(
J(αe)

)
(s)

)
ds =

∫ τ


e(s)ds,

that is
(
I –

∫ τ


ξ (s)ds

)∫ τ



(
e(s) –

(
J(αe)

)
(s)

)
ds =

∫ τ


e(s)ds.

http://www.boundaryvalueproblems.com/content/2013/1/101
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On the other hand  /∈ σ (
∫ τ

 ξ (s)ds), thus

∫ τ



(
e(s) –

(
J(αe)

)
(s)

)
ds =

(
I –

∫ τ


ξ (s)ds

)– ∫ τ


e(s)ds. ()

From (), we get the following form for ()

ξ (t)
(
I –

∫ τ


ξ (s)ds

)– ∫ τ


e(s)ds = –e(t) – (Je)(t). ()

Then

(
I –

∫ τ


ξ (s)ds – I

)(
I –

∫ τ


ξ (s)ds

)– ∫ τ


e(s)ds =

∫ τ



(
e(s) + (Je)(s)

)
ds,

hence

∫ τ


e(s)ds –

(
I –

∫ τ


ξ (s)ds

)– ∫ τ


e(s)ds =

∫ τ



(
e(s) + (Je)(s)

)
ds,

and

(
I –

∫ τ


ξ (s)ds

)– ∫ τ


e(s)ds = –

∫ τ


(Je)(s)ds. ()

Finally substituting () into (), we obtain

ξ (t)
∫ τ


(Je)(s)ds = e(t) + (Je)(t). ()

By our definition ξ (t)x = 〈f ,x〉g(t), g(t) = 
β
(e(t) + (Je)(t)), with 〈f , ∫ τ

 e(s)ds〉 =  and
〈f , ∫ τ

 (Je)(s)ds〉 = β . Therefore, () is satisfied and this concludes the proof. �

Remark  Observe that a little though convinces of the existence of τ ∈ [,T] and f ∈ E′

satisfying the conditions (H)-(H) of Lemma .
Furthermore, recall that assumptions (H)-(H) ensure that the operator I – P is con-

densing with constant k/α <  (see []); moreover, [, Theorem ..] guarantees that
I – P′(x(θ )) is also condensing with the same constant. Finally, by [, Theorem ..],
zero turns out to be an eigenvalue of P′(x(θ )) of finite multiplicity. The second part of the
proof of Lemma  shows that it is simple.

4 TheMalkin bifurcation function
In the previous section, Lemma  states that the operatorP, associated to the integral equa-
tion () satisfies the conditions of Theorem . This section is devoted to the computation
of the following Malkin bifurcation functionMξ (θ ) associated to ()

Mξ (θ ) :=
∫ T



〈
Q̃

(
x(θ ), 

)
(t), z(t + θ )

〉
dt –

∫ T



〈
ξ (t)

∫ τ


Q̃

(
x(θ ), 

)
(s)ds, z(t + θ )

〉
dt,

http://www.boundaryvalueproblems.com/content/2013/1/101
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where z(θ ) is an eigenvector of (P′(x(θ )))∗, i.e.,

(
P′(x(θ )))∗z(θ ) = .

For notational convenience, we simply denote z(θ ) ∈ CT (E) by z. In order to compute
Mξ (θ ), it is necessary to determine z in explicit form. The following result solves the
problem.

Lemma  Assume (H)-(H), we have that

z(t) = γ (t) – 1[,τ ](t)
∫ T



〈
g(t),γ (t)

〉
f dt,

where γ is an eigenvector of (Jα)∗ corresponding to the eigenvalue  and 1[,τ ] is the char-
acteristic function of the interval [, τ ].

Proof By assumption, E has the Radon-Nikodym property, then the eigenvalue of
(P′(x(θ )))∗ can be determined, without loss of generality in the Hilbert space H

T . Hence,
for any x, y ∈ CT (E) we have

∫ T



〈
P′(x(θ ))x(t), y(t)〉dt

=
∫ T



〈
x(t) –

(
J(αx)

)
(t) – ξ (t)

∫ τ



(
x(s) –

(
J(αx)

)
(s)

)
ds, y(t)

〉
dt.

First, by using assumption (H), we calculate

∫ T



〈(
J(αx)

)
(t), y(t)

〉
dt

=
∫ T



〈
eAt

(
I – eAT

)– ∫ T


eA(T–s)a(s)x(s)ds +

∫ t


eA(t–s)a(s)x(s)ds, y(t)

〉
dt

=
∫ T



〈∫ T


eA(T–s)a(s)x(s)ds,

(
I – eA

∗T)–eA∗ty(t)
〉
dt

+
∫ T



〈∫ t


eA(t–s)a(s)x(s)ds, y(t)

〉
dt

=
∫ T



∫ T



〈
eA(T–s)a(s)x(s),

(
I – eA

∗T)–eA∗ty(t)
〉
dsdt

+
∫ T



∫ t


〈eA(t–s)a(s)x(s), y(t)〉dsdt

=
∫ T



∫ T



〈
e–Asa(s)x(s), eA

∗T(
I – eA

∗T)–eA∗ty(t)
〉
dt ds

+
∫ T



∫ T

s

〈
e–Asa(s)x(s), eA

∗ty(t)
〉
dt ds

=
∫ T



〈
x(s),

∫ T


a∗(s)eA

∗(T–s)(I – eA
∗T)–eA∗ty(t)dt

〉
ds

+
∫ T



〈
x(s),

∫ T

s
a∗(s)eA

∗(t–s)y(t)dt
〉
ds.
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Therefore, we have

(
(Jα)∗y

)
(t) =

∫ T


a∗(t)eA∗(T–t)(I – eA

∗T)–eA∗sy(s)ds +
∫ T

t
a∗(t)eA∗(s–t)y(s)ds. ()

We now calculate the adjoint operator for ξ
∫ τ

 (x(s) – (J(αx))(s))ds. For this, consider

∫ T



〈
ξ (t)

∫ τ



(
x(s) –

(
J(αx)

)
(s)

)
ds, y(t)

〉
dt

=
∫ T



〈∫ τ



(
x(s) –

(
J(αx)

)
(s)

)
ds, ξ ∗(t)y(t)

〉
dt

=
∫ T



〈∫ T


1[,τ ](s)

(
x(s) –

(
J(αx)

)
(s)

)
ds, ξ ∗(t)y(t)

〉
dt

=
∫ T



〈
1[,τ ](s)

(
x(s) –

(
J(αx)

)
(s)

)
,
∫ T


ξ ∗(t)y(t)dt

〉
ds

=
∫ T



〈
x(s) –

(
J(αx)

)
(s),1[,τ ](s)

∫ T


ξ ∗(t)y(t)dt

〉
ds

=
∫ T



〈
x(s),1[,τ ](s)

∫ T


ξ ∗(t)y(t)dt

〉
ds –

∫ T



〈
x(s), (Jα)∗1[,τ ](s)

∫ T


ξ ∗(t)y(t)dt

〉
ds

=
∫ T



〈
x(s),1[,τ ](s)

∫ T


ξ ∗(t)y(t)dt – (Jα)∗1[,τ ](s)

∫ T


ξ ∗(t)y(t)dt

〉
ds.

Thus,

(
ξ (t)

∫ τ



(
y(s) –

(
(Jα)∗y

)
(s)

)
ds

)∗

= 1[,τ ](t)
∫ T


ξ ∗(t)y(t)dt – (Jα)∗1[,τ ](t)

∫ T


ξ ∗(t)y(t)dt.

Finally, we calculate ξ ∗(t), for this consider

〈
ξ (t)x, y

〉
=

〈〈f ,x〉g(t), y〉 = 〈f ,x〉〈g(t), y〉 = 〈
x,

〈
g(t), y

〉
f
〉
,

i.e.

ξ ∗(t)y =
〈
g(t), y

〉
f .

Now, we are in the position to determine the eigenvector z of (P′(x(θ )))∗. We have that

z(t) = (Jα)∗z(t) + 1[,τ ](t)
∫ T



〈
g(s), z(s)

〉
f ds – (Jα)∗1[,τ ](t)

∫ T



〈
g(s), z(s)

〉
f ds.

Then

z(t) – 1[,τ ](t)
∫ T



〈
g(s), z(s)

〉
f ds = (Jα)∗

(
z(t) – 1[,τ ](t)

∫ T



〈
g(s), z(s)

〉
f ds

)
.
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Let γ (t) := z(t) – 1[,τ ](t)
∫ T
 〈g(s), z(s)〉f ds, then the previous equation takes the form

γ = (Jα)∗γ , ()

namely γ is an eigenvector of the linear operator (Jα)∗ : CT (E)→ CT (E) corresponding to
the simple eigenvalue . Therefore, by replacing y with γ in (), we obtain

γ (t) =
∫ T


a∗(t)eA

∗(T–t)(I – eA
∗T)–eA∗sγ (s)ds +

∫ T

t
a∗(t)eA

∗(s–t)γ (s)ds.

The aim now is to find γ , for this consider the adjoint equation to ()

v̇(t) = –A∗v(t) – a∗(t)v(t) ()

and the solution of (), defined for t ∈ [,T], given by

v(t) = e–A
∗(t–T)v(T) +

∫ t

T
e–A

∗(t–s)(–a∗(s)
)
v(s)ds. ()

For t = , we have

v() = eA
∗Tv(T) +

∫ T


eA

∗sa∗(s)v(s)ds.

Since v is T-periodic, we obtain

v(T) =
(
I – eA

∗T)– ∫ T


eA

∗sa∗(s)v(s)ds. ()

By using () into (), we get

v(t) = eA
∗(T–t)(I – eA

∗T)– ∫ T


eA

∗sa∗(s)v(s)ds +
∫ T

t
e–A

∗(t–s)a∗(s)v(s)ds. ()

Put ω(t) := –v̇(t) –A∗v(t), then ω(t) = a∗(t)v(t) and () becomes

v(t) = eA
∗(T–t)(I – eA

∗T)– ∫ T


eA

∗sω(s)ds +
∫ T

t
eA

∗(s–t)ω(s)ds.

Therefore,

ω(t) =
∫ T


a∗(t)eA

∗(T–t)(I – eA
∗T)–eA∗sω(s)ds +

∫ T

t
a∗(t)eA

∗(s–t)ω(s)ds,

i.e., ω(t) is a solution to (). Hence,

γ (t) = –v̇(t) –A∗v(t),

where v(t) is the T-periodic solution to the adjoint equation (). Finally, from

z(t) – 1[,τ ](t)
∫ T



〈
g(s), z(s)

〉
f ds = γ (t),
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we obtain

∫ T



〈
g(t), z(t)

〉
dt –

∫ T


1[,τ ](t)

∫ T



〈
g(s), z(s)

〉
ds

〈
g(t), f

〉
dt

=
∫ T



〈
g(t),γ (t)

〉
dt,

and

∫ T



〈
g(t), z(t)

〉
dt –

∫ T



〈
g(s), z(s)

〉
ds

〈∫ τ


g(t)dt, f

〉
=

∫ T



〈
g(t),γ (t)

〉
dt.

By (), we get

∫ T



〈
g(t), z(t)

〉
dt = –

∫ T



〈
g(t),γ (t)

〉
dt.

In conclusion,

z(t) = γ (t) – 1[,τ ](t)
∫ T



〈
g(t),γ (t)

〉
f dt. �

Lemmas  and , together with the fact that (H)-(H) ensure the condensivity of I –
P′(x(θ )), θ ∈ [,T], of constant  < k/α <  (see []) allow to apply Theorem  to state
the following.

Theorem  Assume (H)-(H). If there exists θ ∈ [,T] such that Mξ (θ) =  and
M′

ξ (θ) �= . Then there exists a branch of T-periodic solutions to () of the form

x(ε) = x(θ) + εw + o(ε)

for ε ≥  sufficiently small and w ∈ CT (E).

Remark  The function w can be calculated in an explicit form as shown in [, Theo-
rem .] and [, Lemma ].

5 An invariance property of theMalkin bifurcation function
In what follows, we state an interesting property of the Malkin bifurcation functions in-
troduced before. Precisely, we can prove the following result.

Proposition  Let θ ∈ [,T], assume that  ∈ σ (P̃′(x(θ ))) is simple. Then the Malkin
bifurcation function M(θ ) associated to system () coincide with the Malkin bifurcation
function Mξ (θ ) associated to system ().

Proof Consider

Mξ (θ ) =
∫ T



〈
Q̃

(
x(θ ), 

)
(t), z(t)

〉
dt –

∫ T



〈
ξ (t)

∫ τ


Q̃

(
x(θ ), 

)
(s)ds, z(t)

〉
dt

=
∫ T



〈
Q̃

(
x(θ ), 

)
(t),γ (t)

〉
dt
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–
∫ T



〈
Q̃

(
x(θ ), 

)
(t),1[,τ ](t)

∫ T



〈
g(s),γ (s)

〉
ds f

〉
dt

–
∫ T



〈
ξ (t)

∫ τ


Q̃

(
x(θ ), 

)
(s)ds,γ (t) – 1[,τ ](t)

∫ T



〈
g(s),γ (s)

〉
ds f

〉
dt.

Let μ :=
∫ T
 〈g(s),γ (s)〉ds, then by () we have

Mξ (θ ) =
∫ T



〈
Q̃

(
x(θ ), 

)
(t),γ (t)

〉
dt –

∫ T



〈
Q̃

(
x(θ ), 

)
(t),1[,τ ](t)μf

〉
dt

–
∫ T



〈〈
f ,

∫ τ


Q̃

(
x(θ ), 

)
(s)ds

〉
g(t),γ (t) – 1[,τ ](t)μf

〉
dt

=
∫ T



〈
Q̃

(
x(θ ), 

)
(t),γ (t)

〉
dt –

∫ T



〈
Q̃

(
x(θ ), 

)
(t),1[,τ ](t)μf

〉
dt

–
∫ T



〈〈
f ,

∫ τ


Q̃

(
x(θ ), 

)
(s)ds

〉
g(t),γ (t)

〉
dt

+
∫ T



〈〈
f ,

∫ τ


Q̃

(
x(θ ), 

)
(s)ds

〉
g(t),1[,τ ](t)μf

〉
dt

=
∫ T



〈
Q̃

(
x(θ ), 

)
(t),γ (t)

〉
dt – 

∫ T



〈
Q̃

(
x(θ ), 

)
(t),1[,τ ](t)μf

〉
dt

+
∫ T



〈
f ,

∫ τ


Q̃

(
x(θ ), 

)
(s)ds

〉〈
g(t),1[,τ ](t)μf

〉
dt

=
∫ T



〈
Q̃

(
x(θ ), 

)
(t),γ (t)

〉
dt – 

∫ τ



〈
Q̃

(
x(θ ), 

)
(t),μf

〉
dt

+ μ
〈
f ,

∫ τ


Q̃

(
x(θ ), 

)
(s)ds

〉
=

∫ T



〈
Q̃

(
x(θ ), 

)
(t),γ (t)

〉
dt =M(θ ). �

Remark  M(θ ) can be rewritten in the classical form of the Malkin bifurcation function
f(θ ) for ordinary differential equations as () of the Introduction. In fact, consider

M(θ ) =
∫ T



〈
Q̃

(
x(θ ), 

)
(t),γ (t)

〉
dt =

∫ T



〈
–
(
J�

(
x(θ )

))
(t), –v̇(t) –A∗v(t)

〉
dt

=
∫ T



〈(
J�

(
x(θ )

))
(s), v̇(s)

〉
ds +

∫ T



〈(
J�

(
x(θ )

))
(s),A∗v(s)

〉
ds

=
〈(
J�

(
x(θ )

))
(t), v(t)

〉∣∣T
 –

∫ T



〈
A

(
J�

(
x(θ )

))
(t) +�

(
x(θ )

)
(t), v(t)

〉
dt

+
∫ T


A

〈(
J�

(
x(θ )

))
(t), v(t)

〉
dt.

Since (J�(x(θ )))() = (J�(x(θ )))(T), v() = v(T), � is the superposition operator gener-
ated by ψ and v solves () we have

M(θ ) =
∫ T



〈
ψ

(
t,x(t + θ ), 

)
, v(t + θ )

〉
dt.
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6 An example
In order to introduce an example consistent with the general approach of the paper that
requires the employ of the theory of condensing operators, we are led to consider partial
differential equations of hyperbolic type, whose abstract formulation in Banach spaces
gives rise to infinitesimal generators of noncompact C-semigroups; see, e.g., [].
Precisely, following [] and [], we present a concrete, not academic example con-

cerning the existence of periodic solutions of a system of two autonomous damped wave
equations in a thin domain with Neumann boundary conditions. The study of the dynam-
ics of partial differential equations in thin domains has receivedmany attention in the past
few years; see [] and the extensive references therein. The system has the form

∂u
∂t

= �xu +

λ

∂u
∂y

– β
∂u
∂t

– αu + φ(x,λy,u,u),

∂u
∂t

= �xu +

λ

∂u
∂y

– β
∂u
∂t

– αu + φ(x,λy,u,u),

∂u
∂ν

=
∂u
∂ν

= ,

()

where (x, y) ∈ Q := 
 × (, ) ⊂ R
n+, n ≥ , 
 is a C-smooth bounded domain in R

n, ν
denotes the outward unit normal vector toQ, λ is a small positive parameter representing
the thickness of the domain of the variable λy, α, α, β, β are positive constants and the
functions φ, φ are of class C jointly in their arguments. The linear part of system ()
generates an exponentially stableC-semigroup in a suitable Banach space; see [] as well
as the related references therein. Under the assumption of the existence of a T-periodic
solution u = (u ,u) of the limit problem, obtained as λ → , and suitable conditions on
the growth of the derivatives of φ, φ with respect to their arguments, it is shown in []
that [, Theorem ] applies. This result guarantees the existence of λ >  such that, for
fixed λ̂ ∈ (,λ), system () has an isolated Tλ̂-periodic solution uλ̂ = (uλ̂

 ,uλ̂
). The crucial

assumption of [, Theorem ] is that the zero eigenvalue of the linearized system around
u is simple. For a single damped wave equation of system () with the nonlinear term φ

depending periodically on time t, the existence of periodic solutions was studied in [].
Consider now a Tλ̂-periodic perturbation of () of small amplitude ε > 

∂u
∂t

= �xu +

λ̂

∂u
∂y

– β
∂u
∂t

– αu + φ(x, λ̂y,u,u)

+ εψ(ε, t,x, λ̂y,u,u),

∂u
∂t

= �xu +

λ̂

∂u
∂y

– β
∂u
∂t

– αu + φ(x, λ̂y,u,u)

+ εψ(ε, t,x, λ̂y,u,u),

∂u
∂ν

=
∂u
∂ν

= .

()

If we assume that the superposition operators generated by the functions φ, φ, ψ, ψ

satisfy assumption (H) of this paper, then (H) and [, Theorem ..] ensure that the
C-semigroup generated by the linearization around uλ̂ of the unperturbed system, cor-
responding to ε =  in (), is strongly contractive with respect to the Hausdorff measure

http://www.boundaryvalueproblems.com/content/2013/1/101


Kamenskii et al. Boundary Value Problems 2013, 2013:101 Page 17 of 18
http://www.boundaryvalueproblems.com/content/2013/1/101

of noncompactness χ (·), i.e., χ -strongly contractive. Therefore, our abstract bifurcation
result Theorem  applies to system ().
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