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Abstract
Evolution equations arise in many important practical problems. They are frequently
stiff, i.e. involves fast, mostly exponentially, decreasing and/or oscillating components.
To handle such problems, one must use proper forms of implicit numerical
time-integration methods. In this paper, we consider two methods of high order of
accuracy, one for parabolic problems and the other for hyperbolic type of problems.
For parabolic problems, it is shown how the solution rapidly approaches the
stationary solution. It is also shown how the arising quadratic polynomial algebraic
systems can be solved efficiently by iteration and use of a proper preconditioner.

1 Introduction
Evolution equations arise inmany important practical problems, such as for parabolic and
hyperbolic partial differential equations. After application of a semi-discrete Galerkin fi-
nite element or a finite difference approximationmethod, a system of ordinary differential
equations,

M
du
dt

+Au(t) = f(t), t > ,u() = u,

arises. Here, u, f ∈ �n,M is a mass matrix andM, A are n× nmatrices. For a finite differ-
ence approximation,M = I , the identity matrix.
In the above applications, the order n of the system can be very large. Under reasonable

assumptions of the given source function f , the system is stable, i.e. its solution is bounded
for all t >  and converges to a fixed stationary solution as t → , independent of the initial
value u. This holds if A is a normal matrix, that is, has a complete eigenvector space,
and has eigenvalues with positive real parts. This condition holds for parabolic problems,
where the eigenvalues of A are real and positive. In more involved problems, the matrix A
may have complex eigenvalues with arbitrary large imaginary parts.
Clearly, not all numerical time-integration methods preserve the above stability proper-

ties. Unless the time-step is sufficiently small, explicit time-integration methods do not
converge and/or give unphysical oscillations in the numerical solution. Even with suf-
ficiently small time-steps, algebraic errors may increase unboundedly due to the large
number of time-steps. The simplest example where the stability holds is the Euler implicit
method,

ũ(t + τ ) + τAũ(t + τ ) = ũ(t) + τ f(t + τ ), t = τ , τ , . . . , ũ() = ũ,
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where τ >  is the time-step. Here, the eigenvalues of the inverse of the resulting matrix
in the corresponding system,

(I + τA)ũ(t + τ ) = ũ(t) + τ f(t + τ )

equal ( + τλ)– and satisfy the stability condition,

∣∣μ(λ)∣∣ = ∣∣( + τλ)–
∣∣ < , λ ∈ σ (A).

Here, σ (A) denotes the set of eigenvalues ofA. Tomore quickly damp out initial transients
in the solution, which arises for instance due to that the initial valuemay not satisfy bound-
ary conditions given in the parabolic problem, one should preferably have eigenvalues of
the inverse of the discrete matrix B, that satisfies |μ(λ)| →  for eigenvalues λ → ∞. This
holds for the implicit Euler method, where

B = I + τA and μ(λ) = ( + τλ)–.

This method is only first-order accurate, i.e. its global time discretization error is O(τ ).
Therefore, to get a sufficiently small discretization error, onemust choose very small time-
steps, whichmeans that themethod becomes computationally expensive and also causes a
stronger increase of round-off errors. However, there exists stable time-integration meth-
ods of arbitrary high order. They are of implicit Runge-Kutta quadrature type (see e.g.
[–]), and belong to the class of A-stable methods, i.e. the eigenvalues μ(B–) of the cor-
responding matrix B where Bũ(t + τ ) = ũ(t) + τ f̃(t), and f̃(t) is a linear function of f(t) at
the quadrature points in the interval [t, t + τ ], satisfy |μ(B–)| <  for all normal matrices
M–A with �e(λ) > . The highest order achieved, O(τ m) occurs for Gauss quadrature
wherem equals to the number of quadrature points within each time interval.
To satisfy the second, desirable condition,

lim
λ→∞

∣∣μ(λ)∣∣ → ,

one can use a special subclass of such methods, based on Radau quadrature; see, e.g. [, ].
The discretization error is here only one order less,O(τ m–). For linear problems, all such
stable methods lead to rational polynomial approximationmatrices B, and hence the need
to solve quadratic polynomial equations. For stable methods, it turns out that the roots of
these polynomials are complex.
In Section , a preconditioning method is described that is very efficient when solving

such systems, without the need to factorize the quadratic polynomials in first order fac-
tors, thereby avoiding the need to use complex arithmetics. Section  discusses the special
case wherem = . It shows also how the general case, wherem > , can be handled.
Section  deals with the use of implicit Runge-Kutta methods of Gauss quadrature type

for solving hyperbolic systems of Hamiltonian type.
Section  presents a method to derive time discretization errors.
In Section , some illustrating numerical tests are shown. The paper ends with conclud-

ing remarks.
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2 Preconditioners for quadratic matrix polynomials
From the introduction, it follows that it is of importance to use an efficient solutionmethod
for quadratic matrix polynomials and not factorize them in first order factors when this
results in complex valued factors. For a method to solve complex valued systems in real
arithmetics, see, e.g. []. Here, we use a particular method that is suitable for the arising
quadratic matrix polynomials.
Consider then the matrix polynomial,

B =M + aA + bAM–A. ()

We assume thatM is spd and that |a| < b, which latter implies that the first order factors
of B are complex. Systems with B will be solved by iteration. As a preconditioner, we use
the matrix

Cα = (M + αA)M–(M + αA),

where α >  is a parameter. We assume that A is a normal matrix, that is, has a full eigen-
vector space and further that the symmetric part, A + AT of A is spd. To estimate the
eigenvalues of C–

α B, we write

(Cαx,x) – (Bx,x) = (α – a)(Ax,x) +
(
α – b

)(
AM–Ax,x

)
.

After a two-sided multiplication withM–/, we get

(C̃α x̃, x̃) – (B̃x̃, x̃) = (α – a)(Ãx̃, x̃) +
(
α – b

)(
Ãx̃, x̃

)
, ()

where C̃α = M–/CαM–/ = (I + αÃ), etc. and x̃ = M/x. Note that, by similarity, C–
α B

and C̃–
α B̃ have the same eigenvalues.

We are interested in cases where Ã may have large eigenvalues. (In our application, Ã
involves a time-step factor τ , but since we use higher order time-discretization methods,
τ will not be very small and cannot damp out the inverse to some power of the space-
discretization parameter h that also occurs in Ã.) Therefore, we choose α = b. Note that
this implies that α – a > .
The resulting relation () can now be written

(x̃, x̃) –
(
C̃–

α B̃x̃, x̃
)
= (α – a)

(
C̃–

α Ãx̃, x̃
)
, ()

where

(
C̃–

α Ãx̃, x̃
)
=

(
(I + αÃ)–Ãx̃, x̃

)
.

Since α – a > , the real part of the eigenvalues of C̃–
α B̃ are bounded above by . To find

estimates of the eigenvalues λ(μ) of C̃–
α B̃, let (μ,z) be eigensolutions of Ã, i.e. let

Ãz = μz, |z| = .

http://www.boundaryvalueproblems.com/content/2013/1/108
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It follows from () that for x̃ = z,

λ(μ) =
(
C̃–

α B̃z,z
)
=  –

(
 –

a
α

)
αμ

 + αμ + (αμ)

=  –
(
 –

a
α

)


 + 
 (αμ + 

αμ
)
.

We write αμ = μeiϕ so 
 (αμ + 

αμ
) = 

 (μ + 
μ
) cos(ϕ) + i

 (μ – 
μ
) sin(ϕ), where i is the

imaginary unit. Note that μ >  so 
 (μ + 

μ
) ≥ . Since, by assumption, the real part of

μ is positive, it holds |ϕ| ≤ ϕ < π/. A computation shows that the values of the factor


+ 
 (αμ+ 

αμ )
are located in a disc in the complex plane with center at δ/ and radius δ/,

where δ = /( + cosϕ).
Hence, λ(μ) is located in a disc with center at  – 

 ( –
a
α )δ and radius 

 ( –
a
α )δ.

For ϕ = , i.e. for real eigenvalues of Ã, then δ = / and  ≥ λ(μ)≥ 
 +



a
α
.

3 A stiffly stable time integrationmethod
Consider a system of ordinary differential equations,

M
dx
dt

+ σ (t)
(
Ax(t) – f(t)

)
= , t > ,x() = x, ()

where x, f ∈ �n, σ (t) ≥ σ > , M, A are n × n matrices, where M is assumed to be spd
and the symmetric part of A is positive semidefinite. In the practical applications that we
consider,M corresponds to a mass matrix and A to a second-order diffusion or diffusion-
convection matrix. Hence, n is large. Under reasonable assumptions on the source func-
tion f , such a system is stable for all t and its solution approaches a finite function, inde-
pendent on the initial value x, as t → ∞.
Such stability results hold for more general problems, such as for a nonlinear parabolic

problem,

∂u
∂t

+ F(t,u) = , where F(t,u) = –∇ · (a(t,u,∇u)∇u
)
– f (t,u),x ∈ 
, t > , ()

where f : (,∞)×V → V ′ and V is a reflexive Banach space.
For proper functions a(·) and f (·), then F is monotone, i.e.

(
F(t,u) – F(t, v),u – v

) ≥ ρ(t)‖u – v‖, ∀u, v ∈ V , t > . ()

Here, ρ : (,∞) → R, ρ(t) ≥  and (·, ·), ‖ · ‖ denote the scalar product, and the corre-
sponding norm in L(
), respectively. In this case, one can easily derive the bound



d
dt

(‖u – v‖) = –
(
F(t,u) – F(t, v),u – v

) ≤ –ρ(t)‖u – v‖,

where u, v are solution of () corresponding to different initial values. Consequently mak-
ing use of the Gronwall lemma, we obtain

∥∥u(t) – v(t)
∥∥ ≤ exp

(
–

∫ t


ρ(s)ds

)∥∥u() – v()
∥∥ ≤ ∥∥u() – v()

∥∥, t > .

Hence, () is stable in this case.
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If F is strongly monotone (or dissipative), i.e. () is valid with ρ(t)≥ � > , then

∥∥u(t) – v(t)
∥∥ ≤ exp(–tρ)

∥∥u() – v()
∥∥ → , t → ∞,

i.e. () is asymptotically stable. In particular, the above holds for the test problem consid-
ered in Section .
For large eigenvalues of M–A, such a system is stiff and can have fast decreasing and

possibly oscillating components. This amounts to that the eigenvalues have large real
part and possibly also large imaginary parts. To handle this, one needs stable numerical
time-integration methods that do not contain corresponding increasing components. For
σ (t) = , in (), this amounts to proper approximations of the matrix exponential function
exp(tE), E =M–A, by a rational function,

Rm(tE) =Qm(tE)–Pm(tE),

where

∥∥Rm(tE)
∥∥ ≤ , t > , for Re{λE} > ,

and λE denotes eigenvalues by E. Furthermore, to cope with problemswhere arg(λE) ≤ α <
π
 , but arbitrarily close to π/, one needsA-stablemethods; see e.g. [, , ]. To get stability
for all times and time steps, one requires lim|λ|→∞ |Rm(λ)| ≤ c <  where preferably c = .
Such methods are called L-stable (Lambert) and stiffly A-stable [], respectively.
An important class of methods which are stiffly A-stable is a particular class of the im-

plicit Runga-Kuttamethods; see [, , ]. Suchmethods correspond to rational polynomial
approximations of the matrix exponential function with denominator having a higher de-
gree than the nominator. Examples of suchmethods are based on Radau quadrature where
the quadrature points are zeros of P̃m(ξ ) – P̃m–(ξ ), where {P̃k} are the Legendre polyno-
mials, orthogonal on the interval (, ), see e.g. [] and references therein. Note that ξ = 
is a root for allm ≥ . The casem =  is identical to the implicit Euler method.
Following [], we consider here the next simplest case, where m = , for the numerical

solution of () over a time interval [t, t + τ ].
In this case, the quadrature points (for a unit interval) are ξ = /, ξ =  and the nu-

merical solution x, x, at t + τ / and t + τ satisfies

[
M + σÃ –σÃ
σÃ M + σÃ

][
x
x

]
=

[
Mx + τ

 (f – f)
Mx + τ

 (f + f)

]
, ()

where x is the solution at time t, σ = σ (t + τ /), σ = σ (t + τ ), f = f(t + τ /), f = f(t + τ ),
and Ã = τ

A. The global discretization error of the x-component for thismethod isO(τ ),
i.e. it is a third-order method and it is stiffly A-stable even for arbitrary strong variations
of the coefficient σ (t). This can be compared with the trapezoidal or implicit midpoint
methods which are only second order accurate and not stiffly stable.
The system in () can be solved via its Schur complement. Thereby, to avoid an inner

systemwithmatrixM+σÃ, we derive amodified form of the Schur complement system,

http://www.boundaryvalueproblems.com/content/2013/1/108
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that involves only an inner systemwithmatrixM–. To this end, but only for the derivation
of the method, we scale first the system with the block diagonal matrix

[M– 
 M–

]
to get

[
I + σG –σG
σG I + σG

][
x
x

]
=

[
x + τ

 (f̃ – f̃)
x + τ

 (f̃ + f̃)

]
,

where G = τ
M

–A and f̃i =M–fi, i = , . The Schur complement system for x is multi-
plied with (I + σG). Using commutativity, we get then

[
(I + σG)(I + σG) + σσG]x
= (I + σG)

[
x +

τ


(f̃ + f̃)

]
– σG

[
x +

τ


(f̃ – f̃)

]

or

[
I + (σ + σ)G + σσG]x
= (I – σG)x +

τ


(f̃ + f̃) + τσGf̃.

Hence,

Bx =
(
M –

τ


σA

)
x +

τ


M(f̃ + f̃) +




τ σAf̃,

where

B =M +
τ


(σ + σ)A +

τ 


σσAM–A. ()

For higher order Radau quadrature methods, the corresponding matrix polynomial in
M–B is a mth order polynomial. By the fundamental theorem of algebra, one can fac-
torize it in factors of at most second degree. They can be solved in a sequential order.
Alternatively, using a method referred to in Remark ., the solution components can be
computed concurrently.
Each second-order factor can be preconditioned by the method in Section . The ability

to factorize Qm(tE) in second-order factors and solve the arising systems as such two-by-
two block matrix systems means that one only has to solve first-order systems. This is of
importance if for instance M and A are large sparse bandmatrices, since then one avoids
increasing bandwidths in matrix products and one can solve systems of linear combina-
tions of M and A more efficiently than for higher order polynomial combinations. Fur-
thermore, this enables one to keep matrices on element by element form (see, e.g. []) and
it is in general not necessary to store the matricesM and A. The arising inner system can
be solved by some inner iteration method.
The problem with a direct factorization in first order factors is that complex matrix

factors appear. This occurs for the matrix in () for a ratio of σ
σ

in the interval


 –

√



<

σ

σ
< 

 +
√



. ()

http://www.boundaryvalueproblems.com/content/2013/1/108
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Therefore, it is more efficient to keep the second order factors and instead solve the corre-
sponding systems by preconditioned iterations. Thereby, the preconditioner involves only
first order factors. As shown in Section , a very efficient preconditioner for the matrix B
in () is

C = Cα = (M + ατA)M–(M + στA), ()

where α >  is a parameter. As already shown in [], for the above particular application it
holds.

Proposition . Let B, C be as defined in () and () and assume that M is spd and A is
spsd. Then letting

α =max
{√

σσ/, (σ + σ)/
}

it holds

κ
(
C–B

) ≤ max
i=,

δ–i ,

where

 ≥ δ = (σ + σ)/α ≥ √
/,

 ≥ δ = σσ/α.

If .≤ σ
σ

≤ ., then δ =  and δ ≥
√


 .

The spectral condition number is then bounded by

κ
(
C–B

) ≤
√



≈ ..

If σ = σ, then

κ
(
C–B

) ≤
√



≈ ..

Proof Let (u,v) be the � product of u,v ∈ �n. We have

(Cx,x) – (Bx,x) = στ ( – δ)(Ax,x) + ατ ( – δ)
(
AM–Ax,x

) ∀x ∈ �n.

It follows that

(Bx,x)≤ (Cx,x).

By the arithmetic-geometric means inequality, we have

δ ≥ 

√
σσ/α ≥ √



√
 =

√



. ()

http://www.boundaryvalueproblems.com/content/2013/1/108
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a computation shows that

σσ/≥
(
σ + σ



)

for .� ξ � ., where ξ = σ/σ. Further, a computation shows that δ ≥
√


 , which

is in accordance with the lower bound in (). Since

(Cx,x) ≥ ατ (Ax,x) + ατ (AM–Ax,x
)
,

it follows that

 –
(Bx,x)
(Cx,x)

≥  – δ

or

(Bx,x)
(Cx,x)

≤ δ =
√


.

For α = α, a computation shows that

δ =


√
 =

√


. �

We conclude that the condition number is very close to its ideal unit value , leading to
very few iterations. For instance, it suffices with at most  conjugate gradient iterations for
a relative accuracy of –.

Remark . High order implicit Runge-Kutta methods and their discretization error es-
timates can be derived using order tree methods as described in [] and [].
For an early presentation of implicit Runge-Kutta methods, see [] and also [], where

the method was called global integration method to indicate its capability for large val-
ues ofm to use few, or even just one, time discretization steps. It was also shown that the
coefficient matrix, formed by the quadrature coefficients had a dominating lower trian-
gular part, enabling the use of a matrix splitting and Richardson iteration method. It can
be of interest to point out that the Radau method for m =  can be described in an alter-
native way, using Radau quadrature for the whole time step interval and combined with a
trapezoidal method for the shorter interval.
Namely, let du

dt + f (t,u) = , tk– < t < tk . Then Radau quadrature on the interval (tk–, tk)
has quadrature points tk– + τ /, tk , and coefficients b = /, b = /, which results in the
relation

ũ – ũ +
τ

f (t̃/, ũ/) +

τ


f (t̃, ũ) = ,

where ũ, ũ/, ũ denote the corresponding approximations of u at t̃
.= tk– + τ and t̃/ =

tk– + τ / and tk–, respectively.

http://www.boundaryvalueproblems.com/content/2013/1/108
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This equation is coupled with an equation based on quadrature

u(tk– + τ /) – u(tk–) +
∫ tk

tk–
f (t,u)dt –

∫ tk

tk–+τ /
f (t,u)dt = ,

which, using the stated quadrature rules, results in

ũ/ – ũ +
τ

f (t̃/, ũ/) +

τ


f (t̃, ũ) –



τ


[
f (t̃/, ũ/) + f (t̃, ũ)

]
= 

that is,

ũ/ – ũ +
τ


f (t̃/, ũ/) –
τ


f (t̃, ũ) = .

Remark . The arising system in a high order method involving q ≥  quadratic poly-
nomial factors, can be solved sequentially in the order they appear. Alternatively (see, e.g.
[], Exercise .), one can use a method based on solving a matrix polynomial equa-
tion, Pq(A)x = b as x =

∑q
k=


P ′
q(rk )

xk , xk = (A – rkI)–b, where {rk}q, is the set of zeros
of the polynomial and it is assumed that A has no eigenvalues in this set. (This holds in
our applications.) Then, combining pairs of terms corresponding to complex conjugate
roots rk , quadratic polynomials arise for the computation of the corresponding solution
components. It is seen that in this method, the solution components can be computed
concurrently.

Remark . Differential algebraic equations (DAE) arise in many important problems;
see, for instance [, ]. The simplest example of a DAE takes the form

⎧⎨
⎩

du
dt = f (t,u, v),

g(t,u, v) = , t > ,

with u() = u, v() = v and it is normally assumed that the initial values satisfy the con-
straint equation, i.e.

g(,u, v) = .

If det( ∂g
∂v ) �=  in a sufficiently large set around the solution, one can formally eliminate the

second part of the solution to form a differential equation in standard form.

du
dt

= f
(
t,u, v(u)

)
, t > ,u() = u.

Such a DAE is said to have index one, see e.g. []. It can be seen to be a limit case of the
system

⎧⎨
⎩

du
dt = f (t,u, v),
du
dt =


ε
g(t,u, v),

where ε >  and ε → .

http://www.boundaryvalueproblems.com/content/2013/1/108
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Hence, such anDAEcan be considered as an infinitely stiff differential equation problem.
For strongly or infinitely stiff problems, there can occur an order reduction phenomenae.
This follows since some high order error terms in the error expansion (cf. Section ) are
multiplied with (infinitely) large factors, leading to an order reduction for some methods.
Heuristically, this can be understood to occur for the Gauss integration form of IRK but
does not occur for the stiffly stable variants, such as based on the Radau quadrature. For
further discussions of this, see, e.g. [, ].

4 High order integrationmethods for Hamiltonian systems
Another important application of high order time integration methods occurs for Hamil-
tonian systems. Such systems occur in mechanics and particle physics, for instance. As
an introduction, consider the conservation of energy principle. To this end, consider a
mechanical system of k point masses and its associated Lagrangian functional,

L = K –V =
k∑
i=



mi|ẋi| –V (x, . . . ,xk),

where K is the kinetic energy and V the potential energy. Here, xi = (xi, yi, zi) denote the
Cartesian coordinate of the ith point massmi.
The configuration strives to minimize the total energy. The corresponding Euler-

Lagrange equations become then ∂L
∂xi

= , that is,

miẍi = –
∂V
∂xi

, i = , , . . . ,k. ()

We consider conservative systems, i.e.mechanical systems for which the total force on
the elements of the system are related to the potential V :�k ⇒ � according to

Fi = –
∂V
∂xi

.

This means that the Euler-Lagrange equation () is identical to the classical Newton’s law

miẍi = Fi, i = , , . . . ,k.

Let pi =mivi be the momentum. Then

K =
k∑




pi
mi

.

A mechanical system can be described by general coordinates

q = (q, . . . ,qd)

i.e. not necessarily Cartesian, but angles, length along a curve, etc. The Lagrangian takes
the form L(q, q̇, t). If q is determined to satisfy

min
q

∫ b

a
L(q, q̇, t)dt,

http://www.boundaryvalueproblems.com/content/2013/1/108
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then the motion of the system is described by the Lagrange equation,

d
dt

∂L
∂q̇

(q, q̇, t) =
∂L
∂q

(q, q̇, t). ()

Letting here

pk =
∂L
∂ q̇k

(q, q̇), k = ,  . . . ,n

be the momentum variable, and using the transformation (q, q̇) = (q,p) we can write ()
as the Hamiltonian,

H(p,q, t) =
n∑
j=

pjq̇j – L
(
q, q̇(q,p, t), t

)
.

For a mechanical system with potential energy a function of configuration only and ki-
netic energy K given by a quadratic form

K =


q̇TG(q)q̇,

where G is an spd matrix, possibly depending on q, we get

p =G(q)q̇, q̇ =G–(q)p ()

and

H(p,q, t) = pTG–(q)p –


pTG–(q)p +V (q)

=


pTG–(q)p +V (q) = K(p,q) +V (q),

which equals the total energy of the system.
The corresponding Euler-Lagrange equations become now⎧⎨

⎩ṗ = – ∂H
∂q ,

q̇ = ∂H
∂p

()

and are referred to as the Hamiltonian system. This follows from

∂H
∂p

= q̇T + pT ∂q̇
∂p

–
∂L
∂q̇

∂q̇
∂p

= q̇T ,

∂H
∂q

= pT ∂q̇
∂q

–
∂L
∂q

–
∂L
∂q̇

∂q̇
∂q

= –
∂L
∂q

,

which, since d
dt (

∂L
∂q̇ ) =

∂L
∂q implies ṗ = ∂L

∂q , are hence equivalent to the Lagrange equations.
By (), it holds

d
dt

H(p,q) =
∂H
∂p

ṗ +
∂H
∂q

q̇ = , ()

that is, the Hamiltonian function H(p,q) is a first integral for the system ().

http://www.boundaryvalueproblems.com/content/2013/1/108
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The flow ϕt : U → �n of a Hamiltonian system is the mapping that describes the evo-
lution of the solution by time, i.e. ϕt(p,q) = (p(t,p,q),q(t,p,q)), where p(t,p,q),
q(t,p,q) is the solution of the system for the initial values p() = p, q() = q.
We consider now a Hamiltonian with a quadratic first integral in the form

H(y) = yTCy, y = (p,q), ()

where C is a symmetric matrix. For the solution of the Hamiltonian system (), we shall
use an implicit Runge-Kutta method based on Gauss quadrature.
The s-stage Runge-Kutta method applied to an initial value problem, ẏ = f (t,y), y(t) =

y is defined by

⎧⎨
⎩ki = f (t + ciτ , y + τ

∑s
j= aijkj), i = , , . . . , s,

y = y + τ
∑s

i= biki,
()

where ci =
∑s

i= aij, see e.g. [, ]. The familiar implicit midpoint rule is the special case
where s = . Here, c, . . . , cs are the zeros of the shifted Legendre polynomial ds

dxs (x
s( –

x)s). For a linear problem, this results in a system which can be solved by the quadratic
polynomial decomposition and the preconditioned iterative solution method, presented
in Section .
If u(t) is a polynomial of degree s, then () takes the form

u(t) = y,

u̇(t + ciτ ) = f
(
t + cτ , y(t + ciτ )

)
, i = , . . . , s

()

and u = u(t + τ ).
For the Hamiltonian (), it holds

d
dt

H
(
y(t)

)
= yT (t)Cy(t)

and it follows from () that

yT Cy – yTCy = 
∫ t+τ

t
u(t)TCu̇(t)dt.

Since the integrand is a polynomial of degree s – , it is evaluated exactly by the s-stage
Gaussian quadrature formula. Therefore, since

y(t + cit)TCẏ(t + ciτ ) = u(t + ciτ )TCf
(
u(t + ciτ )

)
= 

it follows that the energy quadrature forms yTi Ciyi are conserved.
This is an important property in Hamiltonian systems and is referred to as being sym-

plectic. For further references of symplectic integrators, see [].

http://www.boundaryvalueproblems.com/content/2013/1/108
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5 Discretization error estimates
Error estimation methods for parabolic and hyperbolic problems can differ greatly.
Parabolic problems are characterized by the monotonicity property () while for hyper-
bolic problems a corresponding conservation property,

(
F(t,u) – F(t, v),u – v

)
= , t >  ∀u, v ∈ V

holds, implying

∥∥u(t) – v(t)
∥∥ =

∥∥u() – v()
∥∥, t ≥ . ()

Hence, there is no decrease of errors occurring at earlier time steps. On the other hand,
the strongmonotonicity property for parabolic problems implies that errors at earlier time
steps decrease exponentially as time evolves.
For a derivation of discretization errors for such parabolic type problems for a convex

combination of the implicit Euler method and the midpoint method, referred to as the
θ -method, the following holds (see []). Similar estimates can also be derived for the
Radau quadrature method, see, e.g. [].
The major result in [] is the following.
Let ust =

∂s(u(t))
∂ts . Consider the problem u′

t = F(t,u(t)) where u belongs to some function
space V and the corresponding truncation error,

Rθ (t,u) = F
(
t̄, ū(t)

)
– τ–

∫ t+τ

t
u′
t(s)ds

= u′(t̄) – τ–[u(t + τ ) – u(t)
]
+ F

(
t̄, ū(t)

)
– F

(
t̄,u(t̄)

)
,

where t̄ = θ t + ( – θ )(t + τ ), ū(t) = θu(t) + ( – θ )u(t + τ ),  ≤ θ ≤ .
If u ∈ C(V ), then a Taylor expansion shows that

Rθ (t,u) = –



τ u()t (t) +
(


– θ

)
τu()t (t)

+


θ ( – θ )τ  ∂F

∂y
(
t, ũ(t̄)

)
u()t (t), t < ti < t + τ , i = , , , ()

where ũ(t) takes values in a tube with radius ‖u(t) – u(t)‖ about the solution u(t).
It follows that if∥∥∥∥∂F

∂u
(
t, ũ(t)

)
u()t

(
t(t)

)∥∥∥∥ ≤ C ()

and θ = 
 –O(τ ), then

∥∥Rθ (t,u)
∥∥ =O

(
τ ).

Under the above conditions, the discretization error e(t) = u(t) – v(t), where

v(t + τ ) – v(t) + τF
(
t, v(t)

)
= , t = , τ , τ , . . . ,

v() = u(), is the approximate solution, satisfies

http://www.boundaryvalueproblems.com/content/2013/1/108
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(i) if F is strongly monotone and 
 – |O(τ )| ≤ θ ≤ θ, then ‖e(t)‖ ≤ �–

 C′τ , t > ;
(ii) if F is monotone (or conservative) and 

 – |O(τ )| ≤ θ ≤ 
 , then ‖e(t)‖ ≤ tC′τ , t > .

Here, C′ depends on ‖u()t ‖ and ‖u()t ‖, but is independent of the stiffness of the problem
under the appropriate conditions stated above.
If the solutionu is smooth so that ∂F

∂uu
()
t has also only smooth components, then ‖ ∂F

∂uu
()
t ‖

may be much smaller than ‖ ∂F
∂u‖‖u()t ‖, showing that the stiffness, i.e. factors ‖ ∂F

∂u‖ � , do
not enter in the error estimate.
Inmany problems, we can expect that ‖ ∂F

∂uu
()
t ‖ is of the same order as ‖u()t ‖, i.e. the first

and last forms in () have the same order. In particular, this holds for a linear problem
ut +Au = , where u()t = Au = ∂F

∂uu
()
t .

It is seen from () that for hyperbolic (conservative) problems like the Hamiltonian
problem in Section , the discretization error grows at least linearly with t, but likely faster
if the solution is not sufficiently smooth. It may then be necessary to control the error by
coupling the numerical time-integration method with an adaptive time step control. We
present here such a method based on the use of backward integration at each time-step
using the adjoint operator. The use of adjoint operators in error estimates gives back to
the classical Aubin-Nitsche L-lifting method used in boundary value problems to derive
discretization error estimates in L norm. It has also been used for error estimates in initial
value problems, see e.g. [].
Assume that themonotonicity assumption () holds.We show first a nonlinear (mono-

tone) stability property, called B-stability, that holds for the numerical solution of implicit
Runge-Kutta methods based on Gauss quadrature points. It goes back to a scientific note
in []; see also [].
Let ũ, ṽ be two approximate solutions to u′ = f (u, t), t >  extended to polynomials of

degreem from their pointwise values at tk,i in the interval [tk–, tk]. Let

�(t) =


∥∥ũ(t) – ṽ(t)

∥∥.

Then, since by (), ũ′(t) and ṽ′(t) satisfy the differential equation at the quadrature points,
and by () it holds

� ′(tk,i) =
(
ũ′(tk,i) – ṽ′(tk,i), ũ(tk,i) – ṽ(tk,i)

)
=

(
f
(
ũ(tk,i)

)
– f

(
ṽ(tk,i)

)
, ũ(tk,i) – ṽ(tk,i)

) ≤ ,

i = , , . . . ,m, where {tk,i}mi= is the set of quadrature points. Since � ′(t) is a polynomial of
degree m – , Gauss quadrature is exact so

�(tk) –�(tk–) =
∫ tk

tk–
� ′(s)ds =

m∑
i=

bi� ′(tk,i) ≤ .

Here, bi >  are the quadrature coefficients.
Hence,

∥∥ũ(tk) – ṽ(tk)
∥∥ ≤ ∥∥ũ(tk–) – ṽ(tk–)

∥∥ ≤ · · · ≤ ∥∥ũ() – ṽ()
∥∥, k = , , . . . .

Since � (m)(t) ≥ , this monotonicity property can be seen to hold also for the Radau
quadrature method.

http://www.boundaryvalueproblems.com/content/2013/1/108
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We present now a method for adaptive a posteriori error control for the initial value
problem

u′(t) = σ (t)f
(
u(t)

)
, t > ,

u() = u,
()

where u(t) ∈R
n and f (u(t)) = Au(t) – f̃ (t).

For the implicit Runge-Kutta method with approximate solution ũ(t), it holds

ũ(tk) = ũ(tk–) +
∫ tk

tk–
σ (t)f

(
ũ(t)

)
dt, k = , ,

where ũ(t) is a piecewise polynomial of degreem.
The corresponding residual equals

R
(
ũ(t)

)
= ũ′(t) – σ (t)f

(
ũ(t)

)
.

By the property of implicit Runge-Kutta methods, it is orthogonal, i.e.

∫ tk

tk–

(
ũ′(t) – σ (t)f

(
ũ(t)

)) · vdt = , k = , , . . . ()

to all polynomials of degree m. Here, the ‘dot’ indicates a vector product in R
n. The dis-

cretization error equals e(t) = u(t) – ũ(t), t > . The error estimation will be based on the
backward integration of the adjoint operator problem,

⎧⎨
⎩ϕ′(t) = –σ (t)ATϕ(t), tk– < t < tk ,

ϕ(tk) = e(tk).
()

Note that σ (t)Ae(t) = σ (t)(f (u(t)) – f (ũ(t))). It holds

∣∣e(tk)∣∣ = ∣∣e(tk)∣∣ +
∫ tk

tk–
e · (–ϕ′ – σ (t)ATϕ

)
dt,

so by integration by parts, we get

∣∣e(tk)∣∣ =
∫ tk

tk–

(
e′ – σ (t)Ae

) · ϕ dt + e(tk–) · ϕ(tk–).

Here

e′ – σ (t)Ae = u′ – σ (t)
(
Au – f̃ (t)

)
–

(
ũ′ – σ (t)

(
Aũ – f̃ (t)

))
= –ũ′ + σ (t)f (ũ) = –R(ũ).

Hence,

∣∣e(tk)∣∣ = –
∫ tk

tk–
R(ũ) · ϕ dt + e(tk–) · ϕ(tk–).

http://www.boundaryvalueproblems.com/content/2013/1/108
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Here, we can use the Galerkin orthogonality property () to get

∣∣e(tk)∣∣ – ∣∣e(tk–) · ϕ(tk–)∣∣ ≤ min
ϕ̃

∣∣∣∣
∫ tk

tk–
R(ũ) · (ϕ – ϕ̃)dt

∣∣∣∣,
where ϕ̃ is a polynomial of degreem.
Since ϕ(tk) = e(tk), it follows that

∣∣e(tk)∣∣ ≤
∣∣∣∣ϕ(tk–)ϕ(tk)

∣∣∣∣∣∣e(tk–)∣∣ +min
ϕ̃

∣∣∣∣
∫ tk

tk–
R(ũ)

ϕ – ϕ̃

ϕ(tk)
dt

∣∣∣∣,
and from ϕ′(t) = –σ (t)ATϕ(t) and μ(AT ) = μ(A) =maxiRe |λi(A)| = , it follows that

ϕ(t) = e
∫ tk
t μ(t)σ (t)dtϕ(tk) = ϕ(tk).

Hence,

∣∣e(tk)∣∣ ≤ ∣∣e(tk–)∣∣ +min
ϕ̃

∣∣∣∣
∫ tk

tk–
R(ũ)

ϕ – ϕ̃

ϕ(tk)
dt

∣∣∣∣.
Under sufficient regularity assumptions the last term can be bounded by Cτ m. Hence,

the discretization error grows linearly with time,

∣∣e(tk)∣∣ ≤ Ctkτ m, k = , , . . .

i.e. the implicit Runge-Kutta method, based on Gaussian quadrature, applied for hyper-
bolic (conservative) problems has order m.

6 A numerical test example
We consider the linear parabolic problem,

∂u
∂t

+ σ (t)(–�u + b · ∇u – f ) = , t >  ()

in the unit square domain 
 = [, ] with boundary condition

⎧⎨
⎩u =  on parts y = , y = ,

∂u
∂ν

+ �u = g,� ≥  on parts x = ,x = .
()

As initial function u, we choose a tent-like function with u =  at the center of 
 and
u =  on ∂
; see Figure .
Here, σ (t) = + 

 sinkπ t, where k = , , . . . , k ≤ 
τ
, is a parameter used to test the stability

of the method with respect to oscillating coefficients. Here, τ is the time step to be used
in the numerical solution of (). Note that this function σ (t) satisfies the conditions of
the ratio σ

σ
from (). We let f (x, y)≡ e–�x.

Further b is a vector satisfying ∇ · b ≤ . We choose b = –[�, ], where � is a parameter,
possibly � � .

http://www.boundaryvalueproblems.com/content/2013/1/108
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Figure 1 Initial function.

After a finite element or finite difference approximation, a system of the form () arises.
For a finite difference approximation M = I , the identity matrix. The Laplacian operator
is approximated with a nine-point difference scheme. We use an upwind discretization
of the convection term. In the outer corner points of the domain, we use the boundary
conditions –ux + �u =  for x =  and ux + �u =  for x = .
The time discretization is given by the implicit Runge-Kutta method with the Radau

quadrature for m = ; see Section . For comparison, we also consider m = , i.e. the
implicit Euler method, in some experiments. For solving the time-discretized problems,
we use the GMRES method with preconditioners from Section  and with the tolerance
e – . Let us note that GMRES needs - iteration for this tolerance. The problem is
implemented in Matlab.
The primary aim is to show how the time-discretization errors decrease and how fast

the numerical approximation of ()-() approaches its stationary value, i.e. the corre-
sponding numerical solution to the stationary problem

⎧⎪⎪⎨
⎪⎪⎩
–�û + b · ∇û = e–�x in 
,

u =  on parts y = , y = ,
∂u
∂ν

+ �u = g on parts x = ,x = .

()

6.1 Experiments with a known and smooth stationary solution
If we let

g(y) =

⎧⎨
⎩�y( – y) for x = ,

 for x = 

then the solution to () satisfies

û(x, y) = e–�xy( – y).

http://www.boundaryvalueproblems.com/content/2013/1/108
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Table 1 The error estimates in dependence on � and h

� \ h 1/10 1/20 1/50 1/100 1/150

1 1.2e–2 5.9e–3 2.3e–3 1.2e–3 7.7e–4
20 6.1e–1 4.5e–1 2.5e–1 1.4e–1 9.4e–2

Figure 2 Numerical stationary solution for � = 1.

First, we will investigate the influence of the space discretization error on the stationary
problem (). To this end, we use the relative error estimate in the Euclidean norm:

eh =
‖ûh – û‖

‖û‖ .

Here, û, ûh denote the vectors representing the exact and numerical solutions to () at
the nodal points, respectively. The error estimates in dependence on � and h are found
in Table . It is seen that the error decay is O(h). This is caused by the use of first order
upwind approximation of the convection term.
In Figures  and , there are depicted numerical stationary solutions for � =  and � = ,

respectively. The discretization parameter is h = /.
Now we will investigate how fast the numerical solution to ()-() approaches the

numerical solution to () in dependence on τ . We fix k =  and we search the smallest
time T for which

‖uh(T) – ûh‖
‖ûh‖ < –,

where the vectors ûh and uh(T) represent the numerical solution to () and the numerical
solution to ()-() at time T , respectively. The results for various � and h are in Table .
We can observe that the dependence of the results on h is small. For smaller �, the final
time does not depend on τ , while for larger �, the dependence on τ is more significant.

Finally, we investigate how the time-discretization error decrease in dependence on τ

at a fixed, relatively small, time T = /. We consider five different time-discretization
parameters: τ = T , τ = T/, τ = T/, τ = T/, and τ = T/.We will compare the max-

http://www.boundaryvalueproblems.com/content/2013/1/108
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Figure 3 Numerical stationary solution for � = 20.

Table 2 Values of time T in dependence on h and τ

h \ τ 1/5 1/10 1/20 1/40

1/20 1.40 1.30 1.25 1.25
1/50 1.40 1.30 1.25 1.25

h \ τ 1/5 1/10 1/20 1/40

1/20 1.40 0.70 0.35 0.18
1/50 1.60 0.80 0.40 0.18

We use � = 1 (left) and � = 20 (right).

Table 3 Time discretization error at time T = 1/8 in dependence on h and τ

h \ i 1 2 3 4

1/20 1.7e–1 1.6e–2 3.0e–4 9.5e–6
1/50 1.8e–1 2.0e–2 5.6e–4 4.5e–6
1/100 1.8e–1 2.1e–2 6.8e–4 3.0e–6

Table 4 Time discretization error at time T = 1/8 in dependence on � and τ

� \ i 1 2 3 4

1 7.1e–2 3.9e–3 2.1e–4 2.8e–5
20 1.8e–1 2.0e–2 5.6e–4 4.5e–6

Table 5 Time discretization error at time T = 1/8 in dependence on k and τ

k \ i 1 2 3 4

0 1.1e–1 2.4e–2 4.3e–4 2.4e–5
10 1.8e–1 2.0e–2 5.6e–4 4.5e–6

imal differences between the vectors ui(T) and ui+(T), i = , . . . , , where ui(T) represents
the numerical solution to ()-() at time T for the time-discretization parameter τi,
i = , . . . , . So, we investigate the following error:

ei =
∥∥ui+(T) – ui(T)

∥∥∞, i = , . . . , ,

which values are found in Tables -. If we let k = , � =  and use various h, we obtain
results written in Table . It is seen that the influence of h on the time discretization error

http://www.boundaryvalueproblems.com/content/2013/1/108
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Table 6 Time discretization error at time T = 1/8 in dependence on � and τ for the implicit
Euler method

k \ i 1 2 3 4

0 7.8e–2 4.2e–2 1.7e–2 4.6e–3
10 2.5e–2 2.5e–2 4.8e–2 2.2e–2

Table 7 Values of stabilized time T in dependence on � and τ

� \ τ 1/5 1/10 1/20 1/40

1 1.40 1.30 1.25 1.23
20 1.60 0.80 0.45 0.20

We let h = 1/50.

Table 8 Time discretization error at time T = 1/8 in dependence on � and τ

l \ i 1 2 3 4

1 7.4e–2 4.0e–2 2.0e–4 2.6e–5
20 1.8e–1 1.9e–2 5.6e–4 4.5e–6

is small for the larger time steps but more noticeable for the smaller time steps when the
time and space discretization errors are of the same order.
If we let k = , h = /, � =  and � = , we obtain results in Table . We can see that

the investigated time-discretization error decreases faster for � =  than for � = .
If we let k = , k = , h = /, and � = , we obtain results in Table .
The error estimates from Tables - indicate that the expected error estimate O(τ )

holds.
For comparison, we perform the same experiment as in Table  for the implicit Euler

time discretization. The results are in Table .
The error estimates are here significantly influenced by the oscillation parameter k. For

the larger value k = , we do not observe convergence. In case k = , the convergence is
first orderO(τ ), that is, much slower than for the Runge-Kutta method with the two-point
Radau quadrature.

6.2 Experiments with an unknown and less smooth stationary solution
Here, we replace the above defined function g with the following one:

g(y) =

⎧⎪⎨
⎪⎩
y( – y), y < / or y > /,
e|y–/|, /≤ y≤ /

}
for x = ,

 for x = 

and prepare Tables  and  correspondingly to Tables  and , respectively. The results
in Tables  and  are very similar to the results from Tables  and . It means that less
smoothness in space of the solution to ()-() do not significantly influence the time-
discretization error.
In Figures  and , there are depicted numerical stationary solutions for � =  and � = ,

respectively. The discretization parameter is h = /.
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Figure 4 Numerical stationary solution for � = 1.

Figure 5 Numerical stationary solution for � = 20.

7 Concluding remarks
There are several advantages in using high order time integration methods. Clearly, the
major advantage is that the high order of discretization errors enables the use of larger,
and hence fewer timesteps to achieve a desired level of accuracy. Some of the methods,
like Radau integration, are highly stable, i.e. decrease unwanted solution components ex-
ponentially fast and do not suffer from an order reduction, which is otherwise common
formany othermethods. The disadvantage with such high ordermethods is that onemust
solve a number of quadratic matrix polynomial equations. For this reason, much work has
been devoted to development of simpler methods, like diagonally implicit Runge-Kutta
methods; see e.g. []. Such methods are, however, of lower order and may suffer from
order reduction.
In the present paper, it has been shown that the arising quadratic matrix system poly-

nomial factors can be handled in parallel and each of them can be solved efficiently with
a preconditioning method, resulting in very few iterations. Each iteration involves just

http://www.boundaryvalueproblems.com/content/2013/1/108
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two first order matrix real valued factors, similar to what arises in the diagonal implicit
Runge-Kutta methods. An alternative, stabilized explicit Runge-Kutta methods, i.e.meth-
ods where the stability domain has been extended by use of certain forms of Chebyshev
polynomials; see, e.g. [] can only be competitive for modestly stiff problems.
It has also been shown that the methods behave robustly with respect to oscillations in

the coefficients in the differential operator. Hence, in practice, high order methods have a
robust performance and do not suffer from any real disadvantage.
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