
Zhi et al. Boundary Value Problems 2013, 2013:106
http://www.boundaryvalueproblems.com/content/2013/1/106

RESEARCH Open Access

Existence of solutions and nonnegative
solutions for a class of p(t)-Laplacian
differential systems with multipoint and
integral boundary value conditions
Guizhen Zhi1, Yunrui Guo2, Yan Wang1 and Qihu Zhang1*

*Correspondence:
zhangqh1999@yahoo.com.cn;
zhangqihu@yahoo.com
1Department of Mathematics and
Information Science, Zhengzhou
University of Light Industry,
Zhengzhou, Henan 450002, China
Full list of author information is
available at the end of the article

Abstract
This paper explores the existence of solutions for a class of p(t)-Laplacian differential
systems with multipoint and integral boundary value conditions via Leray-Schauder’s
degree. Moreover, the existence of nonnegative solutions is discussed.
MSC: 34B10

Keywords: p(t)-Laplacian; Leray-Schauder degree; fixed point

1 Introduction
In this paper, we consider the existence of solutions for the following system:

(P)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

–�p(t)u = δf(t,u,u′, v, v′), t ∈ (, ),

–�p(t)v = δf(t,u,u′, v, v′), t ∈ (, ),

u() =
∑m–

i= αiu(ξi) + e,

limt→– |u′|p(t)–u′(t) =
∫ 
 k(t)|u′|p(t)–u′(t)dt + e,

v() – kv′() =
∫ 
 e(t)v(t)dt, v() + kv′() =

∑m–
i= βiv(ηi),

where pl ∈ C([, ],R), pl(t) >  (l = , ); –�p(t)γ := –(|γ ′|p(t)–γ ′)′ is called p(t)-Laplacian;
 < ξ < · · · < ξm– < ,  < η < · · · < ηm– < ; αi ≥ , βi ≥  (i = , . . . ,m – ) and
 <

∑m–
i= αi < ,  <

∑m–
i= βi < ; k(t), e(t) ∈ L(, ), they are both nonnegative, σ =∫ 

 k(t)dt ∈ (, ), σ =
∫ 
 e(t)dt ∈ (, ); e, e ∈ R

N ; k and k are nonnegative constants;
δ and δ are positive parameters.
The study of differential equations and variational problems with variable exponent

growth conditions has attracted more and more attention in recent years. Many results
have been obtained on these problems, for example, [–]. We refer to [, , ] for the
applied background of these problems. If p(t) ≡ p (a constant), –�p(t) becomes the well-
known p-Laplacian. If p(t) is a general function, –�p(t) represents a non-homogeneity and
possesses more nonlinearity, thus –�p(t) is more complicated than –�p (see []).
In recent years, because of the wide mathematical and physical background (see [–

]), the existence of positive solutions for the p-Laplacian equation group has received
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extensive attention. Especially, when p = , the existence of positive solutions for the equa-
tion group boundary value problems has been obtained (see [–]). On the integral
boundary value problems, we refer to [–]. But as for the p(t)-Laplacian equation
group, there are few papers dealing with the existence of solutions, especially the exis-
tence of solutions for the systems with multipoint and integral boundary value problems.
Therefore, when p(t) is a general function, this paper mainly investigates the existence
of solutions for a class of p(t)-Laplacian differential systems with multipoint and integral
boundary value conditions. Moreover, we discuss the existence of nonnegative solutions.
Let N ≥  and J = [, ], the function fl = (f l , . . . , f

N
l ) : J × R

N × R
N × R

N × R
N → R

N ,
(l = , ) is assumed to be Carathéodory, by which we mean:

(i) For almost every t ∈ J , the function fl(t, ·, ·, ·, ·) is continuous;
(ii) For each (x, y, z,w) ∈R

N ×R
N ×R

N ×R
N , the function fl(·,x, y, z,w) is measurable

on J ;
(iii) For each R > , there are βR,ρR ∈ L(J ,R) such that, for almost every t ∈ J and every

(x, y, z,w) ∈R
N ×R

N ×R
N ×R

N with |x| ≤ R, |y| ≤ R, |z| ≤ R, |w| ≤ R, one has

∣∣f(t,x, y, z,w)∣∣ ≤ βR(t),
∣∣f(t,x, y, z,w)∣∣ ≤ ρR(t).

Throughout the paper, we denote

∣∣γ ′∣∣p()–γ ′() = lim
t→+

∣∣γ ′∣∣p(t)–γ ′(t),

∣∣γ ′∣∣p()–γ ′() = lim
t→–

∣∣γ ′∣∣p(t)–γ ′(t).

The inner product in R
N will be denoted by 〈·, ·〉, | · | will denote the absolute value and

the Euclidean norm on R
N . For N ≥ , we set C = C(J ,RN ), C = {γ ∈ C | γ ′ ∈ C}; W =

{(u, v) | u, v ∈ C}. For any γ (t) = (γ (t), . . . ,γ N (t)) ∈ C, we denote |γ i| =maxt∈[,] |γ i(t)|,
‖γ ‖ = (

∑N
i= |γ i|)  and ‖γ ‖ = ‖γ ‖ + ‖γ ′‖. For any (u, v) ∈ W , we denote ‖(u, v)‖ =

‖u‖ + ‖v‖. Spaces C, C and W will be equipped with the norm ‖ · ‖, ‖ · ‖ and ‖ · ‖,
respectively. Then (C,‖ · ‖), (C,‖ · ‖) and (W ,‖ · ‖) are Banach spaces. Denote L =
L(J ,RN ) with the norm ‖γ ‖L = [

∑N
i=(

∫ 
 |γ i|dt)]  .

We say a function (u, v) : J → R
N is a solution of (P) if (u, v) ∈ W satisfies the differential

equation in (P) a.e. on J and the boundary value conditions.
In this paper, we always use Ci to denote positive constants if this does not lead to con-

fusion. Denote

b– = inf
t∈J b(t), b+ = sup

t∈J
b(t) for any b ∈ C(J ,R).

We say fl (l = , ) satisfies a sub-(p–l – ) growth condition if fl satisfies

lim|x|+|y|+|z|+|w|→+∞
fl(t,x, y, z,w)

(|x| + |y| + |z| + |w|)ql(t)– =  for t ∈ J uniformly,

where ql(t) ∈ C(J ,R), and  < q–l ≤ q+l < p–l . We say fl satisfies a general growth condition
if fl does not satisfy a sub-(p–l – ) growth condition.
We will discuss the existence of solutions for (P) in the following two cases:
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Zhi et al. Boundary Value Problems 2013, 2013:106 Page 3 of 22
http://www.boundaryvalueproblems.com/content/2013/1/106

(i) fl satisfies a sub-(p–l – ) growth condition for l = , ;
(ii) fl satisfies a general growth condition for l = , .
This paper is organized as follows. In Section , we do some preparation. In Section ,

we discuss the existence of solutions of (P). Finally, in Section , we discuss the existence
of nonnegative solutions for (P).

2 Preliminary
For any (t,x) ∈ J×R

N , denote ϕpl (t,x) = |x|pl(t)–x (l = , ). Obviously, ϕpl has the following
properties.

Lemma . (see []) ϕpl is a continuous function and satisfies the following:
(i) For any t ∈ [, ], ϕpl (t, ·) is strictly monotone, that is,

〈
ϕpl (t,x) – ϕpl (t,x),x – x

〉
>  for any x,x ∈R

N ,x = x.

(ii) There exists a function βl : [, +∞) → [, +∞), βl(s)→ +∞ as s→ +∞, such that

〈
ϕpl (t,x),x

〉 ≥ βl
(|x|)|x| for all x ∈R

N .

It is well known that ϕpl (t, ·) is a homeomorphism fromR
N toRN for any fixed t ∈ [, ].

For any t ∈ J , denote by ϕ–
pl (t, ·) the inverse operator of ϕpl (t, ·), then

ϕ–
pl (t,x) = |x|

–pl (t)
pl (t)– x, for x ∈R

N\{}, ϕ–
pl (t, ) = .

It is clear that ϕ–
pl (t, ·) is continuous and sends bounded sets into bounded sets.

Let us now consider the following problem:

–
(
ϕp

(
t,u′(t)

))′ = g(t), t ∈ (, ), ()

with the boundary value condition

u() =
m–∑
i=

αiu(ξi) + e, lim
t→–

∣∣u′∣∣p(t)–u′(t) =
∫ 


k(t)

∣∣u′∣∣p(t)–u′(t)dt + e, ()

where g ∈ L. If u is a solution of () with (), by integrating () from  to t, we find that

ϕp
(
t,u′(t)

)
= ϕp

(
,u′()

)
–

∫ t


g(s)ds. ()

Denote a = ϕp (,u′()). It is easy to see that a is dependent on g(·). Define operator
F : L −→ C as

F(g)(t) =
∫ t


g(s)ds, ∀t ∈ J ,∀g ∈ L.

From (), we have

u′(t) = ϕ–
p

[
t,a – F(g)

]
. ()

http://www.boundaryvalueproblems.com/content/2013/1/106
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By integrating () from  to t, we find that

u(t) = u() + F
{
ϕ–
p

[
t,a – F(g)

]}
(t), t ∈ J .

From (), we have

a =
∫ 
 g(t)dt –

∫ 
 k(t)

∫ t
 g(s)dsdt + e

 – σ
,

and

u() =
∑m–

i= αi
∫ ξi
 ϕ–

p [t,a – F(g)(t)]dt –
∫ 
 ϕ–

p [t,a – F(g)(t)]dt + e
 –

∑m–
i= αi

.

For fixed h ∈ L, we define a : L →R
N as

a(h) =
∫ 
 h(t)dt –

∫ 
 k(t)

∫ t
 h(s)dsdt + e

 – σ
. ()

It is easy to obtain the following lemma.

Lemma . a : L → R
N is continuous and sends bounded sets of L to bounded sets of

R
N .Moreover,

∣∣a(h)∣∣ ≤ N
 – σ

· (‖h‖L + |e|
)
. ()

It is clear that a(·) is a compact continuous mapping.
Let us now consider another problem

–
(
ϕp

(
t, v′(t)

))′ = g(t), t ∈ (, ), ()

with the boundary value condition

v() – kv′() =
∫ 


e(t)v(t)dt, v() + kv′() =

m–∑
i=

βiv(ηi), ()

where g ∈ L. Similar to the discussion of the solutions of () with (), we have

v′(t) = ϕ–
p

[
t,a – F(g)

]
,

and

v(t) = v() + F
{
ϕ–
p

[
t,a – F(g)

]}
(t), t ∈ J ,

where a := ϕp (, v′()), F(g)(t) =
∫ t
 g(s)ds for any t ∈ J .

From v() – kv′() =
∫ 
 e(t)v(t)dt, we have

v() =
kϕ–

p (,a) +
∫ 
 e(t)

∫ t
 ϕ–

p [s,a – F(g)(s)]dsdt
 – σ

. ()

http://www.boundaryvalueproblems.com/content/2013/1/106
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From v() + kv′() =
∑m–

i= βiv(ηi), we have

v() =
∑m–

i= βi
∫ ηi
 ϕ–

p [t,a – F(g)(t)]dt –
∫ 
 ϕ–

p [t,a – F(g)(t)]dt

 –
∑m–

i= βi

–
kϕ–

p [,a – F(g)()]

 –
∑m–

i= βi
. ()

From () and (), we have

kϕ–
p (,a) +

∫ 
 e(t)

∫ t
 ϕ–

p [s,a – F(g)(s)]dsdt
 – σ

=
∑m–

i= βi
∫ ηi
 ϕ–

p [t,a – F(g)(t)]dt –
∫ 
 ϕ–

p [t,a – F(g)(t)]dt

 –
∑m–

i= βi

–
kϕ–

p [,a – F(g)()]

 –
∑m–

i= βi
.

For fixed h ∈ C, we denote

�h (a) =
kϕ–

p (,a) +
∫ 
 e(t)

∫ t
 ϕ–

p [s,a – h(s)]dsdt
 – σ

–
∑m–

i= βi
∫ ηi
 ϕ–

p [t,a – h(t)]dt –
∫ 
 ϕ–

p [t,a – h(t)]dt

 –
∑m–

i= βi

+
kϕ–

p [,a – h()]

 –
∑m–

i= βi
.

Lemma . The function �h (·) has the following properties:
(i) For any fixed h ∈ C, the equation

�h (a) =  ()

has a unique solution ã(h) ∈ R
N .

(ii) The function ã : C →R
N , defined in (i), is continuous and sends bounded sets to

bounded sets.Moreover,

∣∣ã(h)∣∣ ≤ N‖h‖.

Proof (i) It is easy to see that

�h (a) =
kϕ–

p (,a) +
∫ 
 e(t)

∫ t
 ϕ–

p [s,a – h(s)]dsdt
 – σ

+
∑m–

i= βi
∫ 
ηi

ϕ–
p [t,a – h(t)]dt + kϕ–

p [,a – h()]

 –
∑m–

i= βi

+
∫ 


ϕ–
p

[
t,a – h(t)

]
dt.

http://www.boundaryvalueproblems.com/content/2013/1/106
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From Lemma ., it is immediate that

〈
�h (x) –�h (y),x – y

〉
>  for x, y ∈R

N with x = y,

and hence, if () has a solution, then it is unique.
Let t = N‖h‖. Suppose |a| > t. Since h ∈ C, it is easy to see that there exists an

i ∈ {, . . . ,N} such that the ith component ai of a satisfies

∣∣ai∣∣ ≥ |a|
N

> ‖h‖.

Thus (ai – hi(t)) keeps sign on J and

∣∣ai – hi(t)
∣∣ ≥ ∣∣ai∣∣ – ‖h‖ ≥ |a|

N
> ‖h‖, ∀t ∈ J .

Obviously, |a – h(t)| ≤ |a|
 ≤ N |ai – hi(t)|, then

∣∣a – h(t)
∣∣ –p(t)p(t)–

∣∣ai – hi(t)
∣∣ > 

N
∣∣ai – hi(t)

∣∣ 
p(t)– >


N

[
‖h‖

] 
p(ζ )– , ζ ∈ J , t ∈ J .

Thus the ith component�i
h (a) of�h (a) is nonzero and keeps sign, and then we have

�h (a) = .

Let us consider the equation

λ�h (a) + ( – λ)a = , λ ∈ [, ]. ()

It is easy to see that all the solutions of () belong to b(t + ) = {x ∈ R
N | |x| < t + }.

So, we have

dB
[
�h (a),b(t + ), 

]
= dB

[
I,b(t + ), 

] = ,

which implies the existence of solutions of �h (a) = .
In this way, we define a function ã(h) : C[, ] →R

N , which satisfies

�h
(
ã(h)

)
= .

(ii) By the proof of (i), we also obtain that ã sends bounded sets to bounded sets, and

∣∣ã(h)∣∣ ≤ N‖h‖.

It only remains to prove the continuity of ã. Let {vn} be a convergent sequence in C and
vn → v as n → +∞. Since {ã(vn)} is a bounded sequence, then it contains a convergent
subsequence {ã(vnj )}. Let ã(vnj ) → a as j → +∞. Since �vnj (ã(vnj )) = , letting j →
+∞, we have �v(a) = . From (i), we get a = ã(v), it means that ã is continuous. The
proof is completed. �

http://www.boundaryvalueproblems.com/content/2013/1/106
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Now, we define the operator a : L →R
N as

a(v) = ã
(
F(v)

)
. ()

It is clear that a(·) is continuous and sends bounded sets of L into bounded sets of RN ,
and hence it is a compact continuous mapping.
If u is a solution of () with (), we have

u(t) = u() + F
{
ϕ–
p

[
t,a – F(g)

]}
(t), t ∈ J ,

and

u() =
∑m–

i= αi
∫ ξi
 ϕ–

p [t,a – F(g)(t)]dt –
∫ 
 ϕ–

p [t,a – F(g)(t)]dt + e
 –

∑m–
i= αi

.

If u is a solution of () with (), we have

v(t) = v() + F
{
ϕ–
p

[
t,a – F(g)

]}
(t), t ∈ J ,

and

v() =
kϕ–

p (,a) +
∫ 
 e(t)

∫ t
 ϕ–

p [s,a – F(g)(s)]dsdt
 – σ

.

We denote

K(h)(t) := (K ◦ h)(t) = F
{
ϕ–
p

[
t,a(h) – F(h)

]}
(t), ∀t ∈ [, ],

K(h)(t) := (K ◦ h)(t) = F
{
ϕ–
p

[
t,a(h) – F(h)

]}
(t), ∀t ∈ [, ].

Lemma . The operators Kl (l = , ) are continuous and send equi-integrable sets in L

to relatively compact sets in C.

Proof We only prove that the operator K is continuous and sends equi-integrable sets in
L to relatively compact sets in C, the rest is similar.
It is easy to check that K(h)(t) ∈ C for all h ∈ L. Since

K(h)
′
(t) = ϕ–

p

[
t,a(h) – F(h)

]
, ∀t ∈ [, ],

it is easy to check that K is a continuous operator from L to C.
Let now U be an equi-integrable set in L, then there exists ρ∗ ∈ L such that

∣∣u(t)∣∣ ≤ ρ∗(t) a.e. in J for any u ∈ L.

We want to show that K(U)⊂ C is a compact set.
Let {un} be a sequence in K(U), then there exists a sequence {hn} ∈ U such that un =

K(hn). For any t, t ∈ J , we have

∣∣F(hn)(t) – F(hn)(t)
∣∣ = ∣∣∣∣

∫ t


hn(t)dt –

∫ t


hn(t)dt

∣∣∣∣ =
∣∣∣∣
∫ t

t
hn(t)dt

∣∣∣∣ ≤
∣∣∣∣
∫ t

t
ρ∗(t)dt

∣∣∣∣.

http://www.boundaryvalueproblems.com/content/2013/1/106
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Hence the sequence {F(hn)} is uniformly bounded and equicontinuous. By the Ascoli-
Arzela theorem, there exists a subsequence of {F(hn)} (which we still denote by {F(hn)})
convergent in C. According to the bounded continuous of the operator a, we can choose
a subsequence of {a(hn) – F(hn)} (which we still denote by {a(hn) – F(hn)}) which is con-
vergent in C, then ϕp (t,K(hn)′(t)) = a(hn) – F(hn) is convergent in C.
From the definition of K(hn)(t) and the continuity of ϕ–

p , we can see that K(hn) is con-
vergent in C. Thus, {un} is convergent in C. This completes the proof. �

Let us define P,P : C → C as

P(h) =
∑m–

i= αiK(h)(ξi) –K(h)() + e
 –

∑m–
i= αi

,

P(h) =
kϕ–

p (,a(h)) +
∫ 
 e(t)K(h)(t)dt

 – σ
.

It is easy to see that P and P are both compact continuous.
We denote Nfl (u, v) : [, ] × C → L (l = , ) the Nemytskii operator associated to fl

defined by

Nfl (u, v)(t) = fl
(
t,u(t),u′(t), v(t), v′(t)

)
a.e. on J .

Lemma. (u, v) is a solution of (P) if and only if (u, v) is a solution of the following abstract
equation:

(S)

⎧⎨
⎩u = P(δNf (u, v)) +K(δNf (u, v)),

v = P(δNf (u, v)) +K(δNf (u, v)).

Proof If (u, v) is a solution to (P), according to the proof before Lemma ., it is easy to
obtain that (u, v) is a solution to (S).
Conversely, if (u, v) is a solution to (S), then

u() = P
(
δNf (u, v)

)
+K

(
δNf (u, v)

)
()

=
∑m–

i= αiK(δNf (u, v))(ξi) –K(δNf (u, v))() + e
 –

∑m–
i= αi

+K
(
δNf (u, v)

)
()

=
∑m–

i= αiK(δNf (u, v))(ξi) –
∑m–

i= αiK(δNf (u, v))() + e
 –

∑m–
i= αi

=
∑m–

i= αi[u(ξi) – u()] –
∑m–

i= αi[u() – u()] + e
 –

∑m–
i= αi

=
∑m–

i= αiu(ξi) –
∑m–

i= αiu() + e
 –

∑m–
i= αi

,

which implies

u() =
m–∑
i=

αiu(ξi) + e.

http://www.boundaryvalueproblems.com/content/2013/1/106
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It follows from (S) that

ϕp
(
t,u′(t)

)
= a

(
δNf (u, v)

)
– F

(
δNf (u, v)

)
(t),

then

ϕp
(
,u′()

)
= a

(
δNf (u, v)

)
– F

(
δNf (u, v)

)
().

By the condition of the mapping a, we have

ϕp
(
,u′()

)
=

∫ 
 δNf (u, v)(t)dt –

∫ 
 k(t)

∫ t
 δNf (u, v)(s)dsdt + e

 – σ

–
∫ 


δNf (u, v)(t)dt

=
σ

∫ 
 δNf (u, v)(t)dt –

∫ 
 k(t)

∫ t
 δNf (u, v)(s)dsdt + e

 – σ

=
σ[a – ϕp (,u′())] –

∫ 
 k(t)[a – ϕp (t,u′(t))]dt + e
 – σ

=
–σϕp (,u′()) +

∫ 
 k(t)ϕp (t,u′(t))dt + e
 – σ

,

and then

ϕp
(
,u′()

)
=

∫ 


k(t)ϕp

(
t,u′(t)

)
dt + e.

From (S), we have

v′(t) = ϕ–
p

[
t,a – F

(
δNf (u, v)

)]
,

and

v() = P
(
δNf (u, v)

)
=
kϕ–

p (,a) +
∫ 
 e(t)K(δNf (u, v))(t)dt
 – σ

=
kϕ–

p (,a) +
∫ 
 e(t)v(t)dt – σv()
 – σ

,

then

v() = kϕ–
p (,a) +

∫ 


e(t)v(t)dt.

Thus

v() – kv′() = kϕ–
p (,a) +

∫ 


e(t)v(t)dt – kϕ–

p (,a) =
∫ 


e(t)v(t)dt.

http://www.boundaryvalueproblems.com/content/2013/1/106
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From (S), we have

v() = P
(
δNf (u, v)

)
+K

(
δNf (u, v)

)
().

By the condition of the mapping a, we have

v() = P
(
δNf (u, v)

)
+K

(
δNf (u, v)

)
()

= –
∑m–

i= βi
∫ 
ηi

ϕ–
p [t,a – F(δNf (u, v))(t)]dt + kϕ–

p [,a – F(δNf (u, v))()]

 –
∑m–

i= βi

= –
∑m–

i= βi[v() – v(ηi)] + kϕ–
p [,a – F(δNf (u, v))()]

 –
∑m–

i= βi
,

which implies that

v() =
m–∑
i=

βiv(ηi) – kϕ–
p

[
,a – F

(
δNf (u, v)

)
()

]
.

Since v′() = ϕ–
p [,a – F(δNf (u, v))()], then we have

v() + kv′() =
m–∑
i=

βiv(ηi).

Moreover, from (S), it is easy to obtain

–
(
ϕp

(
t,u′(t)

))′ = δNf (u, v)

and

–
(
ϕp

(
t, v′(t)

))′ = δNf (u, v).

Hence (u, v) is a solution of (P).
This completes the proof. �

3 Existence of solutions
In this section, we apply Leray-Schauder’s degree to deal with the existence of solutions
for (P), when fl satisfies a sub-(p–l – ) growth condition or a general growth condition
(l = , ).
We denote (S) as

(u, v) = A(u, v) =
(
�f (u, v),�f (u, v)

)
,

where

�f (u, v) = P
(
δNf (u, v)

)
+K

(
δNf (u, v)

)
,

�f (u, v) = P
(
δNf (u, v)

)
+K

(
δNf (u, v)

)
.
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Theorem . If fl satisfies a sub-(p–l – ) growth condition, then the problem (P) has at
least one solution for any fixed parameter δl (l = , ).

Proof Denote

Aλ(u, v) =
(
�λf (u, v),�λf (u, v)

)
,

where

�λf (u, v) = P
(
λδNf (u, v)

)
+K

(
λδNf (u, v)

)
,

�λf (u, v) = P
(
λδNf (u, v)

)
+K

(
λδNf (u, v)

)
.

According to Lemma ., we know that (P) has the same solution of

(u, v) = Aλ(u, v) ()

when λ = .
It is easy to see that the operators P and P are compact continuous. According to

Lemma ., Lemma . and Lemma ., we can see that �λf (u, v) and �λf (u, v) are com-
pact continuous fromC× [, ] toC, thusAλ(u, v) is compact continuous fromW × [, ]
toW .
We claim that all the solutions of () are uniformly bounded for λ ∈ [, ]. In fact, if it is

false, we can find a sequence of solutions {((un, vn),λn)} for () such that ‖(un, vn)‖ → +∞
as n → +∞.
From Lemma ., we have

∣∣a(λnδNf (un, vn)
)∣∣ ≤ C

(∥∥Nf (un, vn)
∥∥
L + |e|

)
≤ C

(
 +

∥∥(un, vn)∥∥)q+ –,
which together with the sub-(p– – ) growth condition of f implies that

∣∣a(λnδNf (un, vn)
)
– F

(
λnδNf (un, vn)

)∣∣
≤ ∣∣a(λnδNf (un, vn)

)∣∣ + ∣∣F(
λnδNf (un, vn)

)∣∣
≤ C

(
 +

∥∥(un, vn)∥∥)q+ –. ()

From (), we have

∣∣u′
n(t)

∣∣p(t)–u′
n(t) = a

(
λnδNf (un, vn)

)
– F

(
λnδNf (un, vn)

)
, t ∈ J ,

then

∣∣u′
n(t)

∣∣p(t)– ≤ ∣∣a(λnδNf (un, vn)
)∣∣ + ∣∣F(

λnδNf (un, vn)
)∣∣ ≤ C

(
 +

∥∥(un, vn)∥∥)q+ –.
Denote α =

q+ –
p– –

. From the above inequality we have

∥∥u′
n(t)

∥∥
 ≤ C

(
 +

∥∥(un, vn)∥∥)α . ()

http://www.boundaryvalueproblems.com/content/2013/1/106
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It follows from () and () that

∣∣un()∣∣ ≤ C
(
 +

∥∥(un, vn)∥∥)α , where α =
q+ – 
p– – 

.

For any j = , . . . ,N , we have

∣∣ujn(t)∣∣ =
∣∣∣∣ujn() +

∫ t



(
ujn

)′(r)dr
∣∣∣∣

≤ ∣∣ujn()∣∣ +
∣∣∣∣
∫ t



(
ujn

)′(r)dr
∣∣∣∣

≤ [C +C]
(
 +

∥∥(un, vn)∥∥)α ≤ C
(
 +

∥∥(un, vn)∥∥)α ,

which implies that

∣∣ujn∣∣ ≤ C
(
 +

∥∥(un, vn)∥∥)α , j = , . . . ,N ;n = , , . . . .

Thus

‖un‖ ≤ C
(
 +

∥∥(un, vn)∥∥)α , n = , , . . . . ()

It follows from () and () that ‖un‖ ≤ C( + ‖(un, vn)‖)α .
Similarly, we have ‖vn‖ ≤ C( + ‖(un, vn)‖)α , where α =

q+–
p––

.
Thus, {‖(un, vn)‖} is bounded.
Thus, we can choose a large enough R >  such that all the solutions of () belong

to B(R) = {(u, v) ∈ W | ‖(un, vn)‖ < R}. Therefore, the Leray-Schauder degree dLS[I –
Aλ(u, v),B(R), ] is well defined for each λ ∈ [, ], and

dLS
[
I –A(u, v),B(R), 

]
= dLS

[
I –A(u, v),B(R), 

]
.

Denote

u =
∑m–

i= αi
∫ ξi
 ϕ–p [t,a()]dt–

∫ 
 ϕ–p [t,a()]dt+e

–
∑m–

i= αi
+

∫ r
 ϕ–

p [t,a()]dt,

v =
kϕ–p [,a()]+

∫ 
 e(t)

∫ t
 ϕ–p [r,a()]dr dt

–σ
+

∫ r
 ϕ–

p [t,a()]dt,

⎫⎪⎬
⎪⎭ ()

where a() and a() are defined in () and (), then (u, v) is the unique solution of
(u, v) = A(u, v).
It is easy to see that (u, v) is a solution of (u, v) = A(u, v) if and only if (u, v) is a solution

of the following system:

–�p(t)u = , t ∈ (, ),

–�p(t)v = , t ∈ (, ),

u() =
∑m–

i= αiu(ξi) + e,

limt→– |u′|p(t)–u′(t) =
∫ 
 k(t)|u′|p(t)–u′(t)dt + e,

v() – kv′() =
∫ 
 e(t)v(t)dt, v() + kv′() =

∑m–
i= βiv(ηi).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

()
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Obviously, () possesses a unique solution (u, v). Note that (u, v) ∈ B(R), we have

dLS
[
I –A(u, v),B(R), 

]
= dLS

[
I –A(u, v),B(R), 

] = .

Therefore (P) has at least one solution. This completes the proof. �

In the following, we investigate the existence of solutions for (P) when fl satisfies a gen-
eral growth condition.
Denote

�ε =
{
(u, v) ∈ W

∣∣ max
≤i≤N

(∣∣ui∣∣ + ∣∣(ui)′∣∣


)
< ε and max

≤i≤N

(∣∣vi∣∣ + ∣∣(vi)′∣∣


)
< ε

}
,

θ =
ε


.

Assume the following.

(A) Let a positive constant ε be such that (u, v) ∈ �ε , |P()| < θ , |P()| < θ and |a()| <
mint∈J ( θ

 )
p(t)–, |a()| < mint∈J ( θ

 )
p(t)–, where (u, v) is defined in (), a(·) and

a(·) are defined in () and (), respectively.

It is easy to see that�ε is an openboundeddomain inW .Wehave the following theorem.

Theorem . Assume that (A) is satisfied. If positive parameters δ and δ are small
enough, then the problem (P) has at least one solution on �ε .

Proof Similarly, we denote Aλ(u, v) = (�λf (u, v),�λf (u, v)). By Lemma ., (u, v) is a solu-
tion of⎧⎨

⎩–�p(t)u = λδf(t,u,u′, v, v′), t ∈ (, ),

–�p(t)v = λδf(t,u,u′, v, v′), t ∈ (, ),

with () and () if and only if (u, v) is a solution of the following abstract equation:

(u, v) = Aλ(u, v). ()

From the proof of Theorem ., we can see that Aλ(u, v) is compact continuous from
W × [, ] to W . According to Leray-Schauder’s degree theory, we only need to prove
that

(◦) (u, v) = Aλ(u, v) has no solution on ∂�ε for any λ ∈ [, ],
(◦) dLS[I –A(u, v),�ε , ] = ,

then we can conclude that the system (P) has a solution on �ε .
(◦) If there exists a λ ∈ [, ] and (u, v) ∈ ∂�ε is a solution of (), then (u, v) and λ satisfy

u′(t) = ϕ–
p

[
t,a – F

(
λδNf (u, v)

)]
and

v′(t) = ϕ–
p

[
t,a – F

(
λδNf (u, v)

)]
.
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Since (u, v) ∈ ∂�ε , there exists an i such that |ui| + |(ui)′| = ε or |vi| + |(vi)′| = ε.

(i) If |ui| + |(ui)′| = ε.
(i◦) Suppose that |ui| > θ , then |(ui)′| < ε – θ = θ . On the other hand, for any t, t′ ∈ J ,

we have

∣∣ui(t) – ui
(
t′
)∣∣ = ∣∣∣∣

∫ t

t′

(
ui

)′(r)dr
∣∣∣∣ ≤

∫ 



∣∣(ui)′(r)
∣∣dr < θ .

This implies that |ui(t)| > θ for each t ∈ J .

Note that (u, v) ∈ �ε , then |f(t,u,u′, v, v′)| ≤ βNε(t), holding |F(Nf )| ≤
∫ 
 βNε(t)dt. Since

P(·) is continuous, when  < δ is small enough, from (A), we have

∣∣u()∣∣ = ∣∣P
(
λδNf (u, v)

)∣∣ < θ .

It is a contradiction to |ui(t)| > θ for each t ∈ J .

(ii◦) Suppose that |ui| ≤ θ , then θ ≤ |(ui)′| ≤ ε. This implies that |(ui)′(t)| ≥ θ for some
t ∈ J , and we can find

θ ≤ ∣∣(ui)′(t)
∣∣ ≤ ∣∣(u)′(t)∣∣ = ∣∣ϕ–

p

[
t,a – F

(
λδNf (u, v)

)
(t)

]∣∣. ()

Since (u, v) ∈ �ε and f is Carathéodory, it is easy to see that

∣∣f(t,u,u′, v, v′)∣∣ ≤ βNε(t),

thus

∣∣δF(Nf )
∣∣ ≤ δ

∫ 


βNε(t)dt.

From Lemma ., a(·) is continuous, then we have

∣∣a(λδNf )
∣∣ → ∣∣a()∣∣ as δ → .

When  < δ is small enough, from (A) and (), we can conclude that

θ ≤ ∣∣ϕ–
p

[
t,a – F

(
λδNf (u, v)

)
(t)

]∣∣ < θ


.

It is a contradiction. Thus |ui| + |(ui)′| = ε.
(ii) If |vi| + |(vi)′| = ε. Similar to the proof of (i), we get a contradiction. Thus |vi| +

|(vi)′| = ε.
Summarizing this argument, for each λ ∈ [, ), (u, v) = Aλ(u, v) has no solution on ∂�ε

when positive parameters δ and δ are small enough.

(◦) Since (u, v) (where (u, v) is defined in ()) is the unique solution of (u, v) = A(u, v),
and (A) holds (u, v) ∈ �ε , we can see that the Leray-Schauder degree

dLS
[
I –A(u, v),�ε , 

] = .

This completes the proof. �

http://www.boundaryvalueproblems.com/content/2013/1/106


Zhi et al. Boundary Value Problems 2013, 2013:106 Page 15 of 22
http://www.boundaryvalueproblems.com/content/2013/1/106

As applications of Theorem ., we have the following.

Corollary . Assume that fl(t,u,u′, v, v′) = μl(t)|u|ml(t)–u(t) + γl(t)|u′|nl(t)–u′(t) +
μ̃l(t)|v|m̃l(t)–v(t) + γ̃l(t)|v′|̃nl(t)–v′(t), where l = , ; ml,nl, m̃l, ñl,μl,γl, μ̃l, γ̃l ∈ C(J ,R) sat-
isfy maxt∈J pl(t) < ml,nl, m̃l, ñl , ∀t ∈ J . If |e| and |e| are small enough, then the problem
(P) possesses at least one solution.

Proof It is easy to have

∣∣fl(t,u,u′, v, v′)∣∣ ≤ ∣∣μl(t)
∣∣|u|ml(t)– +

∣∣γl(t)∣∣∣∣u′∣∣nl(t)– + ∣∣μ̃l(t)
∣∣|v|m̃l(t)– +

∣∣γ̃l(t)∣∣∣∣v′∣∣̃nl(t)–.
From μl,γl, μ̃l, γ̃l ∈ C(J ,R) and the definition of �ε , we have

∣∣fl(t,u,u′, v, v′)∣∣ ≤ Cε
ml(t)– +Cε

nl(t)– +Cε
m̃l(t)– +Cε

ñl(t)–.

Since maxt∈J pl(t) <ml,nl, m̃l, ñl , then there exists a small enough ε such that

∣∣fl(t,u,u′, v, v′)∣∣ ≤  – σ

N
·
(

θ



)pl(t)–

.

From Lemma . and the small enough |e|, we have

∣∣a(δf)∣∣ ≤ N
 – σ

· (‖δf‖L + |e|
)
<

(
θ



)p(t)–

,

then |a()| <mint∈J ( θ
 )

p(t)– is valid.
Similarly, we have |a()| <mint∈J ( θ

 )
p(t)–.

Obviously, it follows from |a()| <mint∈J ( θ
 )

p(t)–, |a()| <mint∈J ( θ
 )

p(t)– and the small
enough |e| that (u, v) ∈ �ε , |P()| < θ , and |P()| < θ .
Thus, the conditions of (A) are satisfied, then the problem (P) possesses at least one

solution. �

Corollary . Assume that fl(t,u,u′, v, v′) = μl(t)|u|ml(t)–u(t) + γl(t)|u′|nl(t)–u′(t) +
μ̃l(t)|v|m̃l(t)–v(t) + γ̃l(t)|v′|̃nl(t)–v′(t), where l = , ; ml,nl, m̃l, ñl,μl,γl, μ̃l, γ̃l ∈ C(J ,R) sat-
isfy mint∈J pl(t) ≤ ml,nl, m̃l, ñl ≤ maxt∈J pl(t). If |e|, |e| and δl are small enough, then the
problem (P) possesses at least one solution.

Proof From Lemma ., we have

∣∣a(δf)∣∣ ≤ N
 – σ

· (‖δf‖L + |e|
)
.

Since a(δf) is dependent on the small enough δ and |e|, then it follows from the
continuity of a that |a()| is small enough, which implies that

∣∣a()∣∣ <min
t∈J

(
θ



)p(t)–

.

Similarly, we have |a()| <mint∈J ( θ
 )

p(t)–.
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From |a()| < mint∈J ( θ
 )

p(t)–, |a()| < mint∈J ( θ
 )

p(t)– and the small enough |e| and
|e|, it is easy to have that (u, v) ∈ �ε , |P()| < θ , and |P()| < θ .
Thus, the conditions of (A) are satisfied, then the problem (P) possesses at least one

solution. �

We denote

�ε,ε =
{
(u, v) ∈W

∣∣ max
≤i≤N

(∣∣ui∣∣ + ∣∣(ui)′∣∣


)
< ε and max

≤i≤N

(∣∣vi∣∣ + ∣∣(vi)′∣∣


)
< ε

}
,

θ =
ε


, θ =

ε


.

Assume the following.

(A) Let positive constants ε and ε be such that (u, v) ∈ �ε,ε , |P()| < θ, |P()| < θ

and |a()| < mint∈J ( θ
 )

p(t)–, |a()| < mint∈J ( θ
 )

p(t)–, where (u, v) is defined in
(), a(·) and a(·) are defined in () and (), respectively.

It is easy to see that �ε,ε is an open bounded domain inW . We have the following.

Corollary . Assume that

f
(
t,u,u′, v, v′) = μ(t)|u|m(t)–u(t) + γ (t)

∣∣u′∣∣n(t)–u′(t)

+ μ̃(t)|v|m̃(t)–v(t) + γ̃ (t)
∣∣v′∣∣̃n(t)–v′(t),

f
(
t,u,u′, v, v′) = κ(t)|u|ε |v|�(t)–v(t) + κ̃(t)

∣∣u′∣∣̃ε∣∣v′∣∣̃�(t)–v′(t),

where ε, ε̃ are positive constants; m,n, m̃, ñ,�, �̃,μ,γ , μ̃, γ̃ ,κ, κ̃ ∈ C(J ,R) satisfy  <
m,n, m̃, ñ < mint∈J p(t), and maxt∈J p(t) < �, �̃, ∀t ∈ J . Then the problem (P) possesses at
least one solution.

Proof Similar to the proof of Theorem ., we only need to prove that (A) is satisfied,
then we can conclude that the problem (P) possesses at least one solution.
From μ,γ , μ̃, γ̃ ∈ C(J ,R) and the definition of �ε,ε , it is easy to have that

∣∣f(t,u,u′, v, v′)∣∣ ≤ Cε
m(t)–
 +Cε

n(t)–
 +Cε

m̃(t)–
 +Cε

ñ(t)–
 ,

where we suppose ε <  < ε. Since  < m,n, m̃, ñ < mint∈J p(t), then there exists a big
enough ε such that

∣∣f(t,u,u′, v, v′)∣∣ ≤  – σ

N
·
(

θ



)p(t)–

.

From Lemma ., we have

∣∣a(δf)∣∣ ≤ N
 – σ

· (‖δf‖L + |e|
)
<

(
θ



)p(t)–

,

then |a()| <mint∈J ( θ
 )

p(t)– is valid.
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From κ, κ̃ ∈ C(J ,R) and the definition of �ε,ε , we have

∣∣f(t,u,u′, v, v′)∣∣ ≤ Cε
ε
ε

�(t)–
 +Cε

ε̃
ε

�̃(t)–
 .

Since maxt∈J p(t) < �, �̃, then there exists a ε such that ε < ( C
Cεε

 +Cεε̃

)


�∗–p+ (where

�∗ =min{�–, �̃–}), which implies that

∣∣f(t,u,u′, v, v′)∣∣ ≤ 
N

·
(

θ



)p(t)–

.

From Lemma ., we have

∣∣a(δf)∣∣ ≤ N‖δf‖ <
(

θ



)p(t)–

,

then |a()| <mint∈J ( θ
 )

p(t)– is valid.
Obviously, it follows from |a()| < mint∈J ( θ

 )
p(t)– and |a()| < mint∈J ( θ

 )
p(t)– that

(u, v) ∈ �ε,ε , |P()| < θ, and |P()| < θ.
Thus, the conditions of (A) are satisfied, then the problem (P) possesses at least one

solution. �

Corollary . Assume that

f
(
t,u,u′, v, v′) = κ(t)|u|ε |v|�(t)–v(t) + κ̃(t)

∣∣u′∣∣̃ε∣∣v′∣∣̃�(t)–v′(t),

f
(
t,u,u′, v, v′) = μ(t)|u|m(t)–u(t) + γ (t)

∣∣u′∣∣n(t)–u′(t)

+ μ̃(t)|v|m̃(t)–v(t) + γ̃ (t)
∣∣v′∣∣̃n(t)–v′(t),

where ε, ε̃ are positive constants; �, �̃,m,n, m̃, ñ,κ, κ̃,μ,γ , μ̃, γ̃ ∈ C(J ,R) satisfy
maxt∈J p(t) < �, �̃, and  <m,n, m̃, ñ <mint∈J p(t), ∀t ∈ J . If |e| and |e| are small enough,
then the problem (P) possesses at least one solution.

Proof Similar to the proof of Corollary ., we conclude that (A) is satisfied. Then the
problem (P) possesses at least one solution. �

4 Existence of nonnegative solutions
In the following, we deal with the existence of nonnegative solutions of (P). For any x =
(x, . . . ,xN ) ∈ R

N , the notation x ≥  (x > ) means xj ≥  (xj > ) for any j = , . . . ,N . For
any x, y ∈R

N , the notation x≥ ymeans x – y ≥ , the notation x > ymeans x – y > .

Theorem . We assume that

() δf(t,x, y, z,w) ≤ , ∀(t,x, y, z,w) ∈ J ×R
N ×R

N ×R
N ×R

N ;
() δf(t,x, y, z,w) ≥ , ∀(t,x, y, z,w) ∈ J ×R

N ×R
N ×R

N ×R
N ;

() e ≥ ;
() e ≤ .

Then every solution of (P) is nonnegative.
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Proof (i) We shall show that u(t) is nonnegative.
If (u, v) is a solution of (P), from Lemma ., we have

ϕp
(
t,u′(t)

)
= a

(
δNf (u, v)

)
–

∫ t


δf

(
s,u,u′, v, v′)ds, ∀t ∈ J ,

which together with (), () and () implies that

ϕp
(
t,u′(t)

)
= a

(
δNf (u, v)

)
– F

(
δNf (u, v)

)
(t)

=
∫ 
 δNf (u, v)(t)dt –

∫ 
 k(t)

∫ t
 δNf (u, v)(s)dsdt + e

 – σ
–

∫ t


δNf (u, v)(s)ds

=


 – σ

{∫ 


k(t)

∫ 

t
δNf (u, v)(s)dsdt + ( – σ)

∫ 

t
δNf (u, v)(s)ds + e

}
≤ .

Thus u′(t) ≤  for any t ∈ J . Holding u(t) is decreasing, namely u(t) ≥ u(t) for any
t, t ∈ J with t < t.
According to the boundary value condition () and condition (), we have

u() =
m–∑
i=

αiu(ξi) + e ≥
m–∑
i=

αiu() + e,

then

u() ≥ e
 –

∑m–
i= αi

≥ .

Thus u(t) is nonnegative.
(ii) We shall show that v(t) is nonnegative.
If (u, v) is a solution of (P), From Lemma ., we have

v(t) = v() + F
{
ϕ–
p

[
t,a – F

(
δNf (u, v)

)]}
(t).

We claim that a(δNf (u, v)) ≥ . If it is false, then there exists some j ∈ {, . . . ,N} such
that aj(δNf (u, v)) < , which together with condition () implies that

[
a

(
δNf (u, v)

)
– F

(
δNf (u, v)

)
(t)

]j < , ∀t ∈ J . ()

Similar to the proof of Lemma ., the boundary value condition () implies

 =
kϕ–

p (,a) +
∫ 
 e(t)

∫ t
 ϕ–

p [s,a – F(δNf (u, v))(s)]dsdt
 – σ

+
∑m–

i= βi
∫ 
ηi

ϕ–
p [t,a – F(δNf (u, v))(t)]dt + kϕ–

p [,a – F(δNf (u, v))()]

 –
∑m–

i= βi

+
∫ 


ϕ–
p

[
t,a – F

(
δNf (u, v)

)
(t)

]
dt. ()

http://www.boundaryvalueproblems.com/content/2013/1/106


Zhi et al. Boundary Value Problems 2013, 2013:106 Page 19 of 22
http://www.boundaryvalueproblems.com/content/2013/1/106

From () and aj(δNf (u, v)) < , we get a contradiction to ().
Thus a(δNf (u, v)) ≥ .
We claim that

a
(
δNf (u, v)

)
– F

(
δNf (u, v)

)
() ≤ . ()

If it is false, then there exists some j ∈ {, . . . ,N} such that

[
a

(
δNf (u, v)

)
– F

(
δNf (u, v)

)
()

]j > ,

which together with condition () implies

[
a

(
δNf (u, v)

)
– F

(
δNf (u, v)

)
(t)

]j > , ∀t ∈ J . ()

From () and a(δNf (u, v)) ≥ , we get a contradiction to (). Thus () is valid.
Denote

�(t) = a
(
δNf (u, v)

)
– F

(
δNf (u, v)

)
(t), ∀t ∈ J .

Obviously, �() = a(δNf (u, v)) ≥ , �() ≤ , and �(t) is decreasing, i.e., �(t′) ≤ �(t′′)
for any t′, t′′ ∈ J with t′ ≥ t′′. For any j = , . . . ,N , there exist ζj ∈ J such that

�j(t) ≥ , ∀t ∈ [, ζj] and �j(t) ≤ , ∀t ∈ [ζj,T).

We can conclude that vj(t) is increasing on [, ζj], and vj(t) is decreasing on [ζj,T]. Thus

min
{
vj(), vj()

}
= inf

t∈I v
j(t), j = , . . . ,N .

For any fixed j ∈ {, . . . ,N}, if

vj() = inf
t∈I v

j(t),

which together with () implies that

vj() =
∫ 


e(t)vj(t)dt + k

(
v′)j()≥ ∫ 


e(t)vj()dt + k

(
v′)j(). ()

From a(δNf (u, v)) ≥ , we have

(
v′)j() = (

ϕ–
p [,a]

)j ≥ . ()

It follows from () and () that

vj() ≥ k(v′)j()
 – σ

≥ .

If

vj() = inf
t∈I v

j(t), ()
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Zhi et al. Boundary Value Problems 2013, 2013:106 Page 20 of 22
http://www.boundaryvalueproblems.com/content/2013/1/106

from () and (), we have

vj() =
m–∑
i=

βivj(ηi) – k
(
v′)j() ≥ m–∑

i=

βivj() – k
(
v′)j(). ()

Since a(δNf (u, v)) – F(δNf (u, v))()≤ , we have

(
v′)j() = (

ϕ–
p

[
,a – F

(
δNf (u, v)

)
()

])j ≤ . ()

Combining () and (), we have

vj() ≥ –k(v′)j()
 –

∑m–
i= βi

≥ .

Thus v(t) is nonnegative.
Combining (i) and (ii), we find that every solution of (P) is nonnegative. �

Corollary . We assume that

() δf(t,x, y, z,w) ≤ , ∀(t,x, y, z,w) ∈ J ×R
N ×R

N ×R
N ×R

N with x, z ≥ ;
() δf(t,x, y, z,w) ≥ , ∀(t,x, y, z,w) ∈ J ×R

N ×R
N ×R

N ×R
N with x, z ≥ ;

() e ≥ ;
() e ≤ .

Then we have
(a) Under the conditions of Theorem ., (P) has at least one nonnegative solution (u, v);
(b) Under the conditions of Theorem ., (P) has at least one nonnegative solution (u, v).

Proof (a) Define

L(u) =
(
L∗

(
u

)
, . . . ,L∗

(
uN

))
, L(v) =

(
L∗

(
v

)
, . . . ,L∗

(
vN

))
,

where

L∗(t) =

⎧⎨
⎩t, t ≥ ,

, t < .

Denote

f̃l
(
t,u,u′, v, v′) = fl

(
t,L(u),u′,L(v), v′), ∀(

t,u,u′, v, v′) ∈ J ×R
N ×R

N ×R
N ×R

N ,

where l = , , then f̃l(t,u,u′, v, v′) satisfies the Carathéodory condition, f̃(t,u,u′, v, v′) ≤ 
and f̃(t,u,u′, v, v′)≥ .
We assume the following.

(A) lim|u|+|v|→+∞ (̃fl(t,u,u′, v, v′)/(|u| + |v|)ql(t)–) =  for t ∈ J uniformly, where ql(t) ∈
C(I,R) and  < q–l ≤ q+l < p–l .
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Obviously, f̃l(t, ·, ·, ·, ·) satisfies a sub-(p–l – ) growth condition.
Let us consider the existence of solutions of the following system:

–�p(t)u = δ f̃(t,u,u′, v, v′), t ∈ (, ),

–�p(t)v = δ f̃(t,u,u′, v, v′), t ∈ (, ),

u() =
∑m–

i= αiu(ξi) + e,

limt→– |u′|p(t)–u′(t) =
∫ 
 k(t)|u′|p(t)–u′(t)dt + e,

v() – kv′() =
∫ 
 e(t)v(t)dt, v() + kv′() =

∑m–
i= βiv(ηi).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

()

According to Theorem ., () has at least a solution (u, v). From Theorem ., we can
see that (u, v) is nonnegative. Thus, (u, v) is a nonnegative solution of (P).
(b) It is similar to the proof of (a).
This completes the proof. �

5 Examples
Example . Consider the following problem:

(S)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–�p(t)u = f(t,u,u′, v, v′) = e–t(|u|q(t)–u + |u′|q(t)–u′)

+ |v|q(t)–v + |v′|q(t)–v′ + (t + )–, t ∈ (, ),

–�p(t)v = f(t,u,u′, v, v′) = |u|q(t)–u + |u′|q(t)–u′

+ t(|v|q(t)–v + |v′|q(t)–v′) + (t + ), t ∈ (, ),

u() =
∑m–

i= αiu(ξi) + e,

limt→– |u′|p(t)–u′(t) =
∫ 



+t |u′|p(t)–u′(t)dt + e,

v() – kv′() =
∫ 
 e

–tv(t)dt, v() + kv′() =
∑m–

i= βiv(ηi),

where p(t) =  + –t cost, p(t) =  + –t sint, q(t) =  + –t cos t.
Obviously, f and f are Caratheodory, q(t) ≤  <  ≤ min{p(t),p(t)}, ∑m–

i= αi < ,∑m–
i= βi < , then the conditions of Theorem . are satisfied, then (S) has a solution.

Example . Consider the following problem

(S)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–�p(t)u = f(t,u,u′, v, v′) = –e–t(|u|q(t)–u + |u′|q(t)–)
– |v|q(t)– – |v′|q(t)– – (t + )–, t ∈ (, ),

–�p(t)v = f(t,u,u′, v, v′) = |u|q(t)–u + |u′|q(t)–
+ t(|v|q(t)–v + |v′|q(t)–) + (t + ), t ∈ (, ),

u() =
∑m–

i= αiu(ξi) + ,

limt→– |u′|p(t)–u′(t) =
∫ 



+t |u′|p(t)–u′(t)dt – ,

v() – kv′() =
∫ 
 e

–tv(t)dt, v() + kv′() =
∑m–

i= βiv(ηi),

where N = , p(t) =  + –t cost, p(t) =  + –t sint, q(t) =  + e–t sint.
Obviously, f and f are Caratheodory, q(t) ≤  <  ≤ min{p(t),p(t)}, ∑m–

i= αi < ,∑m–
i= βi < , the conditions of Corollary . are satisfied, then (S) has a nonnegative so-

lution.
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